organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1462-o1463

(3,5,5,6,8,8-Hexa­methyl-5,6,7,8-tetra­hydro­naphthalen-2-yl)methanol: a possible metabolite of the synthetic musk fragrance AHTN

aInstitute for Chemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany, and bBAM–Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
*Correspondence e-mail: r.faust@uni-kassel.de

(Received 1 February 2011; accepted 12 May 2011; online 20 May 2011)

The title compound (AHTN-OH), C17H26O, was prepared in order to provide standard materials for the qualitative and quanti­tative analysis of environmental pollutants. The mol­ecule possesses a chiral C atom, although the structure determination was performed on racemic material, expressed in the structure as disordered chiral sites. The asymmetric unit consists of four AHTN-OH mol­ecules containing an hy­droxy group and forming a tetra­meric cyclic motif built up by four strong hydrogen bonds between these hy­droxy groups and additionally by two weak C—H⋯π inter­actions. Furthermore, these tetra­mers are linked via very weak C—H⋯π inter­actions, forming chains along the c axis.

Related literature

For the solid state structure of AHTN, see De Ridder et al. (1990[De Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200-2202.]); for the partially oxidized derivatives AHTN-COOH, see: Kuhlich et al. (2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]) and AHTN-CHO, see: De Ridder et al. (1994[De Ridder, D. J. A., Fraanje, J., Goubitz, K. & Schenk, H. (1994). Acta Cryst. C50, 1962-1966.]). The accumulation potential of AHTN in humans, wildlife and the environment is of concern (Lucken­bach & Epel, 2005[Luckenbach, T. & Epel, D. (2005). Health Perspect. 113, 17-24.]; Martin et al., 2007[Martin, C., Moeder, M., Daniel, X., Krauss, G. & Schlosser, D. (2007). Environ. Sci. Technol. 41, 5395-5402.]), especially as it has been shown to act as an endocrine disruptor (Luckenbach & Epel, 2005[Luckenbach, T. & Epel, D. (2005). Health Perspect. 113, 17-24.]). For our efforts to provide standard materials for the qualitative and quanti­tative analysis of food contam­in­ants, see: Siegel et al. (2009[Siegel, D., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o1201.]). For structure–fragrance relationships, see: Amoore (1970[Amoore, J. E. (1970). Molecular Basis of Odor. Springfield, IL: C. C. Thomas.]). Relationships of this kind increasingly take into account structural design elements such as mol­ecular sites of hydro­philicity or inter­molecular inter­actions such as hydrogen bonds, see: Beets (1957[Beets, M. G. J. (1957). Molecular Structure and Organoleptic Quality. New York: Macmillan.], 1978[Beets, M. G. J. (1978). Structure-Activity Relationship in Human Chemoreception. London: Applied Science Publishers.]); Dravnieks & Laffort (1972[Dravnieks, A. & Laffort, P. (1972). Physico-chemical basis of quantitative and qualitative odor discrimination in humans, edited by D. Schneider, in Olfaction and Taste, pp. 142-148. Stuttgart: Wissens-Verlag-mBH.]). The title compound was obtained by the oxidation of the AHTNs acyl side chain to a carb­oxy­lic acid, followed by carboxyl reduction to the primary alcohol, see: Valdersnes et al. (2006[Valdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461-471.]).

[Scheme 1]

Experimental

Crystal data
  • C17H26O

  • Mr = 246.38

  • Orthorhombic, P n 21 a

  • a = 17.6364 (7) Å

  • b = 29.0183 (15) Å

  • c = 11.6701 (5) Å

  • V = 5972.5 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.60 × 0.60 × 0.07 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.955, Tmax = 0.994

  • 23401 measured reflections

  • 5436 independent reflections

  • 4395 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.173

  • S = 1.07

  • 5436 reflections

  • 708 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4, Cg10, Cg14 and Cg17 are the centroids of the C19–C22/C27/C28, C36–C39/C44/C45, C53–C56/C61/C62 and C2–C5/C10/C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.84 1.93 2.753 (5) 168
O2—H2⋯O1 0.84 1.98 2.794 (4) 162
O3—H3⋯O2 0.84 1.92 2.7545) 174
O4—H4⋯O3 0.84 1.95 2.790 (4) 173
C29—H29ACg14i 0.98 2.83 3.632 (4) 140
C29—H29BCg17 0.98 2.58 3.466 (5) 151
C63—H63ACg10 0.98 2.69 3.471 (5) 137
C63—H63BCg4ii 0.98 2.72 3.641 (5) 157
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

6-Acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN, TonalideR is a member of a group of synthetic fragrances designed to emulate the scent of natural musk. It is widely used in perfumes, cosmetics, detergents and air fresheners and hence is produced in several thousand tons per year worldwide. However, its accumulation potential in humans, wildlife and in the environment currently gives rise to concern, (Luckenbach & Epel, 2005; Martin et al., 2007) in particular in view of the fact that AHTN has been shown to act as an endocrine disruptor by inhibiting the cellular xenobiotic defense system (Luckenbach & Epel, 2005). A possible metabolite of the lipophilic AHTN is the title compound (3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalene-2-yl)methanol 1 (AHTN-OH), formally obtained by the oxidation of the AHTNs acyl side chain to a carboxylic acid followed by carboxyl reduction to the primary alcohol (Valdersnes et al., 2006). In our continuing effort to provide standard materials for the qualitative and quantitative analysis of food contaminants (Siegel et al., 2009) and environmental pollutants, we have elucidated the crystal structure of 1. These data will assist, for example, fragrance designers in establishing structure-fragrance relationships (Amoore, 1970; Beets, 1978). Relationships of this kind increasingly take into account structural design elements such as molecular sites of hydrophilicity or intermolecular interactions such as hydrogen bonds (Beets, 1957; Dravnieks & Laffort, 1972). The solid state structures of AHTN, (De Ridder et al., 1990) and of the partially oxidized derivatives AHTN-COOH (Kuhlich et al., 2010) and AHTN-CHO (De Ridder et al., 1994) have been reported.

AHTN-OH 1 crystallizes in an orthorhombic unit cell of the non-centrosymmetric space group P n 21 a. The asymmetric unit contains 4 formular units that are bonded via four strong hydrogen bonds, forming a four-membered cyclic arrangement (Table 1). No further intermolecular bonds, hydrogen bonds or other strong interactions between these tetrameric units can be observed. Since the starting material AHTN was used as a racemic mixture in the synthesis of 1, 1 is found to occur as a racemic mixture in the crystal. In the present case both enantiomers are represented by the split positions of the methylene groups at C8, C25, C42 and C59 (only one split position is shown in Fig. 1). Each split position determines the R or S configuration of the adjacent atoms C7, C24, C41 and C58, respectively. The present study does therefore not allow a correlation between the olfactoric qualities and the absolute configuration of the two enantiomers of 1. It is evident, however, that the vapor pressure (cf. the relatively high mp. of 1) and hence the fragrance intensity of 1 is significantly reduced compared to related compounds such as the parent AHTN, AHTN-CHO and AHTN-COOH, which are less engaged in hydrogen bonded networks in the solid state.

Related literature top

For the solid state structure of AHTN, see De Ridder et al. (1990); for those of partially oxidized derivatives, see: Kuhlich et al. (2010) for AHTN-COOH and De Ridder et al. (1994) for AHTN-CHO. The accumulation potential of AHTN in humans, wildlife and the environment currently gives rise to concern (Luckenbach & Epel, 2005; Martin et al., 2007), especially as it has been shown to act as an endocrine disruptor (Luckenbach & Epel, 2005). For our efforts to provide standard materials for the qualitative and quantitative analysis of food contaminants, see: Siegel et al. (2009). For structure–fragrance relationships, see: Amoore (1970). Relationships of this kind increasingly take into account structural design elements such as molecular sites of hydrophilicity or intermolecular interactions such as hydrogen bonds, see: Beets (1957, 1978); Dravnieks & Laffort (1972). The title compound was obtained by the oxidation of the AHTNs acyl side chain to a carboxylic acid followed by carboxyl reduction to the primary alcohol, see: Valdersnes et al. (2006).

Experimental top

A solution of 3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalene-2- carboxylic acid (AHTN-COOH, 913 mg, 3.5 mmol) (Kuhlich et al., 2010) in dry diethylether (100 ml) was added (1 h) at 50 °C to a stirred suspension of LiAlH4 (540 mg, 14.2 mmol) in diethylether (40 ml). After 0.5 h the cooled (0 °C) reaction mixture was carefully hydrolyzed with H2O (120 ml) and acidified with 6 M HCl solution (90 ml). The mixture was extracted with CH2Cl2 (90 ml), the organic phase dried over MgSO4, filtered and the solvent was evaporated under reduced pressure. Crystallization from ethyl acetate followed by column chromatography (SiO2, CHCl3/MeOH 3:1) gave the product as colorless solid [m.p. 111 °C]. Single crystals of (3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution (Valdersnes et al., 2006).

Refinement top

The structure shows disorder, which could be resolved at positions C8/C8a, C25/C25a, C42/C42a and C59/C59a. The split positions were included to the model with fixed occupancy parameters of 0.5. Hydrogen atoms at the positions depicted with "a" were not included to the model. The expectable split positions of the adjacent atoms could not be refined.

The carbon bonded H atoms were placed in calculated positions (C-H:0.95-0.99Å) and refined according to the riding model with the 1.2 fold isotropic displacement parameter of their bonding partner. The H atoms of the OH groups were refined according to the rotating group routine (O-H: 0.85Å) and ended up in the expected positions for the O—H···O hydrogen bonds.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Tetrameric motif of four hydrogen bonded molecules of 1 in the crystal. The ellipsoids represent the 30% probability level. The H atoms are drawn as circles of arbitrary radius, only one split position of the atoms C8, C25, C42 and C59 is displayed.
(3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)methanol top
Crystal data top
C17H26OF(000) = 2176
Mr = 246.38Dx = 1.096 Mg m3
Orthorhombic, Pn21aMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ac -2nCell parameters from 20214 reflections
a = 17.6364 (7) Åθ = 1.4–25.6°
b = 29.0183 (15) ŵ = 0.07 mm1
c = 11.6701 (5) ÅT = 120 K
V = 5972.5 (5) Å3Plate, colourless
Z = 160.60 × 0.60 × 0.07 mm
Data collection top
Stoe IPDS 2
diffractometer
5436 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus4395 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.082
Detector resolution: 6.67 pixels mm-1θmax = 25.2°, θmin = 1.9°
rotation method scansh = 2021
Absorption correction: integration
(X-RED; Stoe & Cie, 2005)
k = 3034
Tmin = 0.955, Tmax = 0.994l = 1312
23401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.109P)2 + 1.1745P]
where P = (Fo2 + 2Fc2)/3
5436 reflections(Δ/σ)max = 0.001
708 parametersΔρmax = 0.54 e Å3
25 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H26OV = 5972.5 (5) Å3
Mr = 246.38Z = 16
Orthorhombic, Pn21aMo Kα radiation
a = 17.6364 (7) ŵ = 0.07 mm1
b = 29.0183 (15) ÅT = 120 K
c = 11.6701 (5) Å0.60 × 0.60 × 0.07 mm
Data collection top
Stoe IPDS 2
diffractometer
5436 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2005)
4395 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.994Rint = 0.082
23401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06125 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.07Δρmax = 0.54 e Å3
5436 reflectionsΔρmin = 0.41 e Å3
708 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0423 (2)0.11509 (17)0.0704 (4)0.0325 (10)
H1B1.08320.10500.01780.039*
H1A1.02510.08780.11410.039*
C21.0733 (2)0.15044 (16)0.1521 (4)0.0279 (9)
C31.1318 (2)0.13801 (17)0.2277 (4)0.0289 (9)
C41.1599 (2)0.17084 (17)0.3015 (4)0.0300 (9)
H4A1.20060.16240.35060.036*
C51.1318 (2)0.21608 (17)0.3082 (4)0.0314 (10)
C61.1672 (2)0.24844 (17)0.3991 (4)0.0359 (10)
C71.1305 (4)0.2969 (2)0.3948 (7)0.087 (3)
H71.15910.31180.33070.105*
C81.0509 (3)0.2989 (2)0.3519 (5)0.0421 (17)0.70
H8A1.03600.33170.34610.051*0.50
H8B1.01770.28440.40990.051*0.50
C8A1.0866 (10)0.3115 (4)0.2919 (12)0.060 (5)*0.30
C91.0355 (2)0.27644 (16)0.2392 (4)0.0363 (10)
C101.0722 (2)0.22849 (16)0.2345 (4)0.0287 (9)
C111.0453 (2)0.19542 (17)0.1564 (4)0.0315 (9)
H11A1.00640.20400.10440.038*
C121.1617 (3)0.08893 (17)0.2306 (4)0.0355 (10)
H12A1.18540.08150.15690.043*
H12B1.11970.06760.24490.043*
H12C1.19940.08600.29190.043*
C131.1584 (4)0.2263 (3)0.5159 (5)0.0618 (17)
H13A1.17520.19410.51210.074*
H13B1.10510.22740.53910.074*
H13C1.18930.24300.57190.074*
C141.2516 (3)0.25524 (19)0.3718 (4)0.0389 (11)
H14A1.25700.26770.29420.047*
H14B1.27790.22550.37670.047*
H14C1.27380.27680.42710.047*
C151.1490 (3)0.3283 (2)0.4946 (5)0.0536 (14)
H15A1.20340.33510.49460.064*
H15B1.13540.31290.56650.064*
H15C1.12030.35700.48730.064*
C161.0551 (4)0.3039 (2)0.1311 (6)0.0597 (17)
H16A1.11010.30800.12620.072*
H16B1.03050.33420.13450.072*
H16C1.03710.28720.06340.072*
C170.9491 (3)0.2727 (2)0.2425 (8)0.080 (3)
H17A0.92690.30360.24710.096*
H17B0.93370.25470.30970.096*
H17C0.93110.25730.17280.096*
C180.8604 (2)0.14025 (18)0.2550 (4)0.0341 (10)
H18B0.81110.14390.29460.041*
H18A0.89160.16770.27300.041*
C190.9001 (2)0.09740 (16)0.3011 (4)0.0284 (9)
C200.9564 (2)0.10026 (16)0.3867 (4)0.0306 (9)
C210.9910 (2)0.05958 (17)0.4202 (4)0.0323 (9)
H21A1.02980.06140.47650.039*
C220.9727 (2)0.01548 (17)0.3769 (4)0.0309 (9)
C231.0186 (3)0.02688 (18)0.4187 (4)0.0367 (10)
C240.9901 (4)0.0705 (2)0.3630 (8)0.098 (3)
H240.94700.07620.41700.118*
C250.9444 (4)0.0682 (3)0.2578 (6)0.042 (3)0.50
H25A0.92090.09880.24590.051*0.50
H25B0.97940.06290.19280.051*0.50
C25A0.9119 (5)0.0724 (2)0.3193 (11)0.051 (3)0.50
C260.8838 (3)0.03345 (17)0.2509 (4)0.0420 (12)
C270.9135 (2)0.01311 (17)0.2964 (4)0.0307 (9)
C280.8802 (2)0.05400 (18)0.2594 (4)0.0324 (10)
H28A0.84170.05220.20260.039*
C290.9786 (2)0.14571 (17)0.4411 (4)0.0324 (10)
H29A0.93350.16040.47390.039*
H29B1.00080.16590.38290.039*
H29C1.01580.14020.50190.039*
C301.1019 (3)0.0198 (2)0.3880 (5)0.0467 (12)
H30A1.11990.00920.42160.056*
H30B1.10730.01850.30450.056*
H30C1.13190.04550.41820.056*
C311.0124 (3)0.0302 (2)0.5490 (5)0.0576 (15)
H31A0.95880.02980.57140.069*
H31B1.03860.00400.58410.069*
H31C1.03580.05900.57510.069*
C321.0325 (3)0.1150 (2)0.3871 (7)0.0645 (18)
H32A1.05270.11420.46530.077*
H32B1.07430.11830.33250.077*
H32C0.99770.14110.37920.077*
C330.8031 (5)0.0404 (3)0.2966 (8)0.114 (4)
H33A0.80480.04500.37970.137*
H33B0.78040.06750.26010.137*
H33C0.77250.01310.27910.137*
C340.8796 (4)0.0339 (2)0.1222 (5)0.0617 (16)
H34A0.86310.06430.09600.074*
H34B0.92980.02700.09040.074*
H34C0.84330.01050.09650.074*
C350.7242 (2)0.09058 (17)0.0723 (4)0.0329 (10)
H35B0.74260.11750.11640.039*
H35A0.68320.10120.02070.039*
C360.6934 (2)0.05468 (17)0.1537 (4)0.0299 (9)
C370.6355 (2)0.06730 (17)0.2310 (4)0.0302 (9)
C380.6083 (2)0.03406 (16)0.3057 (4)0.0293 (9)
H38A0.56790.04220.35540.035*
C390.6374 (2)0.01113 (17)0.3120 (4)0.0294 (9)
C400.6040 (2)0.04378 (17)0.4024 (4)0.0347 (10)
C410.6475 (5)0.0890 (3)0.4092 (9)0.134 (5)
H410.69270.07700.45160.161*
C420.6868 (5)0.1032 (2)0.3058 (7)0.031 (2)0.50
H42A0.71960.12950.32730.037*0.50
H42B0.64780.11550.25290.037*0.50
C42A0.7184 (5)0.0948 (4)0.3478 (6)0.041 (2)0.50
C430.7335 (2)0.07171 (16)0.2398 (4)0.0334 (10)
C440.6960 (2)0.02344 (16)0.2365 (4)0.0279 (9)
C450.7219 (2)0.00992 (17)0.1582 (4)0.0300 (9)
H45A0.76090.00150.10600.036*
C460.6049 (2)0.11608 (18)0.2334 (4)0.0352 (10)
H46A0.64670.13770.24640.042*
H46B0.58040.12310.16000.042*
H46C0.56770.11900.29550.042*
C470.6092 (3)0.0211 (2)0.5203 (4)0.0535 (14)
H47A0.66130.01060.53360.064*
H47B0.57470.00530.52350.064*
H47C0.59510.04350.57950.064*
C480.5201 (3)0.0526 (2)0.3749 (5)0.0513 (14)
H48A0.49280.02320.37240.062*
H48B0.51590.06800.30040.062*
H48C0.49800.07230.43440.062*
C490.6235 (3)0.1245 (2)0.4957 (6)0.0561 (15)
H49A0.65550.12200.56410.067*
H49B0.57040.11930.51690.067*
H49C0.62890.15530.46250.067*
C500.7243 (5)0.0956 (2)0.1244 (6)0.079 (2)
H50A0.74360.12710.12950.094*
H50B0.67050.09630.10350.094*
H50C0.75270.07860.06580.094*
C510.8185 (3)0.0658 (2)0.2623 (9)0.081 (3)
H51A0.82590.05080.33680.097*
H51B0.84310.09610.26270.097*
H51C0.84080.04670.20190.097*
C520.9070 (2)0.06585 (18)0.2549 (4)0.0338 (10)
H52A0.87590.03870.27570.041*
H52B0.95670.06260.29340.041*
C530.8683 (2)0.10894 (17)0.2996 (4)0.0305 (9)
C540.8123 (2)0.10775 (17)0.3844 (4)0.0313 (9)
C550.7780 (2)0.14903 (18)0.4168 (4)0.0335 (10)
H55A0.73830.14780.47170.040*
C560.7988 (2)0.19264 (17)0.3728 (4)0.0304 (9)
C570.7549 (3)0.23592 (18)0.4114 (4)0.0380 (10)
C580.7837 (4)0.2792 (2)0.3518 (9)0.108 (4)
H580.75980.27240.27590.130*
C590.8624 (4)0.2790 (3)0.3103 (9)0.039 (2)0.50
H59A0.86940.30680.26250.047*0.50
H59B0.89580.28240.37790.047*0.50
C59A0.8332 (5)0.2762 (3)0.2507 (8)0.049 (3)0.50
C600.8902 (2)0.23933 (15)0.2440 (4)0.0368 (11)
C610.8582 (2)0.19386 (17)0.2922 (4)0.0291 (9)
C620.8905 (2)0.15203 (17)0.2570 (4)0.0309 (9)
H62A0.92970.15300.20120.037*
C630.7884 (3)0.06276 (18)0.4417 (4)0.0374 (11)
H63A0.77750.03960.38280.045*
H63B0.82950.05170.49110.045*
H63C0.74290.06800.48800.045*
C640.6701 (3)0.2295 (2)0.3834 (5)0.0552 (15)
H64A0.66380.22540.30060.066*
H64B0.65070.20230.42350.066*
H64C0.64180.25680.40830.066*
C650.7621 (4)0.2418 (2)0.5409 (5)0.0596 (16)
H65A0.74220.21430.57940.072*
H65B0.81560.24590.56120.072*
H65C0.73320.26890.56530.072*
C660.7428 (4)0.3240 (2)0.3719 (6)0.0616 (16)
H66A0.68800.31900.36560.074*
H66B0.75490.33550.44870.074*
H66C0.75890.34660.31440.074*
C670.9716 (4)0.2446 (3)0.2856 (8)0.093 (3)
H67A0.99270.27360.25640.111*
H67B0.97240.24500.36950.111*
H67C1.00210.21870.25760.111*
C680.8925 (4)0.2384 (2)0.1146 (5)0.0679 (18)
H68C0.93470.21890.08920.082*
H68B0.84470.22580.08520.082*
H68A0.89950.26970.08540.082*
O10.98051 (17)0.13286 (13)0.0048 (3)0.0366 (7)
H10.96710.11320.04400.044*
O20.84745 (17)0.13860 (13)0.1339 (3)0.0332 (7)
H20.88850.14310.09920.040*
O30.78551 (16)0.07181 (14)0.0052 (3)0.0358 (7)
H30.80170.09200.04010.043*
O40.91858 (17)0.06589 (13)0.1336 (3)0.0337 (7)
H40.87660.06850.10020.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.028 (2)0.038 (2)0.0018 (18)0.0023 (18)0.0052 (19)
C20.0257 (19)0.025 (2)0.033 (2)0.0021 (16)0.0001 (16)0.0006 (19)
C30.0247 (18)0.026 (2)0.036 (2)0.0008 (16)0.0022 (17)0.0011 (19)
C40.027 (2)0.034 (2)0.030 (2)0.0040 (17)0.0000 (17)0.0009 (18)
C50.029 (2)0.031 (2)0.034 (2)0.0047 (17)0.0042 (18)0.0026 (19)
C60.032 (2)0.032 (2)0.044 (3)0.0023 (18)0.0012 (19)0.007 (2)
C70.076 (4)0.065 (5)0.120 (6)0.036 (4)0.050 (4)0.063 (5)
C80.058 (4)0.027 (3)0.042 (4)0.014 (3)0.002 (3)0.008 (3)
C90.040 (2)0.025 (2)0.044 (3)0.0023 (18)0.002 (2)0.0021 (19)
C100.0259 (19)0.024 (2)0.036 (2)0.0003 (16)0.0027 (18)0.0003 (19)
C110.031 (2)0.031 (2)0.032 (2)0.0029 (18)0.0020 (18)0.0028 (19)
C120.037 (2)0.030 (2)0.040 (3)0.0010 (18)0.001 (2)0.001 (2)
C130.073 (4)0.073 (4)0.039 (3)0.035 (3)0.010 (3)0.013 (3)
C140.035 (2)0.039 (3)0.044 (3)0.0059 (19)0.002 (2)0.003 (2)
C150.049 (3)0.045 (3)0.066 (4)0.003 (2)0.004 (3)0.026 (3)
C160.063 (3)0.041 (3)0.076 (4)0.016 (3)0.017 (3)0.026 (3)
C170.053 (3)0.037 (3)0.149 (8)0.016 (3)0.043 (5)0.019 (4)
C180.033 (2)0.030 (2)0.038 (3)0.0015 (17)0.006 (2)0.004 (2)
C190.030 (2)0.025 (2)0.030 (2)0.0013 (17)0.0046 (16)0.0031 (18)
C200.029 (2)0.029 (2)0.034 (2)0.0026 (17)0.0026 (17)0.0029 (19)
C210.030 (2)0.033 (2)0.034 (2)0.0037 (18)0.0030 (17)0.0020 (19)
C220.030 (2)0.028 (2)0.035 (2)0.0001 (17)0.0066 (17)0.0001 (19)
C230.033 (2)0.029 (2)0.048 (3)0.0032 (18)0.0016 (19)0.002 (2)
C240.069 (4)0.038 (4)0.187 (9)0.018 (3)0.062 (5)0.040 (5)
C250.062 (6)0.026 (5)0.039 (6)0.016 (4)0.028 (5)0.000 (4)
C25A0.077 (8)0.017 (5)0.059 (7)0.011 (5)0.040 (6)0.017 (5)
C260.043 (2)0.034 (3)0.049 (3)0.005 (2)0.003 (2)0.002 (2)
C270.033 (2)0.026 (2)0.034 (2)0.0042 (17)0.0059 (17)0.0027 (19)
C280.0267 (19)0.036 (3)0.034 (2)0.0023 (17)0.001 (2)0.002 (2)
C290.034 (2)0.030 (2)0.034 (2)0.0001 (18)0.0023 (18)0.0035 (19)
C300.036 (2)0.044 (3)0.060 (3)0.008 (2)0.000 (2)0.013 (2)
C310.059 (3)0.055 (3)0.059 (4)0.018 (3)0.013 (3)0.023 (3)
C320.052 (3)0.032 (3)0.109 (6)0.009 (2)0.010 (3)0.007 (3)
C330.114 (6)0.108 (7)0.121 (7)0.087 (6)0.071 (6)0.069 (6)
C340.087 (4)0.048 (3)0.050 (3)0.014 (3)0.004 (3)0.014 (3)
C350.032 (2)0.034 (2)0.033 (2)0.0017 (18)0.0040 (18)0.0043 (19)
C360.027 (2)0.027 (2)0.036 (2)0.0023 (16)0.0021 (17)0.0024 (19)
C370.0272 (19)0.028 (2)0.035 (2)0.0018 (16)0.0021 (17)0.0015 (19)
C380.025 (2)0.027 (2)0.036 (2)0.0012 (16)0.0034 (17)0.0002 (18)
C390.027 (2)0.027 (2)0.035 (2)0.0023 (17)0.0018 (17)0.0032 (19)
C400.034 (2)0.029 (2)0.041 (3)0.0016 (18)0.0036 (19)0.007 (2)
C410.149 (8)0.076 (5)0.178 (9)0.075 (5)0.139 (8)0.087 (6)
C420.028 (4)0.016 (4)0.048 (6)0.005 (3)0.005 (4)0.000 (4)
C42A0.054 (7)0.027 (5)0.042 (6)0.005 (5)0.004 (5)0.004 (5)
C430.033 (2)0.026 (2)0.042 (3)0.0058 (18)0.005 (2)0.0029 (19)
C440.0260 (18)0.024 (2)0.034 (2)0.0011 (15)0.0018 (18)0.0029 (18)
C450.0259 (18)0.027 (2)0.037 (2)0.0000 (17)0.0016 (17)0.0017 (19)
C460.035 (2)0.031 (2)0.039 (3)0.0028 (18)0.0028 (19)0.002 (2)
C470.061 (3)0.064 (4)0.036 (3)0.029 (3)0.002 (2)0.010 (3)
C480.045 (3)0.060 (4)0.049 (3)0.024 (2)0.003 (2)0.001 (3)
C490.060 (3)0.035 (3)0.073 (4)0.009 (2)0.022 (3)0.017 (3)
C500.121 (6)0.048 (4)0.067 (4)0.049 (4)0.027 (4)0.021 (3)
C510.037 (3)0.031 (3)0.174 (8)0.011 (2)0.024 (4)0.005 (4)
C520.037 (2)0.033 (2)0.032 (2)0.0007 (18)0.000 (2)0.0001 (19)
C530.0266 (19)0.031 (2)0.034 (2)0.0008 (18)0.0008 (17)0.0028 (19)
C540.030 (2)0.031 (2)0.033 (2)0.0043 (17)0.0017 (17)0.0010 (19)
C550.030 (2)0.036 (2)0.035 (2)0.0023 (18)0.0030 (17)0.000 (2)
C560.029 (2)0.032 (2)0.030 (2)0.0026 (17)0.0023 (17)0.0041 (19)
C570.037 (2)0.036 (2)0.042 (3)0.006 (2)0.0024 (19)0.002 (2)
C580.111 (6)0.034 (3)0.179 (9)0.028 (4)0.099 (6)0.031 (4)
C590.050 (6)0.030 (5)0.039 (6)0.003 (4)0.014 (5)0.004 (4)
C59A0.046 (6)0.039 (6)0.060 (8)0.001 (5)0.005 (6)0.012 (5)
C600.041 (2)0.025 (3)0.045 (3)0.0048 (18)0.007 (2)0.002 (2)
C610.029 (2)0.028 (2)0.030 (2)0.0010 (17)0.0030 (17)0.0017 (18)
C620.0284 (19)0.030 (2)0.034 (2)0.0001 (16)0.0054 (19)0.0024 (19)
C630.041 (2)0.032 (3)0.039 (3)0.0077 (19)0.008 (2)0.001 (2)
C640.043 (3)0.056 (4)0.067 (4)0.016 (2)0.009 (3)0.018 (3)
C650.066 (3)0.066 (4)0.047 (3)0.026 (3)0.010 (3)0.018 (3)
C660.065 (4)0.031 (3)0.089 (5)0.006 (3)0.017 (3)0.001 (3)
C670.078 (5)0.090 (6)0.110 (6)0.058 (4)0.039 (4)0.048 (5)
C680.101 (5)0.052 (4)0.051 (3)0.020 (3)0.005 (3)0.023 (3)
O10.0364 (17)0.0336 (17)0.0399 (19)0.0002 (13)0.0081 (14)0.0059 (14)
O20.0315 (14)0.0324 (17)0.0359 (16)0.0019 (13)0.0026 (12)0.0010 (14)
O30.0330 (15)0.0353 (17)0.0390 (18)0.0016 (12)0.0091 (13)0.0065 (14)
O40.0319 (14)0.0317 (17)0.0377 (17)0.0025 (13)0.0053 (13)0.0001 (14)
Geometric parameters (Å, º) top
C1—O11.428 (5)C35—H35B0.9900
C1—C21.503 (6)C35—H35A0.9900
C1—H1B0.9900C36—C451.394 (6)
C1—H1A0.9900C36—C371.411 (6)
C2—C111.397 (6)C37—C381.386 (6)
C2—C31.405 (6)C37—C461.515 (6)
C3—C41.376 (6)C38—C391.410 (6)
C3—C121.519 (6)C38—H38A0.9500
C4—C51.405 (6)C39—C441.404 (6)
C4—H4A0.9500C39—C401.536 (6)
C5—C101.405 (6)C40—C411.521 (7)
C5—C61.548 (6)C40—C471.528 (7)
C6—C131.515 (8)C40—C481.535 (7)
C6—C141.535 (6)C41—C421.451 (5)
C6—C71.548 (8)C41—C491.504 (8)
C7—C81.491 (5)C41—H411.0000
C7—C151.514 (7)C42—C431.452 (5)
C7—H71.0000C42—H42A0.9900
C8—C91.492 (5)C42—H42B0.9900
C8—H8A0.9900C42A—C431.452 (5)
C8—H8B0.9900C43—C501.523 (8)
C8A—C91.492 (5)C43—C511.530 (7)
C9—C171.530 (7)C43—C441.550 (6)
C9—C161.532 (7)C44—C451.407 (6)
C9—C101.535 (6)C45—H45A0.9500
C10—C111.406 (6)C46—H46A0.9800
C11—H11A0.9500C46—H46B0.9800
C12—H12A0.9800C46—H46C0.9800
C12—H12B0.9800C47—H47A0.9800
C12—H12C0.9800C47—H47B0.9800
C13—H13A0.9800C47—H47C0.9800
C13—H13B0.9800C48—H48A0.9800
C13—H13C0.9800C48—H48B0.9800
C14—H14A0.9800C48—H48C0.9800
C14—H14B0.9800C49—H49A0.9800
C14—H14C0.9800C49—H49B0.9800
C15—H15A0.9800C49—H49C0.9800
C15—H15B0.9800C50—H50A0.9800
C15—H15C0.9800C50—H50B0.9800
C16—H16A0.9800C50—H50C0.9800
C16—H16B0.9800C51—H51A0.9800
C16—H16C0.9800C51—H51B0.9800
C17—H17A0.9800C51—H51C0.9800
C17—H17B0.9800C52—O41.431 (5)
C17—H17C0.9800C52—C531.517 (6)
C18—O21.432 (5)C52—H52A0.9900
C18—C191.525 (6)C52—H52B0.9900
C18—H18B0.9900C53—C541.400 (6)
C18—H18A0.9900C53—C621.401 (6)
C19—C281.395 (6)C54—C551.394 (7)
C19—C201.412 (6)C54—C631.526 (6)
C20—C211.385 (6)C55—C561.414 (7)
C20—C291.515 (6)C55—H55A0.9500
C21—C221.413 (6)C56—C611.408 (6)
C21—H21A0.9500C56—C571.543 (6)
C22—C271.407 (6)C57—C581.521 (8)
C22—C231.550 (6)C57—C651.525 (7)
C23—C241.510 (8)C57—C641.542 (7)
C23—C301.526 (6)C58—C591.470 (5)
C23—C311.527 (8)C58—C661.505 (8)
C24—C251.470 (5)C58—H581.0000
C24—C321.517 (8)C59—C601.471 (5)
C24—H241.0000C59—H59A0.9900
C25—C261.471 (5)C59—H59B0.9900
C25—H25A0.9900C59A—C601.471 (5)
C25—H25B0.9900C60—C681.510 (8)
C25A—C261.471 (5)C60—C671.524 (8)
C26—C341.503 (8)C60—C611.541 (6)
C26—C331.532 (8)C61—C621.403 (6)
C26—C271.543 (7)C62—H62A0.9500
C27—C281.393 (7)C63—H63A0.9800
C28—H28A0.9500C63—H63B0.9800
C29—H29A0.9800C63—H63C0.9800
C29—H29B0.9800C64—H64A0.9800
C29—H29C0.9800C64—H64B0.9800
C30—H30A0.9800C64—H64C0.9800
C30—H30B0.9800C65—H65A0.9800
C30—H30C0.9800C65—H65B0.9800
C31—H31A0.9800C65—H65C0.9800
C31—H31B0.9800C66—H66A0.9800
C31—H31C0.9800C66—H66B0.9800
C32—H32A0.9800C66—H66C0.9800
C32—H32B0.9800C67—H67A0.9800
C32—H32C0.9800C67—H67B0.9800
C33—H33A0.9800C67—H67C0.9800
C33—H33B0.9800C68—H68C0.9800
C33—H33C0.9800C68—H68B0.9800
C34—H34A0.9800C68—H68A0.9800
C34—H34B0.9800O1—H10.8400
C34—H34C0.9800O2—H20.8400
C35—O31.442 (5)O3—H30.8400
C35—C361.511 (6)O4—H40.8400
O1—C1—C2111.8 (4)C36—C35—H35B109.5
O1—C1—H1B109.3O3—C35—H35A109.5
C2—C1—H1B109.3C36—C35—H35A109.5
O1—C1—H1A109.3H35B—C35—H35A108.1
C2—C1—H1A109.3C45—C36—C37118.6 (4)
H1B—C1—H1A107.9C45—C36—C35122.4 (4)
C11—C2—C3118.5 (4)C37—C36—C35118.9 (4)
C11—C2—C1122.1 (4)C38—C37—C36118.2 (4)
C3—C2—C1119.4 (4)C38—C37—C46121.0 (4)
C4—C3—C2118.7 (4)C36—C37—C46120.8 (4)
C4—C3—C12120.7 (4)C37—C38—C39123.7 (4)
C2—C3—C12120.6 (4)C37—C38—H38A118.2
C3—C4—C5123.7 (4)C39—C38—H38A118.2
C3—C4—H4A118.2C44—C39—C38118.1 (4)
C5—C4—H4A118.2C44—C39—C40123.8 (4)
C4—C5—C10118.0 (4)C38—C39—C40118.0 (4)
C4—C5—C6117.6 (4)C41—C40—C47107.1 (6)
C10—C5—C6124.4 (4)C41—C40—C48110.7 (6)
C13—C6—C14109.9 (4)C47—C40—C48108.6 (4)
C13—C6—C5108.5 (4)C41—C40—C39111.9 (4)
C14—C6—C5109.1 (4)C47—C40—C39109.2 (4)
C13—C6—C7111.8 (5)C48—C40—C39109.3 (4)
C14—C6—C7106.4 (5)C42—C41—C49119.8 (6)
C5—C6—C7111.1 (4)C42—C41—C40116.3 (6)
C8—C7—C15116.0 (5)C49—C41—C40118.9 (4)
C8—C7—C6116.1 (5)C42—C41—H4197.4
C15—C7—C6115.5 (5)C49—C41—H4197.4
C8—C7—H7101.9C40—C41—H4197.4
C15—C7—H7101.9C41—C42—C43122.2 (5)
C6—C7—H7101.9C41—C42—H42A106.8
C7—C8—C9116.8 (5)C43—C42—H42A106.8
C7—C8—H8A108.1C41—C42—H42B106.8
C9—C8—H8A108.1C43—C42—H42B106.8
C7—C8—H8B108.1H42A—C42—H42B106.6
C9—C8—H8B108.1C42A—C43—C50122.5 (7)
H8A—C8—H8B107.3C42—C43—C5097.0 (6)
C8A—C9—C17129.8 (10)C42A—C43—C5194.7 (6)
C8—C9—C17101.0 (5)C42—C43—C51122.3 (6)
C8A—C9—C1681.3 (6)C50—C43—C51107.9 (6)
C8—C9—C16117.2 (5)C42A—C43—C44111.1 (5)
C17—C9—C16106.4 (5)C42—C43—C44109.9 (4)
C8A—C9—C10112.2 (7)C50—C43—C44110.1 (4)
C8—C9—C10110.4 (4)C51—C43—C44108.7 (4)
C17—C9—C10110.8 (4)C39—C44—C45118.1 (4)
C16—C9—C10110.4 (4)C39—C44—C43121.9 (4)
C5—C10—C11118.3 (4)C45—C44—C43119.9 (4)
C5—C10—C9121.8 (4)C36—C45—C44123.3 (4)
C11—C10—C9119.9 (4)C36—C45—H45A118.4
C2—C11—C10122.8 (4)C44—C45—H45A118.4
C2—C11—H11A118.6C37—C46—H46A109.5
C10—C11—H11A118.6C37—C46—H46B109.5
C3—C12—H12A109.5H46A—C46—H46B109.5
C3—C12—H12B109.5C37—C46—H46C109.5
H12A—C12—H12B109.5H46A—C46—H46C109.5
C3—C12—H12C109.5H46B—C46—H46C109.5
H12A—C12—H12C109.5C40—C47—H47A109.5
H12B—C12—H12C109.5C40—C47—H47B109.5
C6—C13—H13A109.5H47A—C47—H47B109.5
C6—C13—H13B109.5C40—C47—H47C109.5
H13A—C13—H13B109.5H47A—C47—H47C109.5
C6—C13—H13C109.5H47B—C47—H47C109.5
H13A—C13—H13C109.5C40—C48—H48A109.5
H13B—C13—H13C109.5C40—C48—H48B109.5
C6—C14—H14A109.5H48A—C48—H48B109.5
C6—C14—H14B109.5C40—C48—H48C109.5
H14A—C14—H14B109.5H48A—C48—H48C109.5
C6—C14—H14C109.5H48B—C48—H48C109.5
H14A—C14—H14C109.5C41—C49—H49A109.5
H14B—C14—H14C109.5C41—C49—H49B109.5
C7—C15—H15A109.5H49A—C49—H49B109.5
C7—C15—H15B109.5C41—C49—H49C109.5
H15A—C15—H15B109.5H49A—C49—H49C109.5
C7—C15—H15C109.5H49B—C49—H49C109.5
H15A—C15—H15C109.5C43—C50—H50A109.5
H15B—C15—H15C109.5C43—C50—H50B109.5
C9—C16—H16A109.5H50A—C50—H50B109.5
C9—C16—H16B109.5C43—C50—H50C109.5
H16A—C16—H16B109.5H50A—C50—H50C109.5
C9—C16—H16C109.5H50B—C50—H50C109.5
H16A—C16—H16C109.5C43—C51—H51A109.5
H16B—C16—H16C109.5C43—C51—H51B109.5
C9—C17—H17A109.5H51A—C51—H51B109.5
C9—C17—H17B109.5C43—C51—H51C109.5
H17A—C17—H17B109.5H51A—C51—H51C109.5
C9—C17—H17C109.5H51B—C51—H51C109.5
H17A—C17—H17C109.5O4—C52—C53113.8 (4)
H17B—C17—H17C109.5O4—C52—H52A108.8
O2—C18—C19113.2 (4)C53—C52—H52A108.8
O2—C18—H18B108.9O4—C52—H52B108.8
C19—C18—H18B108.9C53—C52—H52B108.8
O2—C18—H18A108.9H52A—C52—H52B107.7
C19—C18—H18A108.9C54—C53—C62118.1 (4)
H18B—C18—H18A107.8C54—C53—C52122.7 (4)
C28—C19—C20118.5 (4)C62—C53—C52119.2 (4)
C28—C19—C18119.8 (4)C55—C54—C53118.5 (4)
C20—C19—C18121.7 (4)C55—C54—C63119.8 (4)
C21—C20—C19117.4 (4)C53—C54—C63121.7 (4)
C21—C20—C29120.7 (4)C54—C55—C56123.9 (4)
C19—C20—C29122.0 (4)C54—C55—H55A118.0
C20—C21—C22124.8 (4)C56—C55—H55A118.0
C20—C21—H21A117.6C61—C56—C55117.3 (4)
C22—C21—H21A117.6C61—C56—C57123.2 (4)
C27—C22—C21116.9 (4)C55—C56—C57119.5 (4)
C27—C22—C23124.0 (4)C58—C57—C65109.5 (6)
C21—C22—C23119.1 (4)C58—C57—C56111.7 (4)
C24—C23—C30109.4 (5)C65—C57—C56109.7 (4)
C24—C23—C31110.6 (5)C58—C57—C64109.0 (5)
C30—C23—C31108.1 (4)C65—C57—C64107.7 (4)
C24—C23—C22110.8 (4)C56—C57—C64109.1 (4)
C30—C23—C22108.7 (4)C59—C58—C66120.4 (6)
C31—C23—C22109.1 (4)C59—C58—C57117.5 (6)
C25—C24—C23120.2 (6)C66—C58—C57118.8 (5)
C25—C24—C32117.7 (6)C59—C58—H5896.0
C23—C24—C32118.0 (5)C66—C58—H5896.0
C25—C24—H2496.8C57—C58—H5896.0
C23—C24—H2496.8C58—C59—C60119.4 (5)
C32—C24—H2496.8C58—C59—H59A107.5
C24—C25—C26118.4 (5)C60—C59—H59A107.5
C24—C25—H25A107.7C58—C59—H59B107.5
C26—C25—H25A107.7C60—C59—H59B107.5
C24—C25—H25B107.7H59A—C59—H59B107.0
C26—C25—H25B107.7C59—C60—C68123.4 (6)
H25A—C25—H25B107.1C59A—C60—C6894.9 (6)
C25A—C26—C34123.5 (7)C59—C60—C6793.9 (6)
C25—C26—C3494.8 (5)C59A—C60—C67123.6 (7)
C25A—C26—C3391.4 (7)C68—C60—C67107.2 (5)
C25—C26—C33124.4 (7)C59—C60—C61110.8 (5)
C34—C26—C33107.5 (5)C59A—C60—C61110.7 (5)
C25A—C26—C27111.8 (5)C68—C60—C61111.0 (4)
C25—C26—C27109.6 (5)C67—C60—C61108.4 (4)
C34—C26—C27111.5 (4)C62—C61—C56118.4 (4)
C33—C26—C27108.1 (4)C62—C61—C60119.0 (4)
C28—C27—C22118.6 (4)C56—C61—C60122.5 (4)
C28—C27—C26119.8 (4)C53—C62—C61123.7 (4)
C22—C27—C26121.6 (4)C53—C62—H62A118.2
C27—C28—C19123.7 (4)C61—C62—H62A118.2
C27—C28—H28A118.1C54—C63—H63A109.5
C19—C28—H28A118.1C54—C63—H63B109.5
C20—C29—H29A109.5H63A—C63—H63B109.5
C20—C29—H29B109.5C54—C63—H63C109.5
H29A—C29—H29B109.5H63A—C63—H63C109.5
C20—C29—H29C109.5H63B—C63—H63C109.5
H29A—C29—H29C109.5C57—C64—H64A109.5
H29B—C29—H29C109.5C57—C64—H64B109.5
C23—C30—H30A109.5H64A—C64—H64B109.5
C23—C30—H30B109.5C57—C64—H64C109.5
H30A—C30—H30B109.5H64A—C64—H64C109.5
C23—C30—H30C109.5H64B—C64—H64C109.5
H30A—C30—H30C109.5C57—C65—H65A109.5
H30B—C30—H30C109.5C57—C65—H65B109.5
C23—C31—H31A109.5H65A—C65—H65B109.5
C23—C31—H31B109.5C57—C65—H65C109.5
H31A—C31—H31B109.5H65A—C65—H65C109.5
C23—C31—H31C109.5H65B—C65—H65C109.5
H31A—C31—H31C109.5C58—C66—H66A109.5
H31B—C31—H31C109.5C58—C66—H66B109.5
C24—C32—H32A109.5H66A—C66—H66B109.5
C24—C32—H32B109.5C58—C66—H66C109.5
H32A—C32—H32B109.5H66A—C66—H66C109.5
C24—C32—H32C109.5H66B—C66—H66C109.5
H32A—C32—H32C109.5C60—C67—H67A109.5
H32B—C32—H32C109.5C60—C67—H67B109.5
C26—C33—H33A109.5H67A—C67—H67B109.5
C26—C33—H33B109.5C60—C67—H67C109.5
H33A—C33—H33B109.5H67A—C67—H67C109.5
C26—C33—H33C109.5H67B—C67—H67C109.5
H33A—C33—H33C109.5C60—C68—H68C109.5
H33B—C33—H33C109.5C60—C68—H68B109.5
C26—C34—H34A109.5H68C—C68—H68B109.5
C26—C34—H34B109.5C60—C68—H68A109.5
H34A—C34—H34B109.5H68C—C68—H68A109.5
C26—C34—H34C109.5H68B—C68—H68A109.5
H34A—C34—H34C109.5C1—O1—H1109.5
H34B—C34—H34C109.5C18—O2—H2109.5
O3—C35—C36110.5 (4)C35—O3—H3109.5
O3—C35—H35B109.5C52—O4—H4109.5
Hydrogen-bond geometry (Å, º) top
Cg4, Cg10, Cg14 and Cg17 are the centroids of the C19–C22/C27/C28, C36–C39/C44/C45, C53–C56/C61/C62 and C2–C5/C10/C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.841.932.753 (5)168
O2—H2···O10.841.982.794 (4)162
O3—H3···O20.841.922.7545)174
O4—H4···O30.841.952.790 (4)173
C29—H29A···Cg14i0.982.833.632 (4)140
C29—H29B···Cg170.982.583.466 (5)151
C63—H63A···Cg100.982.693.471 (5)137
C63—H63B···Cg4ii0.982.723.641 (5)157
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H26O
Mr246.38
Crystal system, space groupOrthorhombic, Pn21a
Temperature (K)120
a, b, c (Å)17.6364 (7), 29.0183 (15), 11.6701 (5)
V3)5972.5 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.60 × 0.07
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.955, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
23401, 5436, 4395
Rint0.082
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.173, 1.07
No. of reflections5436
No. of parameters708
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.41

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg4, Cg10, Cg14 and Cg17 are the centroids of the C19–C22/C27/C28, C36–C39/C44/C45, C53–C56/C61/C62 and C2–C5/C10/C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.841.932.753 (5)168
O2—H2···O10.841.982.794 (4)162
O3—H3···O20.841.922.7545)174
O4—H4···O30.841.952.790 (4)173
C29—H29A···Cg14i0.982.833.632 (4)140
C29—H29B···Cg170.982.583.466 (5)151
C63—H63A···Cg100.982.693.471 (5)137
C63—H63B···Cg4ii0.982.723.641 (5)157
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

References

First citationAmoore, J. E. (1970). Molecular Basis of Odor. Springfield, IL: C. C. Thomas.  Google Scholar
First citationBeets, M. G. J. (1957). Molecular Structure and Organoleptic Quality. New York: Macmillan.  Google Scholar
First citationBeets, M. G. J. (1978). Structure–Activity Relationship in Human Chemoreception. London: Applied Science Publishers.  Google Scholar
First citationDe Ridder, D. J. A., Fraanje, J., Goubitz, K. & Schenk, H. (1994). Acta Cryst. C50, 1962–1966.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Ridder, D. J. A., Goubitz, K. & Schenk, H. (1990). Acta Cryst. C46, 2200–2202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDravnieks, A. & Laffort, P. (1972). Physico-chemical basis of quantitative and qualitative odor discrimination in humans, edited by D. Schneider, in Olfaction and Taste, pp. 142–148. Stuttgart: Wissens-Verlag-mBH.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLuckenbach, T. & Epel, D. (2005). Health Perspect. 113, 17–24.  CrossRef CAS Google Scholar
First citationMartin, C., Moeder, M., Daniel, X., Krauss, G. & Schlosser, D. (2007). Environ. Sci. Technol. 41, 5395–5402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegel, D., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o1201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationValdersnes, S., Kallenborn, R. & Sydnes, L. K. (2006). Int. J. Environ. Anal. Chem. 86, 461–471.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1462-o1463
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds