Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquabis(4-chlorobenzyl)bis(nicotinato- $\kappa^2 O, O'$)tin(IV)

Thy Chun Keng, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 April 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.133; data-to-parameter ratio = 17.4.

In the title molecule, $[Sn(C_7H_6Cl)_2(C_6H_4NO_2)_2(H_2O)]$, the O atoms of the two chelating nicotinate groups and the O atom of the coordinated water molecule comprise the pentagonal plane of the *trans*-C₂SnO₅ pentagonal–bipyramid $[C-Sn-C = 178.62 (11)^{\circ}]$ surrounding the Sn^{IV} atom. In the crystal, adjacent molecules are linked by $O-H \cdots N$ hydrogen bonds, generating a chain running along the body diagonal of the triclinic unit cell.

Related literature

For the direct synthesis of the organotin chloride reactant, see: Sisido *et al.* (1961). For the dinuclear bromo analog, see: Keng *et al.* (2010). For a review of the crystal structures of organotin carboxylates, see: Tiekink (1991, 1994).

Experimental

Crystal data

 $\begin{bmatrix} \text{Sn}(\text{C}_7\text{H}_6\text{Cl})_2(\text{C}_6\text{H}_4\text{NO}_2)_2(\text{H}_2\text{O}) \end{bmatrix} & \gamma = 66.5051 \text{ (4)}^{\circ} \\ M_r = 632.05 & V = 1256.93 \text{ (3)} \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 9.0219 \text{ (1)} \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 10.5929 \text{ (1)} \text{ Å} & \mu = 1.27 \text{ mm}^{-1} \\ c = 14.5866 \text{ (2)} \text{ Å} & T = 100 \text{ K} \\ \alpha = 79.6490 \text{ (5)}^{\circ} & 0.35 \times 0.30 \times 0.25 \text{ mm} \\ \beta = 87.6290 \text{ (5)}^{\circ} \end{array}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.665, T_{max} = 0.742$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	326 parameters
$wR(F^2) = 0.133$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 2.51 \text{ e } \text{\AA}^{-3}$
5673 reflections	$\Delta \rho_{\rm min} = -1.97 \ {\rm e} \ {\rm \AA}^{-3}$

11404 measured reflections

 $R_{\rm int} = 0.022$

5673 independent reflections

5416 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01w-H1\cdots N1^{i}$	0.84	1.93	2.721 (3)	158
$01w-H2\cdots N2^{ii}$	0.84	2.01	2.754 (3)	146

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (grant No. RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5527).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Keng, C. T., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m1008.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.

Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.

Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, m662 [doi:10.1107/S1600536811015728]

Aquabis(4-chlorobenzyl)bis(nicotinato- $\kappa^2 O, O'$)tin(IV)

Thy Chun Keng, Kong Mun Lo and Seik Weng Ng

S1. Comment

Nicotinic acid affords a large number of compounds with organotins. For the diorganotin system in particular, the nicotinate ion can behave as an O,O'-chelate, but when two ions bind to a diorganotin cation, there is some space in the coordination polyhedron to admit a small ligand such as a water molecule (Tiekink, 1991; 1994). The bromo analog of the title compound (Scheme I) exists as a dinuclear compound as the N atom engages in coordination (Keng *et al.*, 2010). The O atoms of the two chelating nicotinate groups and the O atom of the coordinated water molecule comprise the pentagonal plane of the *trans*-C₂SnO5 pentagonal-bipyramid [C–Sn–C 178.6 (1) °] surrounding the Sn^{IV} atom in title compound (Fig. 1). The N atom does not engage in binding to an adjacent metal center. Instead, both N atoms serve as hydrogen bond acceptors (Table 1). Adjacent molecules are linked by O–H…N hydrogen bonds to generate a chain along [1 - 1 1].

S2. Experimental

Di(4-chlorobenzyl)tin oxide was prepared by the base hydrolysis of di(4-chlorobenzyl)tin dichloride with 10% sodium hydroxide. The diorganotin dichloride was synthesized by the direct reaction of 4-chlorobenzyl chloride and metallic tin according to a literature procedure (Sisido *et al.*, 1961). The diorganotin oxide (0.39 g, 1 mmol) and nicotinic acid (0.25 g, 2 mmol) were heated in ethanol (100 ml) for an hour until the oxide dissolved. The solution was filtered; slow evaporation of the filtrate gave colorless crystals.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times $U_{eq}(C,O)$.

The final difference Fourier map had a peak in the vicinity of Sn1 as well as a hole in the vicinity of the same atom. The peaks/holes affected the the weighting scheme, which had a somewhat large value as the first parameter but a small value for the second parameter. The weighting scheme could be marginally improved by lowering the 2θ limit to 50 °.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $Sn(H_2O)(C_7H_6Cl)_2(C_6H_4NO_2)_2$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Packing diagram.

Aquabis(4-chlorobenzyl)bis(nicotinato- $\kappa^2 O, O'$)tin(IV)

Crystal data

 $[Sn(C_7H_6Cl)_2(C_6H_4NO_2)_2(H_2O)]$ $M_r = 632.05$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.0219 (1) Å b = 10.5929 (1) Å c = 14.5866 (2) Å a = 79.6490 (5)° $\beta = 87.6290$ (5)° $\gamma = 66.5051$ (4)° V = 1256.93 (3) Å³

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.665, T_{\max} = 0.742$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.133$	neighbouring sites
S = 1.07	H-atom parameters constrained
5673 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1028P)^2 + 1.3179P]$
326 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.51 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\min} = -1.97 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta ho_{ m min} = -1.97 \ m e \ m \AA^{-3}$

Z = 2

F(000) = 632

 $\theta = 2.5 - 28.4^{\circ}$

 $\mu = 1.27 \text{ mm}^{-1}$

Block, colorless

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

11404 measured reflections

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$

5673 independent reflections

5416 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.022$

 $h = -11 \rightarrow 11$

 $k = -13 \rightarrow 13$

 $l = -18 \rightarrow 18$

 $D_{\rm x} = 1.670 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9937 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.63205 (2)	0.308637 (17)	0.300723 (11)	0.01463 (11)	
Cl1	0.23192 (13)	0.32379 (11)	-0.10807 (6)	0.0365 (2)	
C12	1.16041 (10)	0.23720 (10)	0.67438 (6)	0.02660 (19)	
01	0.5519 (3)	0.3053 (2)	0.45081 (15)	0.0183 (4)	
O2	0.7813 (3)	0.1357 (2)	0.42515 (15)	0.0172 (4)	
03	0.3946 (3)	0.5014 (2)	0.27412 (15)	0.0198 (4)	
04	0.5422 (3)	0.4480 (2)	0.15155 (15)	0.0170 (4)	
O1W	0.8289 (3)	0.1801 (2)	0.21474 (15)	0.0202 (4)	
H1	0.9173	0.1454	0.2452	0.030*	
H2	0.8364	0.2314	0.1653	0.030*	
N1	0.8693 (3)	-0.0102 (3)	0.71325 (18)	0.0180 (5)	
N2	0.1562 (3)	0.7425 (3)	-0.02511 (18)	0.0191 (5)	

C1	0.5052 (4)	0.1792 (4)	0.2843 (2)	0.0213 (6)
H1A	0.5814	0.0799	0.2990	0.026*
H1B	0.4182	0.1941	0.3299	0.026*
C2	0.4330 (4)	0.2070 (3)	0.1894 (2)	0.0195 (6)
C3	0.5243 (4)	0.1420 (4)	0.1180 (2)	0.0225 (6)
Н3	0.6308	0.0730	0.1323	0.027*
C4	0.4630 (4)	0.1761 (4)	0.0277 (2)	0.0268 (7)
H4	0.5276	0.1323	-0.0199	0.032*
C5	0.3059 (5)	0.2749 (4)	0.0068 (2)	0.0251 (7)
C6	0.2098 (4)	0.3362 (4)	0.0761 (3)	0.0247 (7)
H6	0.1012	0.4009	0.0619	0.030*
C7	0.2735 (4)	0.3024 (3)	0.1670 (2)	0.0207 (6)
H7	0.2074	0.3448	0.2146	0.025*
C8	0.7636 (4)	0.4347 (3)	0.3155 (2)	0.0204 (6)
H8A	0.8347	0.4327	0.2618	0.025*
H8B	0.6853	0.5327	0.3126	0.025*
С9	0.8648 (4)	0.3911 (3)	0.4032 (2)	0.0176 (6)
C10	1.0255 (4)	0.2947 (3)	0.4075 (2)	0.0188 (6)
H10	1.0731	0.2611	0.3526	0.023*
C11	1.1167 (4)	0.2473 (3)	0.4901 (2)	0.0205 (6)
H11	1.2255	0.1808	0.4923	0.025*
C12	1.0476 (4)	0.2978 (3)	0.5691 (2)	0.0180 (6)
C13	0.8903 (4)	0.3960 (3)	0.5674 (2)	0.0190 (6)
H13	0.8452	0.4316	0.6221	0.023*
C14	0.7993 (4)	0.4417 (3)	0.4843 (2)	0.0184 (6)
H14	0.6907	0.5084	0.4826	0.022*
C15	0.4151 (4)	0.5225 (3)	0.1867 (2)	0.0162(5)
C16	0.2813 (3)	0.6374 (3)	0.1270 (2)	0.0150(5)
C17	0.1543(4)	0.7338 (3)	0.1676 (2)	0.0180 (6)
H17	0.1538	0.7305	0.2332	0.022*
C18	0.0282 (4)	0.8350 (3)	0.1102 (2)	0.0208 (6)
H18	-0.0597	0.9035	0.1353	0.025*
C19	0.0336 (4)	0.8336 (3)	0.0151 (2)	0.0197 (6)
H19	-0.0545	0.9010	-0.0237	0.024*
C20	0 2787 (4)	0.6464 (3)	0.0306(2)	0.0192 (6)
H20	0.3673	0.5818	0.0032	0.0192 (0)
C21	0.6771 (3)	0.1968 (3)	0.48055 (19)	0.023
C22	0.6982(4)	0.1903(3)	0.5829(2)	0.0141(5) 0.0155(5)
C23	0.0932(4)	0.1403(3) 0.1831(3)	0.5025(2)	0.0193 (5)
H23	0.4650	0.2506	0.6157	0.023*
C24	0.5882 (4)	0.1257(4)	0.0137 0.7348(2)	0.029
U24 H24	0.5002 (4)	0.1237 (4)	0.7756	0.0193 (0)
C25	0.3000 0.7402 (4)	0.1317 0.0293(3)	0.7676 (2)	0.025
H25	0.7543	-0.0112	0.8319	0.023*
C26	0.8467 (4)	0.0112	0.6216(2)	0.025
U20 H26	0.0363	0.0181	0.5822	0.0100(3)
1120	0.7303	0.0101	0.3022	0.020

Atomic displacement parameters $(Å^2)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn1	0.01514 (15)	0.01586 (15)	0.00806 (15)	-0.00249 (10)	-0.00275 (9)	0.00174 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1	0.0496 (5)	0.0521 (6)	0.0153 (4)	-0.0313 (5)	-0.0098 (4)	0.0043 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl2	0.0204 (4)	0.0416 (5)	0.0149 (4)	-0.0118 (3)	-0.0048 (3)	0.0020 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.0197 (10)	0.0194 (10)	0.0089 (10)	-0.0026 (8)	-0.0024 (7)	0.0030 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.0180 (10)	0.0174 (10)	0.0124 (10)	-0.0041 (8)	-0.0009 (8)	-0.0004 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3	0.0190 (10)	0.0217 (10)	0.0101 (10)	-0.0008(8)	-0.0013 (8)	0.0017 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	0.0175 (10)	0.0173 (10)	0.0122 (10)	-0.0039 (8)	-0.0021 (8)	0.0005 (8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O1W	0.0174 (10)	0.0237 (11)	0.0095 (9)	0.0003 (8)	-0.0043 (8)	0.0028 (8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N1	0.0192 (12)	0.0180 (11)	0.0116 (12)	-0.0035 (9)	-0.0051 (9)	0.0022 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	0.0208 (12)	0.0206 (12)	0.0119 (12)	-0.0060 (10)	-0.0045 (9)	0.0029 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	0.0223 (15)	0.0242 (15)	0.0148 (15)	-0.0090 (13)	-0.0055 (12)	0.0038 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	0.0222 (15)	0.0215 (14)	0.0161 (15)	-0.0115 (12)	-0.0025 (11)	0.0009 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.0233 (15)	0.0241 (15)	0.0204 (16)	-0.0100 (12)	-0.0018 (12)	-0.0027 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	0.0326 (17)	0.0342 (18)	0.0211 (16)	-0.0198 (15)	0.0022 (13)	-0.0078 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.0357 (18)	0.0303 (17)	0.0152 (15)	-0.0216 (15)	-0.0060 (13)	0.0025 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6	0.0237 (15)	0.0241 (15)	0.0233 (17)	-0.0096 (13)	-0.0088 (13)	0.0054 (13)
C8 0.0264 (16) 0.0196 (14) 0.0111 (14) -0.0074 (12) -0.0052 (12) 0.0047 (11)C9 0.0229 (14) 0.0177 (13) 0.0127 (14) -0.0097 (12) -0.0026 (11) 0.0008 (11)C10 0.0213 (14) 0.0202 (14) 0.0146 (14) -0.0084 (12) 0.0018 (11) -0.0027 (11)C11 0.0186 (14) 0.0212 (14) 0.0208 (15) -0.0069 (11) 0.0009 (11) -0.0035 (12)C12 0.0189 (14) 0.0222 (14) 0.0122 (14) -0.0091 (12) -0.0035 (11) 0.0020 (11)C13 0.0226 (15) 0.0202 (14) 0.0151 (14) -0.0097 (12) 0.0010 (11) -0.0027 (11)C14 0.0209 (14) 0.0168 (13) 0.0146 (14) -0.0060 (11) -0.0023 (11) 0.0012 (11)C15 0.0193 (13) 0.0154 (13) 0.0121 (13) -0.0063 (11) -0.0026 (10) 0.0013 (10)C16 0.0156 (13) 0.0168 (13) 0.0103 (13) -0.0058 (11) -0.0030 (10) 0.0030 (10)C17 0.0197 (13) 0.0180 (13) 0.0172 (15) -0.0014 (11) -0.0071 (10) 0.0022 (11)C18 0.0193 (14) 0.0182 (13) 0.0165 (15) -0.0030 (11) -0.0071 (11) 0.0004 (11)C20 0.0215 (14) 0.0199 (14) 0.0117 (14) -0.0048 (11) -0.00171 (11) 0.0004 (10)C21 0.0151 (12) 0.0152 (12) 0.0081 (13) -0.0072 (11) -0.00171 (10) 0.00022 (11)C21	C7	0.0215 (14)	0.0224 (14)	0.0169 (15)	-0.0089 (12)	-0.0023 (11)	0.0008 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	0.0264 (16)	0.0196 (14)	0.0111 (14)	-0.0074 (12)	-0.0052 (12)	0.0047 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	0.0229 (14)	0.0177 (13)	0.0127 (14)	-0.0097 (12)	-0.0026 (11)	0.0008 (11)
C11 $0.0186 (14)$ $0.0212 (14)$ $0.0208 (15)$ $-0.0069 (11)$ $0.0009 (11)$ $-0.0035 (12)$ C12 $0.0189 (14)$ $0.0222 (14)$ $0.0122 (14)$ $-0.0091 (12)$ $-0.0035 (11)$ $0.0020 (11)$ C13 $0.0226 (15)$ $0.0202 (14)$ $0.0151 (14)$ $-0.0097 (12)$ $0.0010 (11)$ $-0.0027 (11)$ C14 $0.0209 (14)$ $0.0168 (13)$ $0.0146 (14)$ $-0.0060 (11)$ $-0.0023 (11)$ $0.0012 (11)$ C15 $0.0193 (13)$ $0.0154 (13)$ $0.0121 (13)$ $-0.0063 (11)$ $-0.0026 (10)$ $0.0013 (10)$ C16 $0.0156 (13)$ $0.0168 (13)$ $0.0103 (13)$ $-0.0058 (11)$ $-0.0030 (10)$ $0.0030 (10)$ C17 $0.0197 (13)$ $0.0180 (13)$ $0.0172 (15)$ $-0.0014 (11)$ $-0.0005 (11)$ $0.0014 (11)$ C18 $0.0193 (14)$ $0.0182 (13)$ $0.0165 (15)$ $-0.0030 (11)$ $-0.0071 (11)$ $0.0014 (11)$ C19 $0.0178 (13)$ $0.0182 (13)$ $0.0165 (15)$ $-0.0030 (11)$ $-0.0071 (11)$ $0.0004 (11)$ C20 $0.0215 (14)$ $0.0199 (14)$ $0.0117 (14)$ $-0.0048 (11)$ $-0.0017 (10)$ $0.0004 (11)$ C21 $0.0151 (12)$ $0.0168 (13)$ $0.0091 (13)$ $-0.0072 (11)$ $-0.0017 (10)$ $0.0005 (10)$ C22 $0.0196 (13)$ $0.0168 (13)$ $0.0091 (13)$ $-0.0072 (11)$ $-0.0017 (10)$ $0.0022 (11)$ C23 $0.0178 (13)$ $0.0210 (14)$ $0.0138 (14)$ $-0.0039 (11)$ $-0.0018 (11)$ $-0.0002 (11)$ C24	C10	0.0213 (14)	0.0202 (14)	0.0146 (14)	-0.0084 (12)	0.0018 (11)	-0.0027 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.0186 (14)	0.0212 (14)	0.0208 (15)	-0.0069 (11)	0.0009 (11)	-0.0035 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.0189 (14)	0.0222 (14)	0.0122 (14)	-0.0091 (12)	-0.0035 (11)	0.0020 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.0226 (15)	0.0202 (14)	0.0151 (14)	-0.0097 (12)	0.0010 (11)	-0.0027 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.0209 (14)	0.0168 (13)	0.0146 (14)	-0.0060 (11)	-0.0023 (11)	0.0012 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.0193 (13)	0.0154 (13)	0.0121 (13)	-0.0063 (11)	-0.0026 (10)	0.0013 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.0156 (13)	0.0168 (13)	0.0103 (13)	-0.0058 (11)	-0.0030 (10)	0.0030 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	0.0197 (13)	0.0180 (13)	0.0115 (13)	-0.0043 (11)	-0.0017 (10)	0.0022 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	0.0193 (14)	0.0182 (13)	0.0172 (15)	-0.0014 (11)	-0.0005 (11)	0.0014 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19	0.0178 (13)	0.0182 (13)	0.0165 (15)	-0.0030 (11)	-0.0071 (11)	0.0051 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	0.0215 (14)	0.0199 (14)	0.0117 (14)	-0.0048 (11)	-0.0014 (11)	0.0004 (11)
C22 0.0196 (13) 0.0168 (13) 0.0091 (13) -0.0072 (11) -0.0017 (10) 0.0005 (10) C23 0.0178 (13) 0.0201 (14) 0.0138 (14) -0.0039 (11) -0.0019 (10) 0.0022 (11) C24 0.0210 (15) 0.0252 (15) 0.0093 (14) -0.0080 (12) 0.0018 (11) -0.0002 (11) C25 0.0225 (14) 0.0216 (14) 0.0106 (13) -0.0081 (12) -0.0037 (11) 0.0028 (11) C26 0.0183 (13) 0.0154 (12) 0.0135 (13) -0.0047 (11) -0.0012 (10) -0.0003 (10)	C21	0.0151 (12)	0.0152 (12)	0.0081 (13)	-0.0044 (10)	-0.0031 (10)	0.0043 (10)
C23 0.0178 (13) 0.0201 (14) 0.0138 (14) -0.0039 (11) -0.0019 (10) 0.0022 (11) C24 0.0210 (15) 0.0252 (15) 0.0093 (14) -0.0080 (12) 0.0018 (11) -0.0002 (11) C25 0.0225 (14) 0.0216 (14) 0.0106 (13) -0.0081 (12) -0.0037 (11) 0.0028 (11) C26 0.0183 (13) 0.0154 (12) 0.0135 (13) -0.0047 (11) -0.0012 (10) -0.0003 (10)	C22	0.0196 (13)	0.0168 (13)	0.0091 (13)	-0.0072 (11)	-0.0017 (10)	0.0005 (10)
C24 0.0210 (15) 0.0252 (15) 0.0093 (14) -0.0080 (12) 0.0018 (11) -0.0002 (11) C25 0.0225 (14) 0.0216 (14) 0.0106 (13) -0.0081 (12) -0.0037 (11) 0.0028 (11) C26 0.0183 (13) 0.0154 (12) 0.0135 (13) -0.0047 (11) -0.0012 (10) -0.0003 (10)	C23	0.0178 (13)	0.0201 (14)	0.0138 (14)	-0.0039 (11)	-0.0019 (10)	0.0022 (11)
C25 0.0225 (14) 0.0216 (14) 0.0106 (13) -0.0081 (12) -0.0037 (11) 0.0028 (11) C26 0.0183 (13) 0.0154 (12) 0.0135 (13) -0.0047 (11) -0.0012 (10) -0.0003 (10)	C24	0.0210 (15)	0.0252 (15)	0.0093 (14)	-0.0080 (12)	0.0018 (11)	-0.0002 (11)
C26 0.0183 (13) 0.0154 (12) 0.0135 (13) -0.0047 (11) -0.0012 (10) -0.0003 (10)	C25	0.0225 (14)	0.0216 (14)	0.0106 (13)	-0.0081 (12)	-0.0037 (11)	0.0028 (11)
	C26	0.0183 (13)	0.0154 (12)	0.0135 (13)	-0.0047 (11)	-0.0012 (10)	-0.0003 (10)

Geometric parameters (Å, °)

Sn1—C8	2.151 (3)	С7—Н7	0.9500
Sn1—C1	2.153 (3)	C8—C9	1.494 (4)
Sn1—O1W	2.254 (2)	C8—H8A	0.9900
Sn1—O1	2.276 (2)	C8—H8B	0.9900
Sn1—O3	2.281 (2)	C9—C14	1.398 (4)
Sn1—O2	2.346 (2)	C9—C10	1.397 (4)

Sn1—O4	2.368 (2)	C10-C11	1.385 (4)
Sn1—C21	2.653 (3)	C10—H10	0.9500
Sn1—C15	2.666 (3)	C11—C12	1.378 (4)
Cl1—C5	1.739 (3)	C11—H11	0.9500
Cl2—C12	1.749 (3)	C12—C13	1.383 (4)
Q1—C21	1.269 (4)	C13—C14	1.390 (4)
02—C21	1.264 (4)	C13—H13	0.9500
03-C15	1.273 (4)	C14—H14	0.9500
04—C15	1 255 (4)	C15-C16	1 494 (4)
O1W—H1	0.8400	C16-C17	1 391 (4)
01W - H2	0.8400	C16-C20	1.391(1) 1.393(4)
N1_C25	1,347(4)	C17 - C18	1.395(1) 1.389(4)
N1 C26	1.347(4) 1 340(4)	C17 H17	0.9500
$N_1 = C_{20}$	1.349(4) 1.340(4)	C18 $C19$	1.388(4)
N2 C20	1.340(4) 1.341(4)	C18 H18	0.0500
$N_2 = C_2 0$	1.341(4) 1.482(4)	C10—H10	0.9500
$C_1 = C_2$	1.465 (4)	C19—H19	0.9300
CI—HIA	0.9900	C20—H20	0.9500
CI—HIB	0.9900	C_{21}	1.496 (4)
$C_2 = C_1$	1.400 (4)	C_{22} C_{26}	1.382 (4)
C2—C3	1.404 (5)	C22—C23	1.391 (4)
C3—C4	1.380 (5)	C23—C24	1.387 (4)
С3—Н3	0.9500	C23—H23	0.9500
C4—C5	1.392 (5)	C24—C25	1.384 (4)
C4—H4	0.9500	C24—H24	0.9500
C5—C6	1.381 (5)	C25—H25	0.9500
C6—C7	1.395 (5)	C26—H26	0.9500
С6—Н6	0.9500		
C8—Sn1—C1	178.62 (11)	С2—С7—Н7	119.4
C8—Sn1—O1W	90.93 (11)	C9—C8—Sn1	115.3 (2)
C1 - Sn1 - O1W	87.70 (11)	C9—C8—H8A	108.5
C8— $Sn1$ — $O1$	92.45 (10)	Sn1—C8—H8A	108.5
C1 - Sn1 - O1	88.51 (11)	C9—C8—H8B	108.5
01W—Sn1—O1	140 24 (8)	Sn1—C8—H8B	108 5
C8 = Sn1 = O3	91 45 (11)	H8A - C8 - H8B	107.5
C1 = Sn1 = O3	89.65 (11)	C14-C9-C10	118 2 (3)
01W Sn1 03	137 17 (8)	C14-C9-C8	120.8(3)
$\Omega_1 = Sn_1 = \Omega_3$	82 34 (8)	C10-C9-C8	120.0(3) 121.0(3)
$C_{8} = S_{n1} = O_{2}^{2}$	91.61 (10)	C11 - C10 - C9	121.0(3) 121.2(3)
C1 = Sn1 = O2	88 10 (10)	C11_C10_H10	110 4
O1W Sp1 $O2$	83 33 (8)	C_{0} C_{10} H_{10}	119.4
O1 Sp1 O2	56 08 (8)	C_{12} C_{11} C_{10}	110.4
01 - 01 - 02 03 - 01 - 02	130 20 (0)	C_{12} C_{11} C_{10} C_{12} C_{11} U_{11}	119.1 (3)
$C_8 \text{ Sn1} = O_4$	139.30(0) 87.44(10)	$C_{12} = C_{11} = H_{11}$	120.5
$C_0 = S_{m1} = O_4$	07.44 (10)	C_{10} $-C_{11}$ $-R_{11}$	120.3 121.5(2)
01W Sp1 04	92.40 (10) 00.07 (0)	$C_{11} = C_{12} = C_{13}$	121.3(3)
01 w = 5111 = 04	0U.0/(ð) 129 96 (9)	C12 - C12 - C12	119.0(2)
01 - 5111 - 04	130.00(0)	C13 - C12 - C12	118.8(2)
03—3n1—04	30.33 (8)	U12 - U13 - U14	118.9 (3)

O2—Sn1—O4	164.15 (8)	С12—С13—Н13	120.6
C8—Sn1—C21	91.62 (10)	C14—C13—H13	120.6
C1—Sn1—C21	88.76 (11)	C13—C14—C9	121.1 (3)
O1W—Sn1—C21	111.77 (8)	C13—C14—H14	119.5
O1—Sn1—C21	28.55 (8)	C9—C14—H14	119.5
O3—Sn1—C21	110.90 (8)	O4—C15—O3	121.3 (3)
O2—Sn1—C21	28.44 (8)	O4—C15—C16	121.0 (3)
O4—Sn1—C21	167.35 (9)	O3—C15—C16	117.7 (3)
C8—Sn1—C15	90.37 (10)	O4—C15—Sn1	62.65 (16)
C1—Sn1—C15	90.20 (11)	O3—C15—Sn1	58.73 (15)
O1W—Sn1—C15	108.75 (8)	C16—C15—Sn1	174.4 (2)
O1—Sn1—C15	110.83 (8)	C17—C16—C20	119.1 (3)
O3—Sn1—C15	28.49 (8)	C17—C16—C15	120.2 (3)
02-sn1-c15	167.73 (9)	C20—C16—C15	120.6 (3)
O4—Sn1—C15	28.09 (9)	C18—C17—C16	118.5 (3)
C_{21} — S_{n1} — C_{15}	139.38 (9)	С18—С17—Н17	120.8
$C_{21} = 01$	92.46 (17)	C16—C17—H17	120.8
$C_21 = 0^2 = S_{n1}$	89.38 (17)	C19 - C18 - C17	118.4 (3)
$C_{15} = 0_{3} = S_{n1}$	92.78 (18)	C19—C18—H18	120.8
C15 - O4 - Sn1	89 26 (18)	C17—C18—H18	120.8
Sn1-O1W-H1	109.5	N_{2} C19 C18	123.8 (3)
Sn1-O1W-H2	109.5	N_{2} C19 H19	118.1
H1 - O1W - H2	109.5	C18—C19—H19	118.1
$C_{25} N_{1} C_{26}$	117.6 (3)	N_{2} C20 C16	122.7(3)
C19 - N2 - C20	117.5 (3)	N2—C20—H20	118.7
C2-C1-Sn1	113.9 (2)	С16—С20—Н20	118.7
C2-C1-H1A	108.8	02-C21-O1	121.1 (3)
Sn1-C1-H1A	108.8	02-C21-C22	1201(3)
C2-C1-H1B	108.8	01-C21-C22	118.7 (3)
Sn1—C1—H1B	108.8	O2-C21-Sn1	62.18 (15)
H1A—C1—H1B	107.7	O1-C21-Sn1	58.99 (14)
C7—C2—C3	117.6 (3)	C22—C21—Sn1	177.4 (2)
C7—C2—C1	121.3 (3)	C26—C22—C23	119.1 (3)
$C_3 - C_2 - C_1$	121.0 (3)	C26—C22—C21	120.9 (3)
C4—C3—C2	121.5 (3)	C23—C22—C21	120.0 (3)
C4—C3—H3	119.2	C24—C23—C22	119.0 (3)
С2—С3—Н3	119.2	C24—C23—H23	120.5
C3—C4—C5	119.5 (3)	C22—C23—H23	120.5
C3—C4—H4	120.3	C25—C24—C23	118.2 (3)
C5—C4—H4	120.3	C25—C24—H24	120.9
C6—C5—C4	120.6 (3)	C23—C24—H24	120.9
C6—C5—C11	120.0 (3)	N1—C25—C24	123.5 (3)
C4-C5-C11	119.5 (3)	N1—C25—H25	118.2
C5—C6—C7	119.5 (3)	C24—C25—H25	118.2
C5—C6—H6	120.3	N1-C26-C22	122.5 (3)
C7—C6—H6	120.3	N1—C26—H26	118.8
C6—C7—C2	121.2 (3)	C22—C26—H26	118.8
С6—С7—Н7	119.4		
	· · ·		

C8—Sn1—O1—C21	-88.89 (19)	C12—C13—C14—C9	-0.7 (5)
C1—Sn1—O1—C21	90.13 (19)	C10-C9-C14-C13	-1.0(4)
O1W—Sn1—O1—C21	5.5 (2)	C8—C9—C14—C13	176.6 (3)
O3—Sn1—O1—C21	179.97 (18)	Sn1—O4—C15—O3	3.8 (3)
O2—Sn1—O1—C21	1.43 (16)	Sn1—O4—C15—C16	-175.1 (2)
O4—Sn1—O1—C21	-177.81 (15)	Sn1—O3—C15—O4	-3.9 (3)
C15—Sn1—O1—C21	179.78 (17)	Sn1—O3—C15—C16	175.0 (2)
C8—Sn1—O2—C21	90.45 (19)	C8—Sn1—C15—O4	83.86 (19)
C1—Sn1—O2—C21	-90.90 (19)	C1—Sn1—C15—O4	-94.88 (19)
O1W—Sn1—O2—C21	-178.80 (18)	O1W—Sn1—C15—O4	-7.25 (19)
O1—Sn1—O2—C21	-1.44 (16)	O1—Sn1—C15—O4	176.63 (16)
O3—Sn1—O2—C21	-3.7 (2)	O3—Sn1—C15—O4	176.2 (3)
O4—Sn1—O2—C21	176.7 (2)	O2—Sn1—C15—O4	-176.8 (3)
C15—Sn1—O2—C21	-8.7 (5)	C21—Sn1—C15—O4	176.79 (15)
C8—Sn1—O3—C15	88.09 (19)	C8—Sn1—C15—O3	-92.37 (19)
C1—Sn1—O3—C15	-91.08 (19)	C1—Sn1—C15—O3	88.88 (19)
O1W—Sn1—O3—C15	-4.9 (2)	O1W—Sn1—C15—O3	176.52 (17)
O1—Sn1—O3—C15	-179.63 (18)	O1—Sn1—C15—O3	0.40 (19)
O2—Sn1—O3—C15	-177.75 (15)	O2—Sn1—C15—O3	6.9 (5)
O4—Sn1—O3—C15	2.13 (16)	O4—Sn1—C15—O3	-176.2 (3)
C21—Sn1—O3—C15	-179.61 (17)	C21—Sn1—C15—O3	0.6 (2)
C8—Sn1—O4—C15	-95.59 (19)	O4—C15—C16—C17	-169.0(3)
C1—Sn1—O4—C15	85.78 (19)	O3—C15—C16—C17	12.1 (4)
O1W—Sn1—O4—C15	173.05 (18)	O4—C15—C16—C20	13.6 (4)
O1—Sn1—O4—C15	-4.8 (2)	O3—C15—C16—C20	-165.4 (3)
O3—Sn1—O4—C15	-2.15 (16)	C20-C16-C17-C18	0.6 (4)
O2—Sn1—O4—C15	177.5 (2)	C15—C16—C17—C18	-176.9 (3)
C21—Sn1—O4—C15	-9.6 (4)	C16—C17—C18—C19	1.1 (4)
O1W—Sn1—C1—C2	-73.1 (2)	C20—N2—C19—C18	1.0 (5)
O1—Sn1—C1—C2	146.5 (2)	C17—C18—C19—N2	-2.0(5)
O3—Sn1—C1—C2	64.2 (2)	C19—N2—C20—C16	0.9 (5)
O2—Sn1—C1—C2	-156.5 (2)	C17—C16—C20—N2	-1.7 (4)
O4—Sn1—C1—C2	7.7 (2)	C15-C16-C20-N2	175.8 (3)
C21—Sn1—C1—C2	175.1 (2)	Sn1—O2—C21—O1	2.5 (3)
C15—Sn1—C1—C2	35.7 (2)	Sn1—O2—C21—C22	-178.6 (2)
Sn1—C1—C2—C7	-92.4 (3)	Sn1—O1—C21—O2	-2.6 (3)
Sn1—C1—C2—C3	85.4 (3)	Sn1—O1—C21—C22	178.5 (2)
C7—C2—C3—C4	3.5 (5)	C8—Sn1—C21—O2	-90.37 (18)
C1—C2—C3—C4	-174.3 (3)	C1—Sn1—C21—O2	88.30 (19)
C2—C3—C4—C5	-1.4 (5)	O1W—Sn1—C21—O2	1.28 (19)
C3—C4—C5—C6	-1.7 (5)	O1—Sn1—C21—O2	177.5 (3)
C3—C4—C5—Cl1	177.0 (3)	O3—Sn1—C21—O2	177.45 (16)
C4—C5—C6—C7	2.5 (5)	O4—Sn1—C21—O2	-175.9 (3)
Cl1—C5—C6—C7	-176.2 (2)	C15—Sn1—C21—O2	177.16 (15)
C5—C6—C7—C2	-0.2 (5)	C8—Sn1—C21—O1	92.15 (19)
C3—C2—C7—C6	-2.7 (5)	C1—Sn1—C21—O1	-89.18 (19)
C1—C2—C7—C6	175.1 (3)	O1W—Sn1—C21—O1	-176.20 (16)

O1W—Sn1—C8—C9	-95.9 (2)	O3—Sn1—C21—O1	-0.03 (19)
O1—Sn1—C8—C9	44.4 (2)	O2—Sn1—C21—O1	-177.5 (3)
O3—Sn1—C8—C9	126.8 (2)	O4—Sn1—C21—O1	6.6 (5)
O2—Sn1—C8—C9	-12.6 (2)	C15—Sn1—C21—O1	-0.3 (2)
O4—Sn1—C8—C9	-176.8 (2)	O2—C21—C22—C26	16.9 (4)
C21—Sn1—C8—C9	15.9 (2)	O1—C21—C22—C26	-164.2 (3)
C15—Sn1—C8—C9	155.3 (2)	O2—C21—C22—C23	-163.0 (3)
Sn1-C8-C9-C14	-87.8 (3)	O1—C21—C22—C23	15.9 (4)
Sn1—C8—C9—C10	89.7 (3)	C26—C22—C23—C24	-2.1 (4)
C14—C9—C10—C11	1.7 (4)	C21—C22—C23—C24	177.8 (3)
C8—C9—C10—C11	-175.9 (3)	C22—C23—C24—C25	0.9 (5)
C9—C10—C11—C12	-0.8 (5)	C26—N1—C25—C24	-1.7 (5)
C10-C11-C12-C13	-0.9 (5)	C23—C24—C25—N1	1.0 (5)
C10-C11-C12-Cl2	179.2 (2)	C25—N1—C26—C22	0.4 (4)
C11—C12—C13—C14	1.6 (5)	C23—C22—C26—N1	1.4 (4)
Cl2—C12—C13—C14	-178.5 (2)	C21—C22—C26—N1	-178.4 (3)

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1w—H1···N1 ⁱ	0.84	1.93	2.721 (3)	158
O1w—H2····N2 ⁱⁱ	0.84	2.01	2.754 (3)	146

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.