# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## N'-(3-Methylquinoxalin-2-yl)-N'-phenylbenzohydrazide

### Youssef Ramli,<sup>a,b</sup>\* Ahmed Moussaif,<sup>c</sup> Hafid Zouihri,<sup>d</sup> Houda Bourichi<sup>b</sup> and El Mokhtar Essassi<sup>b</sup>

<sup>a</sup>Laboratoire Nationale de Controle des Médicaments, Direction du Médicament et de la Pharmacie, BP 6206, 10000 Rabat, Morocco, <sup>b</sup>Laboratoire de Chimie Hétérocyclique, Pole de Compétence PHARCHIM, Université Mohammed V-Agdal, BP 1014, Rabat, Morocco, <sup>c</sup>Unité de la Radioimmunoanalyse, Centre National d'Etudes Scientifiques et Techniques d'Energie Nucléaire, Maamoura, Morocco, and <sup>d</sup>Laboratoire de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco Correspondence e-mail: yramli76@yahoo.fr

Received 21 April 2011; accepted 5 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.130; data-to-parameter ratio = 18.4.

In the crystal structure of the title compound,  $C_{22}H_{18}N_4O$ , the quinoxaline system makes dihedral angles of 86.59 (7) and  $63.37 (9)^{\circ}$  with the benzohydrazide and phenyl rings, respectively. The benzohydrazide ring makes a dihedral angle of  $72.46(10)^{\circ}$  with the phenyl ring. The crystal structure is stabilized by intermolecular N-H···O hydrogen bonds, C- $H \cdots O$  contacts and  $C - H \cdots \pi$  interactions.

#### **Related literature**

For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For the antitumour and antituberculous properties of quinoxaline derivatives, see: Abasolo et al. (1987); Rodrigo et al. (2002). For interesting antifungal, herbicidal, antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009).



#### **Experimental**

#### Crystal data

β

| C H N C                         | IV 10(50(0) Å3                            |
|---------------------------------|-------------------------------------------|
| $C_{22}H_{18}N_4O$              | V = 1865.9 (2) A <sup>2</sup>             |
| $M_r = 354.40$                  | Z = 4                                     |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation                    |
| a = 18.6809 (12)  Å             | $\mu = 0.08 \text{ mm}^{-1}$              |
| b = 10.5840 (8) Å               | T = 296  K                                |
| c = 9.5860 (6) Å                | $0.35 \times 0.34 \times 0.18 \text{ mm}$ |
| $\beta = 100.108 \ (3)^{\circ}$ |                                           |

#### Data collection

| Bruker APEXII CCD detector |
|----------------------------|
| diffractometer             |
| 19397 measured reflections |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 245 parameters  $wR(F^2) = 0.130$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.20$  e Å<sup>-3</sup> 4502 reflections

4502 independent reflections

 $R_{\rm int} = 0.044$ 

2286 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings, respectively.

| $D-\mathrm{H}\cdots A$        | D-H                              | $H \cdot \cdot \cdot A$    | $D \cdots A$                    | $D - H \cdots A$                     |
|-------------------------------|----------------------------------|----------------------------|---------------------------------|--------------------------------------|
|                               |                                  |                            |                                 | <u> </u>                             |
| N4−H6· · ·O1 <sup>i</sup>     | 0.86                             | 2.05                       | 2.863 (2)                       | 157                                  |
| C18−H18· · ·O1 <sup>ii</sup>  | 0.93                             | 2.57                       | 3.496 (3)                       | 175                                  |
| $C22 - H22B \cdots Cg1^{iii}$ | 0.96                             | 2.99                       | 3.696 (2)                       | 131                                  |
| $C20-H20\cdots Cg2^{iv}$      | 0.93                             | 2.94                       | 3.866 (2)                       | 175                                  |
| Symmetry codes: (i) r         | $-v + \frac{1}{2} + \frac{1}{2}$ | (ii) $x - v + \frac{3}{2}$ | $z + \frac{1}{2}$ (iii) $x - y$ | $r = \frac{1}{7} - \frac{3}{7}$ (iv) |

 $x, -y - \frac{1}{2}, z - \frac{1}{2}$ 

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the CNRST, Morocco, for making this work possible.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5532).

#### References

- Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771-1775.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591-599
- Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.
- Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.
- Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813-1818.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580-585
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2011). E67, o1374 [doi:10.1107/S160053681101703X]

## N'-(3-Methylquinoxalin-2-yl)-N'-phenylbenzohydrazide

## Youssef Ramli, Ahmed Moussaif, Hafid Zouihri, Houda Bourichi and El Mokhtar Essassi

### S1. Comment

Recent advances in targeted therapeutics coupled with new approaches in target identification have accelerated the need to design small compounds with drug like properties. Quinoxaline is well known for its broad coverage in the field of medicine as well as for its application in the pharmaceuticals.

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim *et al.* 1995], antitumor [Abasolo *et al.* 1987], and antituberculous activities [Rodrigo *et al.*2002]. They, also, exhibit interesting antifungal, herbicidal, antidyslipidemic and antioxidative properties [Jampilek *et al.* 2005, Sashidhara *et al.* 2009, Watkins *et al.* 2009].

In the crystal structure of the title compound, the quinoxaline system makes dihedral angles of 86.59 (7) and 63.37 (9) with the benzohydrazide and the phenyl rings, respectively. The benzohydrazide ring makes a dihedral angle of 72.46 (10) with the phenyl ring. The crystal packing is stabilized by N—H…O hydrogen bonds and C—H… $\pi$  interactions [*Cg*1: (C1 — C2 — C3 — C4 — C5 — C6), and *Cg*2: (C8 — C9 — C10 — C11 — C12 — C13)].

#### **S2. Experimental**

6.5 mmole of 3-methylquinoxalin-2-one are dissolved in 40 ml of THF,8.1 mmol of diphenylnitrileimine and 8.1 mmoles of TEA are added. this mixture solution surmounted by a CaCl2, is refluxed for 24–48 h.After cooling, the salts are removed by filtration and the solvent was evaporated under reduced pressure. The single crystals have been obtained by recrystallization in ethanol.

### **S3. Refinement**

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96Å (methyl) or 0.93Å (aromatic) with  $U_{iso}(H) = 1.2U_{eq}(C)$  or  $1.5U_{eq}(methyl)$ .



## Figure 1

Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.



## Figure 2

Partial packing view showing the chain formed by N—H…N hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity

## N'-(3-Methylquinoxalin-2-yl)-N'-phenylbenzohydrazide

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $C_{22}H_{18}N_4O$              | F(000) = 744                                          |
| $M_r = 354.40$                  | $D_{\rm x} = 1.262 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/c$            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 345 reflections                  |
| a = 18.6809 (12)  Å             | $\theta = 2.7 - 26.8^{\circ}$                         |
| b = 10.5840 (8) Å               | $\mu=0.08~\mathrm{mm^{-1}}$                           |
| c = 9.5860 (6) Å                | T = 296  K                                            |
| $\beta = 100.108 \ (3)^{\circ}$ | Prism, colourless                                     |
| $V = 1865.9 (2) \text{ Å}^3$    | $0.35 \times 0.34 \times 0.18 \text{ mm}$             |
| Z = 4                           |                                                       |

Data collection

| Bruker APEXII CCD detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans<br>19397 measured reflections<br>4502 independent reflections<br><i>Refinement</i> | 2286 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.044$<br>$\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.1^{\circ}$<br>$h = -24 \rightarrow 24$<br>$k = -8 \rightarrow 13$<br>$l = -12 \rightarrow 10$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definement on $E^2$                                                                                                                                                                                                                   | Secondamy stom site location, difference Fourier                                                                                                                                                              |
| Least-squares matrix: full                                                                                                                                                                                                            | Secondary atom site location: difference Fourier                                                                                                                                                              |
| $R[F^2 > 2\sigma(F^2)] = 0.048$                                                                                                                                                                                                       | Hydrogen site location: inferred from                                                                                                                                                                         |
| $wR(F^2) = 0.130$                                                                                                                                                                                                                     | neighbouring sites                                                                                                                                                                                            |
| S = 1.01                                                                                                                                                                                                                              | H-atom parameters constrained                                                                                                                                                                                 |
| 4502 reflections                                                                                                                                                                                                                      | $w = 1/[\sigma^2(F_o^2) + (0.0573P)^2]$                                                                                                                                                                       |
| 245 parameters                                                                                                                                                                                                                        | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                |
| 0 restraints                                                                                                                                                                                                                          | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                                                                                           |
| Primary atom site location: structure-invariant                                                                                                                                                                                       | $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$                                                                                                                                                       |
| direct methods                                                                                                                                                                                                                        | $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$                                                                                                                                                      |

#### Special details

**Experimental**. The data collection nominally covered a sphere of reciprocal space, by a combination of two sets of exposures; each set had a different  $\varphi$  angle for the crystal and each exposure covered 0.5° in  $\omega$  and 30 s in time. The crystal-to-detector distance was 37.5 mm.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| N1  | 0.26330 (7)  | 0.48128 (13) | 0.36620 (14) | 0.0485 (4)                  |  |
| N2  | 0.16619 (8)  | 0.65538 (14) | 0.21427 (16) | 0.0568 (4)                  |  |
| N3  | 0.20960 (7)  | 0.31873 (13) | 0.22361 (14) | 0.0480 (4)                  |  |
| 01  | 0.30401 (6)  | 0.31707 (11) | 0.04356 (12) | 0.0578 (3)                  |  |
| C8  | 0.38609 (8)  | 0.17788 (14) | 0.18621 (16) | 0.0439 (4)                  |  |
| C7  | 0.31928 (8)  | 0.25585 (14) | 0.15321 (16) | 0.0415 (4)                  |  |
| C21 | 0.26800 (9)  | 0.60703 (16) | 0.39925 (18) | 0.0494 (4)                  |  |
| N4  | 0.27553 (7)  | 0.25367 (12) | 0.25080 (13) | 0.0465 (3)                  |  |
| H6  | 0.2880       | 0.2128       | 0.3288       | 0.056*                      |  |
| C14 | 0.21230 (8)  | 0.44722 (15) | 0.26227 (17) | 0.0437 (4)                  |  |
| C15 | 0.16273 (8)  | 0.53545 (17) | 0.18063 (17) | 0.0488 (4)                  |  |
| C16 | 0.21862 (9)  | 0.69384 (16) | 0.32436 (19) | 0.0524 (4)                  |  |
| C6  | 0.14703 (9)  | 0.24218 (16) | 0.21688 (17) | 0.0483 (4)                  |  |
| C20 | 0.32204 (10) | 0.65006 (19) | 0.5091 (2)   | 0.0669 (5)                  |  |

| H20  | 0 3549       | 0 5931                 | 0 5588       | 0 080*     |
|------|--------------|------------------------|--------------|------------|
| C13  | 0.39464 (10) | 0.0931<br>0.08112 (17) | 0.28516(18)  | 0.0595 (5) |
| H13  | 0.3579       | 0.0650                 | 0.3368       | 0.071*     |
| C22  | 0.11033 (9)  | 0.49634 (18)           | 0.05163(19)  | 0.0671 (5) |
| H22A | 0.0695       | 0 4544                 | 0.0797       | 0.101*     |
| H22R | 0.1340       | 0.4398                 | -0.0040      | 0.101*     |
| H22C | 0.0937       | 0.5697                 | -0.0036      | 0.101*     |
| C17  | 0.22522(11)  | 0.82237(18)            | 0.3608(2)    | 0.0722 (6) |
| H17  | 0.1934       | 0.8811                 | 0.3116       | 0.087*     |
| C1   | 0.08899 (9)  | 0.28171 (18)           | 0.27791 (19) | 0.0597 (5) |
| H1   | 0.0921       | 0.3569                 | 0.3288       | 0.072*     |
| C19  | 0.32655(12)  | 0.7747(2)              | 0.5432(2)    | 0.0783 (6) |
| H19  | 0.3621       | 0.8024                 | 0.6172       | 0.094*     |
| C9   | 0.44130 (10) | 0.19941 (18)           | 0.1104(2)    | 0.0680 (5) |
| H9   | 0.4366       | 0.2633                 | 0.0428       | 0.082*     |
| C5   | 0.14310 (10) | 0.12638 (18)           | 0.14787 (18) | 0.0647 (5) |
| H5   | 0.1821       | 0.0976                 | 0.1083       | 0.078*     |
| C12  | 0.45673 (13) | 0.0085 (2)             | 0.3081 (2)   | 0.0784 (6) |
| H12  | 0.4617       | -0.0562                | 0.3747       | 0.094*     |
| C18  | 0.27851 (12) | 0.8610(2)              | 0.4687 (2)   | 0.0800 (7) |
| H18  | 0.2826       | 0.9462                 | 0.4925       | 0.096*     |
| C3   | 0.02217 (13) | 0.0973 (3)             | 0.1942 (3)   | 0.0912 (7) |
| Н3   | -0.0202      | 0.0496                 | 0.1845       | 0.109*     |
| C11  | 0.51074 (12) | 0.0315 (2)             | 0.2334 (3)   | 0.0920 (8) |
| H11  | 0.5527       | -0.0174                | 0.2492       | 0.110*     |
| C2   | 0.02629 (11) | 0.2097 (2)             | 0.2635 (2)   | 0.0786 (6) |
| H2   | -0.0132      | 0.2385                 | 0.3015       | 0.094*     |
| C4   | 0.08056 (14) | 0.0540(2)              | 0.1384 (2)   | 0.0846 (7) |
| H4   | 0.0781       | -0.0244                | 0.0940       | 0.102*     |
| C10  | 0.50361 (11) | 0.1261 (2)             | 0.1350 (3)   | 0.0936 (7) |
| H10  | 0.5408       | 0.1413                 | 0.0842       | 0.112*     |
|      |              |                        |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| N1  | 0.0488 (8)  | 0.0440 (9)  | 0.0508 (9)  | -0.0024 (6)  | 0.0038 (7)  | -0.0003 (7)  |
| N2  | 0.0587 (10) | 0.0500 (9)  | 0.0627 (10) | 0.0109 (7)   | 0.0132 (8)  | 0.0060 (8)   |
| N3  | 0.0438 (8)  | 0.0416 (8)  | 0.0578 (9)  | 0.0045 (6)   | 0.0069 (6)  | -0.0038 (7)  |
| 01  | 0.0811 (9)  | 0.0501 (7)  | 0.0434 (7)  | 0.0102 (6)   | 0.0140 (6)  | 0.0074 (6)   |
| C8  | 0.0494 (10) | 0.0392 (9)  | 0.0430 (9)  | 0.0002 (7)   | 0.0078 (8)  | -0.0100 (8)  |
| C7  | 0.0550 (10) | 0.0329 (8)  | 0.0367 (9)  | -0.0027 (7)  | 0.0085 (8)  | -0.0046 (7)  |
| C21 | 0.0529 (11) | 0.0451 (10) | 0.0525 (10) | -0.0055 (8)  | 0.0155 (9)  | -0.0019 (9)  |
| N4  | 0.0519 (8)  | 0.0461 (8)  | 0.0425 (8)  | 0.0109 (7)   | 0.0108 (6)  | 0.0039 (6)   |
| C14 | 0.0434 (9)  | 0.0433 (10) | 0.0463 (10) | 0.0012 (7)   | 0.0130 (8)  | -0.0007 (8)  |
| C15 | 0.0464 (10) | 0.0515 (11) | 0.0491 (10) | 0.0040 (8)   | 0.0102 (8)  | 0.0025 (8)   |
| C16 | 0.0593 (11) | 0.0452 (11) | 0.0568 (11) | 0.0018 (8)   | 0.0211 (9)  | -0.0004 (9)  |
| C6  | 0.0535 (11) | 0.0469 (10) | 0.0420 (9)  | -0.0038 (8)  | 0.0014 (8)  | 0.0021 (8)   |
| C20 | 0.0673 (13) | 0.0631 (13) | 0.0680 (13) | -0.0137 (10) | 0.0057 (10) | -0.0070 (10) |
|     |             |             |             |              |             |              |

# supporting information

| C13 | 0.0703 (12) | 0.0569 (12) | 0.0530 (11) | 0.0181 (9)   | 0.0151 (9)   | 0.0026 (9)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C22 | 0.0625 (12) | 0.0742 (14) | 0.0594 (12) | 0.0054 (10)  | -0.0036 (9)  | 0.0084 (10)  |
| C17 | 0.0926 (16) | 0.0447 (12) | 0.0864 (15) | 0.0049 (10)  | 0.0350 (13)  | -0.0032 (11) |
| C1  | 0.0585 (12) | 0.0592 (12) | 0.0619 (12) | -0.0044 (9)  | 0.0119 (9)   | 0.0024 (9)   |
| C19 | 0.0889 (16) | 0.0694 (16) | 0.0789 (15) | -0.0287 (12) | 0.0211 (12)  | -0.0173 (12) |
| C9  | 0.0633 (13) | 0.0635 (13) | 0.0811 (14) | -0.0031 (10) | 0.0237 (11)  | -0.0011 (11) |
| C5  | 0.0803 (14) | 0.0571 (12) | 0.0537 (11) | -0.0069 (10) | 0.0030 (10)  | -0.0043 (10) |
| C12 | 0.0894 (16) | 0.0696 (15) | 0.0717 (14) | 0.0300 (12)  | 0.0017 (13)  | -0.0025 (11) |
| C18 | 0.1086 (18) | 0.0520 (13) | 0.0909 (17) | -0.0234 (13) | 0.0488 (15)  | -0.0208 (13) |
| C3  | 0.0790 (17) | 0.101 (2)   | 0.0875 (17) | -0.0368 (14) | -0.0014 (13) | 0.0133 (15)  |
| C11 | 0.0630 (15) | 0.0860 (18) | 0.119 (2)   | 0.0220 (13)  | -0.0057 (14) | -0.0242 (16) |
| C2  | 0.0630 (14) | 0.0899 (17) | 0.0824 (15) | -0.0134 (12) | 0.0112 (11)  | 0.0153 (13)  |
| C4  | 0.1145 (19) | 0.0618 (14) | 0.0688 (14) | -0.0309 (14) | -0.0081 (13) | -0.0045 (11) |
| C10 | 0.0595 (14) | 0.0962 (19) | 0.133 (2)   | -0.0001 (13) | 0.0396 (14)  | -0.0130 (17) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| N1—C14     | 1.3028 (19) | C22—H22A      | 0.9600      |
|------------|-------------|---------------|-------------|
| N1-C21     | 1.367 (2)   | C22—H22B      | 0.9600      |
| N2-C15     | 1.308 (2)   | C22—H22C      | 0.9600      |
| N2-C16     | 1.370(2)    | C17—C18       | 1.366 (3)   |
| N3—N4      | 1.3951 (16) | C17—H17       | 0.9300      |
| N3—C14     | 1.408 (2)   | C1—C2         | 1.384 (2)   |
| N3—C6      | 1.414 (2)   | C1—H1         | 0.9300      |
| O1—C7      | 1.2251 (17) | C19—C18       | 1.388 (3)   |
| С8—С9      | 1.381 (2)   | C19—H19       | 0.9300      |
| C8—C13     | 1.386 (2)   | C9—C10        | 1.385 (3)   |
| С8—С7      | 1.483 (2)   | С9—Н9         | 0.9300      |
| C7—N4      | 1.3461 (18) | C5—C4         | 1.387 (3)   |
| C21—C20    | 1.401 (2)   | С5—Н5         | 0.9300      |
| C21—C16    | 1.406 (2)   | C12—C11       | 1.358 (3)   |
| N4—H6      | 0.8600      | C12—H12       | 0.9300      |
| C14—C15    | 1.445 (2)   | C18—H18       | 0.9300      |
| C15—C22    | 1.495 (2)   | C3—C2         | 1.358 (3)   |
| C16—C17    | 1.405 (2)   | C3—C4         | 1.375 (3)   |
| C6—C1      | 1.384 (2)   | С3—Н3         | 0.9300      |
| C6—C5      | 1.389 (2)   | C11—C10       | 1.366 (3)   |
| C20—C19    | 1.358 (3)   | C11—H11       | 0.9300      |
| С20—Н20    | 0.9300      | C2—H2         | 0.9300      |
| C13—C12    | 1.376 (2)   | C4—H4         | 0.9300      |
| С13—Н13    | 0.9300      | C10—H10       | 0.9300      |
| C14—N1—C21 | 117.07 (14) | H22A—C22—H22C | 109.5       |
| C15—N2—C16 | 118.43 (14) | H22B—C22—H22C | 109.5       |
| N4—N3—C14  | 115.97 (12) | C18—C17—C16   | 119.9 (2)   |
| N4—N3—C6   | 114.91 (13) | C18—C17—H17   | 120.0       |
| C14—N3—C6  | 123.80 (13) | C16—C17—H17   | 120.0       |
| C9—C8—C13  | 118.36 (16) | C2—C1—C6      | 120.24 (19) |
|            |             |               |             |

| C9—C8—C7       | 118.30 (16)  | C2—C1—H1        | 119.9        |
|----------------|--------------|-----------------|--------------|
| C13—C8—C7      | 123.28 (15)  | C6—C1—H1        | 119.9        |
| O1—C7—N4       | 121.80 (14)  | C20-C19-C18     | 120.6 (2)    |
| O1—C7—C8       | 122.53 (14)  | С20—С19—Н19     | 119.7        |
| N4—C7—C8       | 115.66 (14)  | C18—C19—H19     | 119.7        |
| N1—C21—C20     | 119.94 (17)  | C8—C9—C10       | 120.1 (2)    |
| N1—C21—C16     | 120.52 (16)  | С8—С9—Н9        | 120.0        |
| C20—C21—C16    | 119.53 (17)  | С10—С9—Н9       | 120.0        |
| C7—N4—N3       | 119.04 (13)  | C4—C5—C6        | 119.50 (19)  |
| C7—N4—H6       | 120.5        | C4—C5—H5        | 120.3        |
| N3—N4—H6       | 120.5        | С6—С5—Н5        | 120.3        |
| N1—C14—N3      | 117.14 (14)  | C11—C12—C13     | 120.0 (2)    |
| N1—C14—C15     | 123.27 (15)  | C11—C12—H12     | 120.0        |
| N3—C14—C15     | 119.46 (14)  | C13—C12—H12     | 120.0        |
| N2—C15—C14     | 119.62 (15)  | C17—C18—C19     | 120.8 (2)    |
| N2—C15—C22     | 118.00 (15)  | C17—C18—H18     | 119.6        |
| C14—C15—C22    | 122.24 (16)  | C19—C18—H18     | 119.6        |
| N2—C16—C17     | 119.95 (17)  | C2—C3—C4        | 120.1 (2)    |
| N2—C16—C21     | 121.02 (16)  | С2—С3—Н3        | 119.9        |
| C17—C16—C21    | 118.99 (18)  | С4—С3—Н3        | 119.9        |
| C1—C6—C5       | 119.22 (17)  | C12—C11—C10     | 120.3 (2)    |
| C1—C6—N3       | 120.67 (15)  | C12—C11—H11     | 119.9        |
| C5—C6—N3       | 120.11 (16)  | C10-C11-H11     | 119.9        |
| C19—C20—C21    | 120.2 (2)    | C3—C2—C1        | 120.4 (2)    |
| С19—С20—Н20    | 119.9        | С3—С2—Н2        | 119.8        |
| C21—C20—H20    | 119.9        | C1—C2—H2        | 119.8        |
| C12—C13—C8     | 120.95 (19)  | C3—C4—C5        | 120.5 (2)    |
| C12—C13—H13    | 119.5        | С3—С4—Н4        | 119.8        |
| С8—С13—Н13     | 119.5        | С5—С4—Н4        | 119.8        |
| C15—C22—H22A   | 109.5        | C11—C10—C9      | 120.4 (2)    |
| C15—C22—H22B   | 109.5        | C11—C10—H10     | 119.8        |
| H22A—C22—H22B  | 109.5        | C9—C10—H10      | 119.8        |
| C15—C22—H22C   | 109.5        |                 |              |
|                |              |                 |              |
| C21—N1—C14—N3  | 177.02 (16)  | O1—C7—C8—C9     | 16.7 (3)     |
| C21—N1—C14—C15 | 1.5 (3)      | O1—C7—C8—C13    | -160.64 (18) |
| C14—N1—C21—C16 | 0.9 (3)      | N4—C7—C8—C9     | -164.24 (18) |
| C14—N1—C21—C20 | -179.40 (18) | N4—C7—C8—C13    | 18.4 (3)     |
| C16—N2—C15—C14 | 1.8 (3)      | C7—C8—C9—C10    | -178.0 (2)   |
| C16—N2—C15—C22 | -174.01 (17) | C13—C8—C9—C10   | -0.5 (3)     |
| C15—N2—C16—C17 | 178.2 (2)    | C7—C8—C13—C12   | 177.6 (2)    |
| C15—N2—C16—C21 | 0.4 (3)      | C9—C8—C13—C12   | 0.3 (3)      |
| C6—N3—N4—C7    | 117.98 (18)  | C8—C9—C10—C11   | 0.4 (4)      |
| C14—N3—N4—C7   | -86.8 (2)    | C9—C10—C11—C12  | -0.1 (5)     |
| N4—N3—C6—C1    | 138.71 (18)  | C10-C11-C12-C13 | -0.2 (5)     |
| N4—N3—C6—C5    | -41.6 (2)    | C11—C12—C13—C8  | 0.1 (4)      |
| C14—N3—C6—C1   | -14.3 (3)    | N1-C14-C15-N2   | -2.9 (3)     |
| C14—N3—C6—C5   | 165.36 (18)  | N1-C14-C15-C22  | 172.71 (17)  |
|                |              |                 |              |

| N4—N3—C14—N1  | -27.4 (2)    | N3—C14—C15—N2   | -178.39 (17) |
|---------------|--------------|-----------------|--------------|
| N4—N3—C14—C15 | 148.32 (16)  | N3-C14-C15-C22  | -2.8 (3)     |
| C6—N3—C14—N1  | 125.33 (19)  | N2-C16-C17-C18  | -178.6 (2)   |
| C6—N3—C14—C15 | -58.9 (2)    | C21—C16—C17—C18 | -0.8 (3)     |
| N3—N4—C7—O1   | 2.7 (3)      | N2-C16-C21-N1   | -1.9 (3)     |
| N3—N4—C7—C8   | -176.34 (15) | N2-C16-C21-C20  | 178.37 (19)  |
| C6—C1—C2—C3   | 2.7 (4)      | C17—C16—C21—N1  | -179.65 (19) |
| C2-C1-C6-N3   | 176.1 (2)    | C17—C16—C21—C20 | 0.6 (3)      |
| C2-C1-C6-C5   | -3.6 (3)     | C16—C17—C18—C19 | 0.0 (4)      |
| C1—C2—C3—C4   | 0.1 (4)      | C17—C18—C19—C20 | 1.0 (4)      |
| C2—C3—C4—C5   | -2.1 (4)     | C18—C19—C20—C21 | -1.2 (4)     |
| C3—C4—C5—C6   | 1.2 (4)      | C19—C20—C21—N1  | -179.4 (2)   |
| C4—C5—C6—N3   | -178.0 (2)   | C19—C20—C21—C16 | 0.4 (3)      |
| C4—C5—C6—C1   | 1.6 (3)      |                 |              |
|               |              |                 |              |

## Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

| D—H···A                              | <i>D</i> —Н | H…A  | $D \cdots A$ | D—H···A |
|--------------------------------------|-------------|------|--------------|---------|
| N4—H6…O1 <sup>i</sup>                | 0.86        | 2.05 | 2.863 (2)    | 157     |
| C18—H18…O1 <sup>ii</sup>             | 0.93        | 2.57 | 3.496 (3)    | 175     |
| C22—H22 $B$ ··· $Cg1$ <sup>iii</sup> | 0.96        | 2.99 | 3.696 (2)    | 131     |
| C20—H20···· $Cg2^{iv}$               | 0.93        | 2.94 | 3.866 (2)    | 175     |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+3/2, z+1/2; (iii) x, -y-1/2, z-3/2; (iv) x, -y-1/2, z-1/2.