organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1098

N-Methyl-4-(4-pivalamido­phenyl­sulfan­yl)picolinamide hemihydrate

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, and bWest China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 22 February 2011; accepted 2 April 2011; online 13 April 2011)

In the title compound, C18H21N3O2S·0.5H2O, the benzene ring makes dihedral angles of 88.59 (6) and 40.74 (8)° with the pyridine ring and the amide group, respectively. The water O atom lies on a twofold axis. In the crystal, the organic mol­ecules and the water mol­ecules are linked via O—H⋯O hydrogen bonds, while the organic mol­ecules are connected to each other via N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related compounds and their biological activity, see: Khire et al. (2004[Khire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R., Caringal, Y., Carlson, R., Dumass, J., Gane, T., Heald, S. L., Hibner, B., Johnson, J. S., Katz, M. E., Kennure, N., Wood, K. J., Lee, W., Liu, X. G., Lowinger, T. B., McAlexander, I., Monahan, M. K., Natero, R., Renick, J., Riedl, B., Rong, H., Silbley, R. N., Smith, R. A. & Wolanin, D. (2004). Bioorg. Med. Chem. Lett. 14, 783-786.]); Dominguez et al. (2007[Dominguez, C., Smith, L., Huang, Q., Yuan, C. & Ouyang, X. H. (2007). Bioorg. Med. Chem. Lett. 17, 6003-6008.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O2S·0.5H2O

  • Mr = 352.46

  • Monoclinic, C 2/c

  • a = 12.7413 (4) Å

  • b = 17.5056 (8) Å

  • c = 17.1978 (6) Å

  • β = 108.632 (4)°

  • V = 3634.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 1.000

  • 3714 measured reflections

  • 3714 independent reflections

  • 2498 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 0.96

  • 3714 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.854 (18) 2.335 (18) 3.0317 (19) 139.0 (15)
O3—H3⋯O2ii 0.87 (2) 1.94 (2) 2.8059 (18) 174.2
N1—H1⋯O3 0.850 (19) 2.269 (19) 3.089 (2) 162.3 (18)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Sorafenib is a molecule of great importance owing to its antitumor properties (Khire et al., 2004; Dominguez et al., 2007). The title compound, which is one of its derivatives, possesses even better in vitro anticancer activity against both two tumor cell lines (HCT116 and HEPG2). As a potent antitumor drug, we report here its crystal structure.

In the title molecule, C18H21N3O2S.0.5(H2O), the central benzene ring makes dihedral angles of 88.59 (6)° and 40.74 (8)° with the pyridine and amide bonds, respectively (Fig. 1). The O atom of the isolated water molecule lies on a two-fold axis. In the crystal structure, two organic molecules and one water molecule are linked via the O3—H3···O2ii hydrogen bonds, while organic molecules are connected with each other via the N3—H3A···O1i hydrogen bonds, forming a three-dimensional network [symmetry codes: (i) x-1, y, z; (ii) x+3/2, y+3/2, z+1.Table 1 and Fig. 2].

Related literature top

For related compounds and their biological activity, see: Khire et al. (2004); Dominguez et al. (2007).

Experimental top

To the suspension of anhydrous potassium carbonate (0.69 g, 5.0 mmol) and 4-(4-aminophenylthio)-N-methylpicolinamide (0.52 g, 2.0 mmol) in 7.0 ml THF was added dropwise pivaloyl chloride (0.25 g, 2.1 mmol). After being stirred at room temperature for 2 h, the mixture was extracted with 30 ml EA and 30 ml brine for three times and the combined organic layers were dried over anhydrous sodium sulfate. Then the solution was concentrated under vacuum, and the residue was recrystallized from ethanol to give the title compound, with 40% yield. Crystals suitable for a X-ray analysis were obtained by slow evaporation from a solution of ethanol at room temperature.

Refinement top

The two H atoms of N1 and N3 were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, with O–H···O and N–H···O hydrogen bonds shown as dotted red and blue lines, respectively.
4-{[4-(2,2-dimethylpropanamido)phenyl]sulfanyl}-N-methylpyridine- 2-carboxamide hemihydrate top
Crystal data top
C18H21N3O2S·0.5H2OF(000) = 1496
Mr = 352.46Dx = 1.288 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2ycCell parameters from 4009 reflections
a = 12.7413 (4) Åθ = 3.2–28.9°
b = 17.5056 (8) ŵ = 0.20 mm1
c = 17.1978 (6) ÅT = 293 K
β = 108.632 (4)°Block, colourless
V = 3634.8 (2) Å30.24 × 0.22 × 0.18 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube2498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.4°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 021
Tmin = 0.966, Tmax = 1.000l = 021
3714 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0661P)2]
where P = (Fo2 + 2Fc2)/3
3714 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H21N3O2S·0.5H2OV = 3634.8 (2) Å3
Mr = 352.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.7413 (4) ŵ = 0.20 mm1
b = 17.5056 (8) ÅT = 293 K
c = 17.1978 (6) Å0.24 × 0.22 × 0.18 mm
β = 108.632 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2498 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 1.000Rint = 0.000
3714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.25 e Å3
3714 reflectionsΔρmin = 0.21 e Å3
238 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd. (version 1.171.33.66). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61494 (4)0.59213 (4)0.36246 (3)0.0608 (2)
O11.13699 (9)0.68403 (8)0.59009 (7)0.0587 (4)
O20.18072 (9)0.62917 (8)0.30133 (7)0.0501 (3)
N11.04402 (11)0.59473 (9)0.63584 (9)0.0426 (4)
N20.36966 (11)0.62678 (10)0.50293 (8)0.0467 (4)
N30.15906 (11)0.66751 (9)0.42051 (9)0.0437 (4)
C11.33721 (15)0.64847 (17)0.70547 (13)0.0802 (8)
H1B1.33310.69770.68000.120*
H1A1.34760.60980.66900.120*
H1C1.39840.64760.75560.120*
C21.23823 (17)0.55645 (13)0.76612 (13)0.0702 (7)
H2C1.30620.55370.81110.105*
H2A1.23680.51650.72760.105*
H2B1.17670.55050.78640.105*
C31.2132 (2)0.69544 (16)0.78024 (13)0.0901 (8)
H3C1.20600.74390.75280.135*
H3D1.27560.69690.82960.135*
H3B1.14710.68500.79380.135*
C41.23043 (13)0.63306 (10)0.72414 (10)0.0412 (4)
C51.13433 (13)0.63957 (11)0.64372 (10)0.0397 (4)
C60.94575 (12)0.59550 (10)0.56813 (10)0.0382 (4)
C70.89869 (14)0.66307 (11)0.53038 (11)0.0458 (4)
H70.93370.70950.54780.055*
C80.79980 (14)0.66091 (12)0.46693 (10)0.0481 (5)
H80.76890.70620.44150.058*
C90.74604 (13)0.59274 (12)0.44062 (10)0.0446 (5)
C100.79331 (13)0.52514 (12)0.47770 (10)0.0479 (5)
H100.75820.47870.46010.058*
C110.89264 (13)0.52707 (11)0.54086 (10)0.0444 (4)
H110.92430.48160.56540.053*
C120.52341 (13)0.60419 (10)0.41985 (10)0.0399 (4)
C130.41182 (12)0.61603 (10)0.37742 (9)0.0381 (4)
H130.38630.61610.32040.046*
C140.34005 (12)0.62763 (10)0.42101 (9)0.0366 (4)
C150.47617 (14)0.61313 (12)0.54174 (11)0.0559 (5)
H150.49870.61070.59870.067*
C160.55535 (14)0.60244 (12)0.50456 (10)0.0507 (5)
H160.62890.59420.53560.061*
C170.21897 (12)0.64171 (10)0.37579 (10)0.0382 (4)
C180.04265 (13)0.68624 (11)0.38587 (11)0.0509 (5)
H18B0.02780.70410.33060.076*
H18C0.02400.72540.41830.076*
H18A0.00100.64150.38580.076*
H3A0.1891 (14)0.6747 (11)0.4720 (11)0.051 (5)*
H11.0476 (15)0.5594 (11)0.6705 (11)0.056 (6)*
H30.9464 (16)0.4381 (12)0.7371 (14)0.072 (7)*
O31.00000.47126 (12)0.75000.0502 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (2)0.1137 (5)0.0331 (2)0.0111 (3)0.00870 (18)0.0027 (3)
O10.0487 (7)0.0767 (10)0.0474 (7)0.0134 (7)0.0109 (6)0.0197 (7)
O20.0346 (6)0.0727 (9)0.0386 (7)0.0011 (6)0.0059 (5)0.0086 (6)
N10.0340 (7)0.0498 (10)0.0401 (8)0.0034 (7)0.0061 (6)0.0113 (8)
N20.0369 (7)0.0677 (11)0.0349 (8)0.0007 (7)0.0106 (6)0.0011 (7)
N30.0350 (7)0.0564 (10)0.0389 (8)0.0019 (7)0.0107 (7)0.0019 (7)
C10.0398 (10)0.134 (2)0.0608 (13)0.0199 (12)0.0076 (10)0.0188 (14)
C20.0557 (11)0.0722 (16)0.0628 (13)0.0126 (11)0.0090 (10)0.0177 (12)
C30.105 (2)0.100 (2)0.0551 (14)0.0152 (16)0.0122 (14)0.0235 (13)
C40.0380 (9)0.0493 (11)0.0338 (9)0.0092 (8)0.0082 (7)0.0009 (8)
C50.0370 (9)0.0459 (11)0.0375 (9)0.0023 (8)0.0139 (7)0.0013 (8)
C60.0308 (8)0.0478 (11)0.0370 (9)0.0005 (8)0.0121 (7)0.0052 (8)
C70.0409 (9)0.0453 (11)0.0507 (10)0.0015 (8)0.0138 (8)0.0057 (9)
C80.0416 (9)0.0563 (12)0.0475 (10)0.0138 (9)0.0159 (8)0.0157 (9)
C90.0300 (8)0.0690 (13)0.0352 (9)0.0052 (9)0.0108 (7)0.0052 (9)
C100.0386 (9)0.0567 (13)0.0458 (10)0.0040 (9)0.0098 (8)0.0017 (9)
C110.0368 (9)0.0451 (11)0.0471 (10)0.0023 (8)0.0073 (8)0.0090 (8)
C120.0323 (8)0.0511 (11)0.0347 (9)0.0008 (7)0.0083 (7)0.0002 (8)
C130.0326 (8)0.0485 (11)0.0295 (8)0.0005 (7)0.0048 (7)0.0007 (7)
C140.0323 (8)0.0392 (10)0.0351 (9)0.0035 (7)0.0065 (7)0.0043 (8)
C150.0404 (9)0.0945 (17)0.0300 (9)0.0005 (10)0.0071 (7)0.0001 (9)
C160.0340 (8)0.0802 (15)0.0331 (9)0.0042 (9)0.0042 (7)0.0015 (9)
C170.0315 (8)0.0397 (10)0.0422 (10)0.0042 (7)0.0102 (7)0.0014 (8)
C180.0380 (9)0.0586 (13)0.0585 (12)0.0060 (9)0.0189 (8)0.0009 (10)
O30.0371 (10)0.0505 (12)0.0565 (11)0.0000.0056 (9)0.000
Geometric parameters (Å, º) top
S1—C91.7783 (16)C4—C51.531 (2)
S1—C121.7646 (17)C6—C71.390 (2)
O1—C51.215 (2)C6—C111.382 (2)
O2—C171.2355 (18)C7—H70.9300
N1—C51.364 (2)C7—C81.379 (2)
N1—C61.412 (2)C8—H80.9300
N1—H10.850 (19)C8—C91.378 (3)
N2—C141.337 (2)C9—C101.387 (3)
N2—C151.329 (2)C10—H100.9300
N3—C171.324 (2)C10—C111.380 (2)
N3—C181.448 (2)C11—H110.9300
N3—H3A0.854 (18)C12—C131.391 (2)
C1—H1B0.9600C12—C161.382 (2)
C1—H1A0.9600C13—H130.9300
C1—H1C0.9600C13—C141.370 (2)
C1—C41.519 (2)C14—C171.510 (2)
C2—H2C0.9600C15—H150.9300
C2—H2A0.9600C15—C161.369 (2)
C2—H2B0.9600C16—H160.9300
C2—C41.511 (3)C18—H18B0.9600
C3—H3C0.9600C18—H18C0.9600
C3—H3D0.9600C18—H18A0.9600
C3—H3B0.9600O3—H30.87 (2)
C3—C41.519 (3)
O1—C5—N1121.37 (15)C6—N1—H1114.8 (13)
O1—C5—C4121.67 (15)C6—C7—H7120.2
O2—C17—N3123.57 (14)C6—C11—H11119.5
O2—C17—C14120.31 (14)C7—C6—N1122.01 (16)
N1—C5—C4116.93 (14)C7—C8—H8119.5
N2—C14—C13124.18 (14)C8—C7—C6119.68 (17)
N2—C14—C17116.27 (14)C8—C7—H7120.2
N2—C15—H15117.4C8—C9—S1120.11 (14)
N2—C15—C16125.22 (16)C8—C9—C10119.37 (15)
N3—C17—C14116.12 (14)C9—C8—C7121.07 (16)
N3—C18—H18B109.5C9—C8—H8119.5
N3—C18—H18C109.5C9—C10—H10120.2
N3—C18—H18A109.5C10—C9—S1120.48 (15)
C1—C4—C3109.12 (19)C10—C11—C6120.98 (16)
C1—C4—C5107.93 (13)C10—C11—H11119.5
H1B—C1—H1A109.5C11—C6—N1118.74 (15)
H1B—C1—H1C109.5C11—C6—C7119.20 (15)
H1A—C1—H1C109.5C11—C10—C9119.68 (17)
C2—C4—C1109.39 (17)C11—C10—H10120.2
C2—C4—C3109.59 (18)C12—S1—C9101.86 (7)
C2—C4—C5114.16 (14)C12—C13—H13120.5
H2C—C2—H2A109.5C12—C16—H16120.8
H2C—C2—H2B109.5C13—C12—S1118.16 (12)
H2A—C2—H2B109.5C13—C14—C17119.55 (14)
C3—C4—C5106.51 (15)C14—C13—C12118.96 (14)
H3C—C3—H3D109.5C14—C13—H13120.5
H3C—C3—H3B109.5C15—N2—C14115.50 (14)
H3D—C3—H3B109.5C15—C16—C12118.47 (15)
C4—C1—H1B109.5C15—C16—H16120.8
C4—C1—H1A109.5C16—C12—S1124.21 (12)
C4—C1—H1C109.5C16—C12—C13117.62 (15)
C4—C2—H2C109.5C16—C15—H15117.4
C4—C2—H2A109.5C17—N3—C18122.88 (15)
C4—C2—H2B109.5C17—N3—H3A120.1 (12)
C4—C3—H3C109.5C18—N3—H3A117.0 (12)
C4—C3—H3D109.5H18B—C18—H18C109.5
C4—C3—H3B109.5H18B—C18—H18A109.5
C5—N1—C6125.06 (15)H18C—C18—H18A109.5
C5—N1—H1119.7 (13)
S1—C9—C10—C11176.99 (13)C7—C8—C9—S1176.56 (13)
S1—C12—C13—C14178.20 (13)C7—C8—C9—C101.1 (3)
S1—C12—C16—C15179.54 (16)C8—C9—C10—C110.7 (3)
N1—C6—C7—C8176.92 (15)C9—S1—C12—C13172.12 (14)
N1—C6—C11—C10176.57 (15)C9—S1—C12—C168.07 (19)
N2—C14—C17—O2166.19 (16)C9—C10—C11—C60.3 (3)
N2—C14—C17—N313.7 (2)C11—C6—C7—C80.4 (3)
N2—C15—C16—C121.4 (3)C12—S1—C9—C887.13 (15)
C1—C4—C5—O132.9 (2)C12—S1—C9—C1090.55 (15)
C1—C4—C5—N1148.93 (18)C12—C13—C14—N21.5 (3)
C2—C4—C5—O1154.74 (18)C12—C13—C14—C17179.11 (15)
C2—C4—C5—N127.1 (2)C13—C12—C16—C150.6 (3)
C3—C4—C5—O184.2 (2)C13—C14—C17—O213.2 (2)
C3—C4—C5—N194.0 (2)C13—C14—C17—N3166.83 (16)
C5—N1—C6—C741.0 (2)C14—N2—C15—C161.9 (3)
C5—N1—C6—C11141.63 (17)C15—N2—C14—C130.4 (3)
C6—N1—C5—O11.4 (3)C15—N2—C14—C17178.99 (17)
C6—N1—C5—C4176.82 (15)C16—C12—C13—C142.0 (2)
C6—C7—C8—C90.6 (3)C18—N3—C17—O22.2 (3)
C7—C6—C11—C100.9 (3)C18—N3—C17—C14177.90 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.854 (18)2.335 (18)3.0317 (19)139.0 (15)
O3—H3···O2ii0.87 (2)1.94 (2)2.8059 (18)174.2
N1—H1···O30.850 (19)2.269 (19)3.089 (2)162.3 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H21N3O2S·0.5H2O
Mr352.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.7413 (4), 17.5056 (8), 17.1978 (6)
β (°) 108.632 (4)
V3)3634.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.966, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3714, 3714, 2498
Rint0.000
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 0.96
No. of reflections3714
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.854 (18)2.335 (18)3.0317 (19)139.0 (15)
O3—H3···O2ii0.87 (2)1.94 (2)2.8059 (18)174.2
N1—H1···O30.850 (19)2.269 (19)3.089 (2)162.3 (18)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDominguez, C., Smith, L., Huang, Q., Yuan, C. & Ouyang, X. H. (2007). Bioorg. Med. Chem. Lett. 17, 6003–6008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhire, U. R., Bankston, D., Barbosa, J., Brittelli, D. R., Caringal, Y., Carlson, R., Dumass, J., Gane, T., Heald, S. L., Hibner, B., Johnson, J. S., Katz, M. E., Kennure, N., Wood, K. J., Lee, W., Liu, X. G., Lowinger, T. B., McAlexander, I., Monahan, M. K., Natero, R., Renick, J., Riedl, B., Rong, H., Silbley, R. N., Smith, R. A. & Wolanin, D. (2004). Bioorg. Med. Chem. Lett. 14, 783–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1098
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds