metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m790-m791

A one-dimensional coordination polymer constructed from isatine-3-oximate and sodium

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96201-900 Rio Grande, RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900 Santa Maria, RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão, SE, Brazil
*Correspondence e-mail: vanessa_carratu@yahoo.com.br

(Received 16 April 2011; accepted 13 May 2011; online 25 May 2011)

The reaction of hydroxyl­amine hydro­chloride with isatin in ethanol, catalysed with HCl and neutralized with Na2CO3, yielded the one-dimensional coordination polymer, catena-poly[[[aqua­sodium]-di-μ-aqua-[aqua­sodium]-bis­(μ-2-oxoindoline-2,3-dione 3-oximato)] tetra­kis­(oxoindoline-2,3-dione 3-oxime)], {[Na(C8H5N2O2)(H2O)2]·2C8H6N2O2}n. The NaI atom has a six-coordinate distorted-octa­hedral environment. Isatine-3-oximate O atoms and water mol­ecules bridge adjacent Na atoms, forming a one-dimensional polymeric structure parallel to [100]. Each isatine-3-oxime dimerizes through N—H⋯O interactions and in addition each oxime is linked to a coordination polymer. Thus, coordination polymers are linked by O—H⋯O and O—H⋯N interactions from isatine-3-oxime dimers, building a two-dimensional network parallel to [110].

Related literature

For the pharmacological and biological properties of oxime derivatives, see: Chafeev et al. (2008[Chafeev, M., Chakka, N., Chowdhury, S., Fraser, R., Fu, J., Hou, D., Hsieh, T., Kamboj, R., Liu, S., Raina, V., Seid Bagherzadeh, M., Sun, J., Sun, S. & Viridov, S. (2008). International Patent Cooperation Treaty. WO2008046083A2.]). For the preparation and characterization of some metal complexes of isatine-3-oxime, see: Hudák & Košturiak (1999[Hudák, A. & Košturiak, A. (1999). J. Therm. Anal. Cal. 58, 579-587.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C8H5N2O2)(H2O)2]·2C8H6N2O2

  • Mr = 544.45

  • Triclinic, [P \overline 1]

  • a = 7.2987 (3) Å

  • b = 11.9269 (5) Å

  • c = 15.0756 (6) Å

  • α = 95.369 (2)°

  • β = 102.871 (2)°

  • γ = 102.631 (2)°

  • V = 1234.36 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.74 × 0.23 × 0.18 mm

Data collection
  • Bruker CCD X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.978

  • 25159 measured reflections

  • 7175 independent reflections

  • 4225 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.04

  • 7175 reflections

  • 388 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O21i 0.87 (2) 1.97 (2) 2.846 (5) 175 (2)
O22—H22⋯O12 0.94 (2) 1.70 (2) 2.633 (3) 171 (2)
O22—H22⋯N12 0.94 (2) 2.45 (2) 3.226 (4) 140 (2)
Symmetry code: (i) -x-1, -y, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxime derivatives such as isatine-3-oxime have a wide range of properties. For example, they modulate ion flux through a voltage-dependent sodium channel in a mammal. Acting as small molecule sodium channel blockers, these compounds are used intreating diseases or conditions such as hypercholesterolemia and cancer (Chafeev et al., 2008). As part of our interest in the study of oxime derivatives, we report herein the crystal structure of [Na(C8N2O2H5)(H2O)2](C8N2O2H6)2. Crystallographically independent, the structure contains two protonated isatine-3-oxime, two water molecules, one isatine-3-oximate and one sodium(I). The sodium cation has a six-coordinate distorted octahedral environment: one ON-donor bidentate oximate and two water molecules are crystallographically independent. One O-donor monodentate oximate, symmetry generatedii, and one symmetry generated water moleculei complete the coordination sphere. The polymeric structure is build one side with two bridging water molecules, one crystallographicaly independent and one symmetry generatedi and another side with one bridging oxygen atom from a crystallographically independent oximate and one oxygen atom from a symmetry generatedii oximate. These O-donor bridging atoms form a 1-D zigzag chain of Na complexes in solid state. For the sodium(I) coordination sphere the metal-donor distances [Å] are: Na—O11 = 2,5721 (14), Na—O11ii = 2,3281 (14), Na—O2W = 2,361 (2), Na—O1W = 2,4117 (17), Na—O1Wi = 2,485 (18), Na—N12 = 2,4906 (15). Selected angles (°) are: O1Wi—Na—O11 = 158,74 (6), O2W—Na—O1W = 162,92 (8), O11ii—Na—N12 = 141,63 (6) and build a distorced octahedra. Symmetry codes: (i)-x,-y + 1,-z; (ii)-x + 1,-y + 1,-z.

Related literature top

For the pharmacological and biological properties of oxime derivatives, see: Chafeev et al. (2008). For the preparation and characterization of some metal complexes of isatine-3-oxime, see: Hudák & Košturiak (1999).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Chafeev et al., 2008; Hudák & Košturiak, 1999). The hydrochloric acid catalyzed reaction of isatin (8,83 mmol) and hydroxylamine hydrochloride (8,83 mmol) in ethanol (50 ml) was refluxed for 6 h and neutralized with a 10% solution of sodium carbonate in water (50 ml). After cooling and filtering, crystals suitable for X-ray diffraction were obtained.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of [Na(C8N2O2H5)(H2O)2](C8N2O2H6)2 with 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. : The one-dimensional sodium(I) coordination polymer along a axis. The graphical representation is simplified for clarity.
catena-poly[[[aquasodium]-di-µ-aqua-[aquasodium]-bis(µ-2- oxoindoline-2,3-dione 3-oximato)] tetrakis(oxoindoline-2,3-dione 3-oxime)] top
Crystal data top
[Na(C8H5N2O2)(H2O)2]·2C8H6N2O2Z = 2
Mr = 544.45F(000) = 564
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Melting point: 507 K
a = 7.2987 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9269 (5) ÅCell parameters from 25159 reflections
c = 15.0756 (6) Åθ = 2.1–30.1°
α = 95.369 (2)°µ = 0.13 mm1
β = 102.871 (2)°T = 293 K
γ = 102.631 (2)°Block, yellow
V = 1234.36 (9) Å30.74 × 0.23 × 0.18 mm
Data collection top
Bruker CCD X8 APEXII
diffractometer
7175 independent reflections
Radiation source: fine-focus sealed tube, CCD area detector4225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 810
Tmin = 0.912, Tmax = 0.978k = 1616
25159 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.222P]
where P = (Fo2 + 2Fc2)/3
7175 reflections(Δ/σ)max = 0.002
388 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Na(C8H5N2O2)(H2O)2]·2C8H6N2O2γ = 102.631 (2)°
Mr = 544.45V = 1234.36 (9) Å3
Triclinic, P1Z = 2
a = 7.2987 (3) ÅMo Kα radiation
b = 11.9269 (5) ŵ = 0.13 mm1
c = 15.0756 (6) ÅT = 293 K
α = 95.369 (2)°0.74 × 0.23 × 0.18 mm
β = 102.871 (2)°
Data collection top
Bruker CCD X8 APEXII
diffractometer
7175 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4225 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.978Rint = 0.029
25159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
7175 reflectionsΔρmin = 0.35 e Å3
388 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.0994 (2)0.63158 (15)0.01259 (17)0.0687 (5)
O2W0.3016 (4)0.28216 (19)0.02320 (19)0.1066 (8)
H1WA0.130 (5)0.663 (3)0.029 (3)0.129 (15)*
H1WB0.119 (6)0.683 (3)0.063 (3)0.143 (16)*
H2WB0.198 (5)0.225 (3)0.008 (2)0.104 (11)*
H110.940 (3)0.5518 (17)0.2221 (14)0.058 (6)*
H210.432 (3)0.0502 (18)0.0682 (15)0.058 (6)*
H220.101 (3)0.409 (2)0.2678 (15)0.072 (7)*
H310.157 (3)0.100 (2)0.0853 (17)0.071 (7)*
H320.264 (4)0.314 (3)0.283 (2)0.109 (10)*
H2WA0.412 (6)0.258 (3)0.023 (3)0.157 (15)*
Na0.24999 (10)0.47107 (6)0.02804 (5)0.04703 (19)
C110.6536 (2)0.53381 (15)0.18198 (12)0.0393 (4)
C120.5139 (2)0.54630 (13)0.23926 (11)0.0322 (3)
C130.6261 (2)0.57694 (13)0.33425 (10)0.0307 (3)
C140.5812 (2)0.60035 (15)0.41768 (11)0.0405 (4)
H140.45420.59800.42000.049*
C150.7296 (3)0.62728 (16)0.49741 (12)0.0474 (4)
H150.70170.64300.55390.057*
C160.9194 (3)0.63120 (17)0.49426 (12)0.0473 (4)
H161.01670.64980.54870.057*
C170.9670 (2)0.60815 (16)0.41194 (12)0.0432 (4)
H171.09430.61100.41000.052*
C180.8188 (2)0.58075 (13)0.33264 (11)0.0328 (3)
N110.83052 (19)0.55582 (13)0.24153 (10)0.0405 (3)
N120.33205 (18)0.52849 (12)0.19803 (9)0.0358 (3)
O110.61709 (18)0.50974 (14)0.09817 (9)0.0622 (4)
O120.21617 (15)0.54444 (9)0.25488 (8)0.0371 (3)
C210.3048 (2)0.11666 (15)0.10061 (13)0.0418 (4)
C220.1543 (2)0.17741 (14)0.18624 (12)0.0374 (4)
C230.1264 (2)0.09011 (14)0.24606 (12)0.0378 (4)
C240.0120 (3)0.09265 (16)0.33278 (13)0.0453 (4)
H240.07010.16190.36600.054*
C250.0219 (3)0.01047 (18)0.36947 (14)0.0530 (5)
H250.05460.01030.42780.064*
C260.1445 (3)0.11327 (18)0.32007 (16)0.0592 (5)
H260.14990.18110.34630.071*
C270.2593 (3)0.11803 (16)0.23284 (15)0.0522 (5)
H270.34060.18770.19990.063*
C280.2488 (2)0.01592 (14)0.19665 (12)0.0401 (4)
C310.1466 (3)0.05497 (19)0.11845 (18)0.0596 (6)
C320.2434 (3)0.09228 (16)0.20606 (15)0.0520 (5)
C330.3592 (3)0.01207 (16)0.26774 (16)0.0527 (5)
C340.4738 (3)0.03367 (19)0.35712 (19)0.0662 (6)
H340.48900.02710.39020.079*
C350.5659 (3)0.1486 (2)0.3964 (2)0.0780 (8)
H350.64280.16530.45650.094*
C360.5420 (4)0.2381 (2)0.3453 (3)0.0875 (9)
H360.60420.31430.37230.105*
C370.4292 (4)0.2177 (2)0.2559 (2)0.0790 (8)
H370.41540.27840.22260.095*
C380.3383 (3)0.10472 (17)0.2184 (2)0.0658 (7)
N210.3501 (2)0.00296 (13)0.11123 (11)0.0456 (4)
N220.0782 (2)0.28682 (12)0.19124 (10)0.0413 (3)
N310.2124 (3)0.06162 (17)0.12979 (17)0.0685 (5)
N320.2115 (2)0.20215 (13)0.20959 (12)0.0518 (4)
O210.37599 (19)0.15939 (11)0.03390 (9)0.0522 (3)
O220.05472 (18)0.33089 (11)0.27387 (9)0.0472 (3)
O310.0319 (3)0.11626 (16)0.05048 (13)0.0772 (5)
O320.3051 (2)0.22606 (12)0.29317 (10)0.0575 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0589 (9)0.0549 (9)0.1021 (15)0.0188 (7)0.0294 (10)0.0270 (10)
O2W0.0800 (14)0.0787 (14)0.154 (2)0.0381 (12)0.0035 (14)0.0028 (13)
Na0.0443 (4)0.0630 (5)0.0378 (4)0.0207 (3)0.0113 (3)0.0064 (3)
C110.0309 (8)0.0550 (10)0.0342 (9)0.0132 (7)0.0100 (7)0.0075 (8)
C120.0262 (7)0.0374 (8)0.0347 (8)0.0082 (6)0.0102 (6)0.0063 (7)
C130.0262 (7)0.0334 (8)0.0329 (8)0.0075 (6)0.0076 (6)0.0054 (6)
C140.0317 (8)0.0530 (10)0.0376 (9)0.0104 (7)0.0116 (7)0.0033 (8)
C150.0464 (10)0.0597 (11)0.0331 (9)0.0094 (8)0.0108 (8)0.0002 (8)
C160.0408 (9)0.0604 (12)0.0340 (9)0.0107 (8)0.0001 (7)0.0010 (8)
C170.0288 (8)0.0564 (11)0.0432 (10)0.0130 (7)0.0044 (7)0.0064 (8)
C180.0278 (7)0.0371 (8)0.0346 (9)0.0095 (6)0.0081 (6)0.0063 (7)
N110.0269 (7)0.0619 (9)0.0366 (8)0.0163 (6)0.0111 (6)0.0060 (7)
N120.0275 (6)0.0435 (8)0.0380 (8)0.0098 (5)0.0099 (6)0.0069 (6)
O110.0414 (7)0.1127 (12)0.0331 (7)0.0220 (7)0.0103 (6)0.0050 (7)
O120.0284 (5)0.0396 (6)0.0454 (7)0.0076 (4)0.0150 (5)0.0039 (5)
C210.0382 (9)0.0400 (9)0.0480 (11)0.0101 (7)0.0132 (8)0.0045 (8)
C220.0366 (8)0.0348 (9)0.0428 (9)0.0083 (7)0.0148 (7)0.0053 (7)
C230.0360 (8)0.0373 (9)0.0438 (10)0.0096 (7)0.0168 (7)0.0063 (7)
C240.0440 (10)0.0463 (10)0.0483 (11)0.0109 (8)0.0171 (8)0.0078 (8)
C250.0554 (11)0.0605 (12)0.0526 (12)0.0215 (10)0.0201 (9)0.0222 (10)
C260.0672 (13)0.0481 (12)0.0761 (15)0.0221 (10)0.0308 (12)0.0273 (11)
C270.0545 (11)0.0379 (10)0.0676 (13)0.0108 (8)0.0220 (10)0.0097 (9)
C280.0379 (9)0.0372 (9)0.0484 (10)0.0102 (7)0.0171 (8)0.0052 (7)
C310.0543 (12)0.0544 (13)0.0858 (17)0.0220 (10)0.0372 (12)0.0205 (12)
C320.0481 (10)0.0448 (11)0.0757 (14)0.0168 (8)0.0330 (10)0.0160 (10)
C330.0461 (10)0.0437 (10)0.0800 (15)0.0157 (8)0.0342 (11)0.0123 (10)
C340.0555 (12)0.0521 (12)0.1007 (19)0.0148 (10)0.0384 (13)0.0098 (12)
C350.0565 (13)0.0603 (15)0.114 (2)0.0060 (11)0.0333 (14)0.0109 (14)
C360.0672 (16)0.0467 (14)0.155 (3)0.0080 (11)0.0546 (19)0.0051 (16)
C370.0702 (16)0.0471 (13)0.138 (3)0.0199 (11)0.0569 (17)0.0200 (15)
C380.0596 (13)0.0445 (11)0.117 (2)0.0228 (10)0.0553 (14)0.0232 (12)
N210.0433 (8)0.0373 (8)0.0513 (10)0.0052 (7)0.0095 (7)0.0003 (7)
N220.0384 (7)0.0405 (8)0.0435 (8)0.0068 (6)0.0108 (6)0.0048 (6)
N310.0694 (12)0.0609 (12)0.0961 (17)0.0297 (10)0.0420 (12)0.0323 (12)
N320.0481 (9)0.0467 (9)0.0694 (11)0.0156 (7)0.0258 (8)0.0156 (8)
O210.0544 (8)0.0479 (7)0.0498 (8)0.0116 (6)0.0047 (6)0.0080 (6)
O220.0483 (7)0.0390 (7)0.0474 (8)0.0021 (6)0.0062 (6)0.0068 (6)
O310.0769 (11)0.0799 (11)0.0826 (12)0.0274 (9)0.0238 (10)0.0229 (10)
O320.0594 (8)0.0453 (8)0.0695 (10)0.0120 (6)0.0191 (7)0.0126 (7)
Geometric parameters (Å, º) top
O1W—Na2.4117 (17)C22—N221.290 (2)
O1W—Nai2.4851 (18)C22—C231.458 (2)
O1W—H1WA0.80 (4)C23—C241.379 (3)
O1W—H1WB0.89 (4)C23—C281.409 (2)
O2W—Na2.361 (2)C24—C251.389 (3)
O2W—H2WB0.90 (3)C24—H240.9300
O2W—H2WA0.92 (4)C25—C261.382 (3)
Na—O11ii2.3281 (14)C25—H250.9300
Na—O1Wi2.4851 (18)C26—C271.382 (3)
Na—N122.4906 (15)C26—H260.9300
Na—O112.5721 (14)C27—C281.374 (3)
Na—Nai3.7874 (13)C27—H270.9300
Na—Naii3.8590 (13)C28—N211.400 (2)
C11—O111.224 (2)C31—O311.223 (3)
C11—N111.354 (2)C31—N311.349 (3)
C11—C121.497 (2)C31—C321.508 (3)
C12—N121.2954 (19)C32—N321.288 (2)
C12—C131.450 (2)C32—C331.450 (3)
C13—C141.387 (2)C33—C341.386 (3)
C13—C181.403 (2)C33—C381.405 (3)
C14—C151.384 (2)C34—C351.396 (3)
C14—H140.9300C34—H340.9300
C15—C161.388 (3)C35—C361.393 (4)
C15—H150.9300C35—H350.9300
C16—C171.380 (2)C36—C371.382 (4)
C16—H160.9300C36—H360.9300
C17—C181.379 (2)C37—C381.370 (3)
C17—H170.9300C37—H370.9300
C18—N111.403 (2)C38—N311.418 (3)
N11—H110.92 (2)N21—H210.88 (2)
N12—O121.3598 (16)N22—O221.3730 (19)
O11—Naii2.3281 (14)N31—H310.92 (2)
C21—O211.233 (2)N32—O321.380 (2)
C21—N211.357 (2)O22—H220.94 (2)
C21—C221.498 (2)O32—H321.01 (3)
Na—O1W—Nai101.31 (6)C12—N12—O12114.48 (13)
Na—O1W—H1WA108 (3)C12—N12—Na115.23 (10)
Nai—O1W—H1WA112 (3)O12—N12—Na130.29 (9)
Na—O1W—H1WB118 (2)C11—O11—Naii143.47 (12)
Nai—O1W—H1WB106 (3)C11—O11—Na110.20 (10)
H1WA—O1W—H1WB111 (3)Naii—O11—Na103.80 (5)
Na—O2W—H2WB114.6 (19)O21—C21—N21126.21 (17)
Na—O2W—H2WA130 (3)O21—C21—C22128.03 (16)
H2WB—O2W—H2WA109 (3)N21—C21—C22105.76 (15)
O11ii—Na—O2W87.67 (8)N22—C22—C23134.90 (16)
O11ii—Na—O1W96.19 (7)N22—C22—C21118.13 (16)
O2W—Na—O1W162.92 (8)C23—C22—C21106.95 (14)
O11ii—Na—O1Wi114.02 (7)C24—C23—C28119.79 (16)
O2W—Na—O1Wi84.53 (8)C24—C23—C22134.28 (16)
O1W—Na—O1Wi78.69 (6)C28—C23—C22105.92 (15)
O11ii—Na—N12141.63 (5)C23—C24—C25118.61 (18)
O2W—Na—N1299.06 (8)C23—C24—H24120.7
O1W—Na—N1288.24 (7)C25—C24—H24120.7
O1Wi—Na—N12104.24 (7)C26—C25—C24120.6 (2)
O11ii—Na—O1176.20 (5)C26—C25—H25119.7
O2W—Na—O1177.10 (7)C24—C25—H25119.7
O1W—Na—O11119.99 (6)C27—C26—C25121.82 (19)
O1Wi—Na—O11158.74 (6)C27—C26—H26119.1
N12—Na—O1168.78 (4)C25—C26—H26119.1
O11ii—Na—Nai109.62 (5)C28—C27—C26117.46 (18)
O2W—Na—Nai123.11 (7)C28—C27—H27121.3
O1W—Na—Nai40.05 (4)C26—C27—H27121.3
O1Wi—Na—Nai38.64 (4)C27—C28—N21128.73 (17)
N12—Na—Nai98.16 (4)C27—C28—C23121.74 (18)
O11—Na—Nai158.40 (5)N21—C28—C23109.52 (15)
O11ii—Na—Naii40.34 (3)O31—C31—N31126.3 (2)
O2W—Na—Naii80.01 (7)O31—C31—C32127.9 (2)
O1W—Na—Naii113.47 (5)N31—C31—C32105.8 (2)
O1Wi—Na—Naii150.08 (7)N32—C32—C33135.3 (2)
N12—Na—Naii103.40 (4)N32—C32—C31117.4 (2)
O11—Na—Naii35.87 (3)C33—C32—C31107.33 (17)
Nai—Na—Naii145.31 (4)C34—C33—C38120.1 (2)
O11—C11—N11126.48 (15)C34—C33—C32134.14 (19)
O11—C11—C12127.36 (14)C38—C33—C32105.8 (2)
N11—C11—C12106.15 (14)C33—C34—C35118.6 (2)
N12—C12—C13134.80 (14)C33—C34—H34120.7
N12—C12—C11118.35 (14)C35—C34—H34120.7
C13—C12—C11106.84 (12)C36—C35—C34119.7 (3)
C14—C13—C18119.60 (14)C36—C35—H35120.2
C14—C13—C12134.32 (14)C34—C35—H35120.2
C18—C13—C12106.07 (13)C37—C36—C35122.3 (2)
C15—C14—C13118.58 (15)C37—C36—H36118.9
C15—C14—H14120.7C35—C36—H36118.9
C13—C14—H14120.7C38—C37—C36117.5 (3)
C14—C15—C16120.90 (16)C38—C37—H37121.3
C14—C15—H15119.5C36—C37—H37121.3
C16—C15—H15119.5C37—C38—C33121.9 (3)
C17—C16—C15121.37 (16)C37—C38—N31128.3 (2)
C17—C16—H16119.3C33—C38—N31109.82 (19)
C15—C16—H16119.3C21—N21—C28111.79 (15)
C18—C17—C16117.64 (15)C21—N21—H21122.1 (14)
C18—C17—H17121.2C28—N21—H21126.1 (14)
C16—C17—H17121.2C22—N22—O22111.60 (14)
C17—C18—C13121.90 (15)C31—N31—C38111.2 (2)
C17—C18—N11128.29 (14)C31—N31—H31117.4 (15)
C13—C18—N11109.79 (13)C38—N31—H31130.6 (15)
C11—N11—C18111.13 (13)C32—N32—O32112.35 (17)
C11—N11—H11122.0 (13)N22—O22—H22102.9 (14)
C18—N11—H11126.9 (13)N32—O32—H32100.8 (16)
Nai—O1W—Na—O11ii113.32 (8)Naii—Na—O11—C11166.41 (17)
Nai—O1W—Na—O2W11.0 (4)O11ii—Na—O11—Naii0.0
Nai—O1W—Na—O1Wi0.0O2W—Na—O11—Naii90.76 (9)
Nai—O1W—Na—N12104.90 (8)O1W—Na—O11—Naii89.23 (9)
Nai—O1W—Na—O11169.06 (6)O1Wi—Na—O11—Naii121.64 (19)
Nai—O1W—Na—Naii151.25 (6)N12—Na—O11—Naii164.04 (8)
O11—C11—C12—N121.2 (3)Nai—Na—O11—Naii108.60 (12)
N11—C11—C12—N12179.47 (14)O21—C21—C22—N224.4 (3)
O11—C11—C12—C13179.19 (18)N21—C21—C22—N22176.21 (14)
N11—C11—C12—C130.14 (18)O21—C21—C22—C23177.07 (17)
N12—C12—C13—C140.9 (3)N21—C21—C22—C232.36 (17)
C11—C12—C13—C14179.58 (18)N22—C22—C23—C242.9 (3)
N12—C12—C13—C18178.88 (17)C21—C22—C23—C24178.91 (18)
C11—C12—C13—C180.64 (17)N22—C22—C23—C28176.34 (18)
C18—C13—C14—C150.2 (2)C21—C22—C23—C281.88 (17)
C12—C13—C14—C15179.93 (17)C28—C23—C24—C250.4 (2)
C13—C14—C15—C160.2 (3)C22—C23—C24—C25179.56 (17)
C14—C15—C16—C170.2 (3)C23—C24—C25—C260.2 (3)
C15—C16—C17—C180.1 (3)C24—C25—C26—C270.8 (3)
C16—C17—C18—C130.5 (3)C25—C26—C27—C280.6 (3)
C16—C17—C18—N11178.98 (17)C26—C27—C28—N21179.25 (17)
C14—C13—C18—C170.5 (2)C26—C27—C28—C230.1 (3)
C12—C13—C18—C17179.66 (15)C24—C23—C28—C270.6 (2)
C14—C13—C18—N11179.26 (14)C22—C23—C28—C27179.98 (15)
C12—C13—C18—N110.91 (17)C24—C23—C28—N21179.90 (15)
O11—C11—N11—C18179.77 (18)C22—C23—C28—N210.75 (18)
C12—C11—N11—C180.43 (19)O31—C31—C32—N324.0 (3)
C17—C18—N11—C11179.51 (17)N31—C31—C32—N32176.08 (16)
C13—C18—N11—C110.87 (19)O31—C31—C32—C33177.3 (2)
C13—C12—N12—O122.1 (3)N31—C31—C32—C332.7 (2)
C11—C12—N12—O12178.47 (13)N32—C32—C33—C343.9 (4)
C13—C12—N12—Na178.03 (15)C31—C32—C33—C34177.7 (2)
C11—C12—N12—Na1.44 (18)N32—C32—C33—C38176.3 (2)
O11ii—Na—N12—C1227.44 (16)C31—C32—C33—C382.16 (19)
O2W—Na—N12—C1270.32 (13)C38—C33—C34—C350.3 (3)
O1W—Na—N12—C12125.20 (12)C32—C33—C34—C35179.50 (19)
O1Wi—Na—N12—C12156.94 (11)C33—C34—C35—C360.4 (3)
O11—Na—N12—C121.95 (11)C34—C35—C36—C370.0 (3)
Nai—Na—N12—C12164.11 (11)C35—C36—C37—C380.5 (3)
Naii—Na—N12—C1211.48 (12)C36—C37—C38—C330.6 (3)
O11ii—Na—N12—O12152.45 (12)C36—C37—C38—N31178.4 (2)
O2W—Na—N12—O12109.79 (13)C34—C33—C38—C370.2 (3)
O1W—Na—N12—O1254.69 (13)C32—C33—C38—C37179.93 (18)
O1Wi—Na—N12—O1223.17 (13)C34—C33—C38—N31178.94 (17)
O11—Na—N12—O12177.94 (13)C32—C33—C38—N310.9 (2)
Nai—Na—N12—O1215.78 (13)O21—C21—N21—C28177.48 (16)
Naii—Na—N12—O12168.41 (11)C22—C21—N21—C281.97 (18)
N11—C11—O11—Naii24.6 (4)C27—C28—N21—C21178.38 (17)
C12—C11—O11—Naii154.56 (15)C23—C28—N21—C210.82 (19)
N11—C11—O11—Na177.89 (15)C23—C22—N22—O222.8 (3)
C12—C11—O11—Na2.9 (2)C21—C22—N22—O22179.10 (13)
O11ii—Na—O11—C11166.41 (17)O31—C31—N31—C38177.8 (2)
O2W—Na—O11—C11102.83 (15)C32—C31—N31—C382.1 (2)
O1W—Na—O11—C1177.18 (16)C37—C38—N31—C31178.2 (2)
O1Wi—Na—O11—C1171.9 (2)C33—C38—N31—C310.8 (2)
N12—Na—O11—C112.38 (13)C33—C32—N32—O322.5 (3)
Nai—Na—O11—C1157.8 (2)C31—C32—N32—O32179.19 (15)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O21iii0.87 (2)1.97 (2)2.846 (5)175 (2)
O22—H22···O120.94 (2)1.70 (2)2.633 (3)171 (2)
O22—H22···N120.94 (2)2.45 (2)3.226 (4)140 (2)
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Na(C8H5N2O2)(H2O)2]·2C8H6N2O2
Mr544.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2987 (3), 11.9269 (5), 15.0756 (6)
α, β, γ (°)95.369 (2), 102.871 (2), 102.631 (2)
V3)1234.36 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.74 × 0.23 × 0.18
Data collection
DiffractometerBruker CCD X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.912, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
25159, 7175, 4225
Rint0.029
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.04
No. of reflections7175
No. of parameters388
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O21i0.87 (2)1.97 (2)2.846 (5)175 (2)
O22—H22···O120.94 (2)1.70 (2)2.633 (3)171 (2)
O22—H22···N120.94 (2)2.45 (2)3.226 (4)140 (2)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the CNPq and FAPERGS.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT, SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChafeev, M., Chakka, N., Chowdhury, S., Fraser, R., Fu, J., Hou, D., Hsieh, T., Kamboj, R., Liu, S., Raina, V., Seid Bagherzadeh, M., Sun, J., Sun, S. & Viridov, S. (2008). International Patent Cooperation Treaty. WO2008046083A2.  Google Scholar
First citationHudák, A. & Košturiak, A. (1999). J. Therm. Anal. Cal. 58, 579–587.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m790-m791
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds