organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,10-Phenanthrolin-1-ium hydrogen D,L-tartrate dihydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 April 2011; accepted 27 April 2011; online 7 May 2011)

In the title hydrated molecular salt, C12H9N2+·C4H5O6·2H2O, the cation is almost planar (r.m.s. deviation = 0.014 Å); the carbon skeleton of the anion assumes a trans conformation [C—C—C—C torsion angle = −179.86 (14)°]. The carboxyl end of one hydrogen tartrate anion forms a short hydrogen bond to the carboxyl­ate end of another anion [O⋯O = 2.508 (2) Å] in a head-to-tail manner, forming a chain; the chains and water mol­ecules inter­act, generating an O—H⋯O hydrogen-bonded layer. The cation binds to the layer by an N—H⋯O hydrogen bond.

Related literature

For the trihydrated 1,10-phenanthrolin-1-ium salts of D- and L-tartaric acid, see: Derikvand & Olmstead (2010[Derikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, o185.]); Wang et al. (2006[Wang, Z.-L., Li, M.-X., Wei, L.-H. & Wang, J.-P. (2006). Acta Cryst. E62, o2508-o2509.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N2+·C4H5O6·2H2O

  • Mr = 366.32

  • Triclinic, [P \overline 1]

  • a = 7.0933 (7) Å

  • b = 10.5849 (11) Å

  • c = 11.4694 (11) Å

  • α = 98.081 (1)°

  • β = 100.350 (1)°

  • γ = 103.903 (1)°

  • V = 806.95 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 7610 measured reflections

  • 3635 independent reflections

  • 2880 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.160

  • S = 1.04

  • 3635 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1wi 0.89 (3) 1.82 (3) 2.709 (2) 175 (3)
O4—H4⋯O2wii 0.90 (3) 1.84 (3) 2.739 (2) 172 (3)
O5—H5⋯O2iii 0.99 (3) 1.52 (3) 2.508 (2) 169 (3)
O1w—H12⋯O1 0.93 (3) 1.97 (3) 2.846 (2) 157 (3)
O1w—H11⋯O1iv 0.90 (4) 1.86 (4) 2.753 (2) 173 (4)
O2w—H21⋯O2 0.84 (4) 1.93 (4) 2.764 (2) 168 (3)
O2w—H22⋯O6v 0.87 (3) 1.97 (3) 2.835 (2) 176 (3)
N1—H1⋯O1w 0.93 (3) 1.89 (3) 2.753 (2) 153 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z; (iii) x+1, y, z; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

D-tartaric acid transfers one proton to 1,10-phenanthroline to yield 1,10-phenanthroline hydrogen D-tartrate, which separates from solution as a trihydrate. The hydrogen D-tartrate anions are connected in a head-to-tail fashion by an O–Hcarboxylic acid···Ocarboxyl hydrogen bond [O···O 2.455 (1) Å] (Derikvand & Olmstead, 2010). The identical feature should be presented in the L analog (Wang et al., 2006). The anion and water molecules are linked by extensive O–H···O hydrogen bonds into a three-dimensional network, with the cations occupying the cavities. Racemic tartaric furnishes the corresponding dihydrate. In C12H9N2+ C4H5O4-.2H2O (Scheme I, Fig. 1), the carboxylic acid –CO2H end of one hydrogen (D,L)-tartrate anion forms a short hydrogen bond to the carboxylate –CO2- end of another anion [O···O 2.508 (2) Å] in a head-to-tail manner to form a chain; the chains and water molecules interact to generate an O–H···O hydrogen-bonded layer. The cation binds to the layer by an N–H···O hydrogen bond (Table 1).

Related literature top

For the trihydrated 1,10-phenanthrolin-1-ium salts of D- and L-tartaric acid, see: Derikvand & Olmstead (2010); Wang et al. (2006).

Experimental top

D,L-Tartaric acid (2 mmol, 0.30 g) and 1,10-phenanthroline (0.33 mmol, 0.06 g) were dissolved in water (5 ml). The solution was heated briefly to dissolve the reactants. The solution was set aside for the growth of colorless crystals, which were isolated after 10 days. The bulk crystals were faintly tinted a shade of pink.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C).

The ammonium and water H-atoms were located in a difference Fourier map, and were freely refined.

Omitted from the refinement owing to bad disagreements were these reflections: (-2 - 3 1), (-8 8 2), (2 2 4), (-7 6 7) and (3 - 3 4).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C12H9N2+ C4H5O6-.2H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded layer structure arising from tartrate–water interactions.
1,10-Phenanthrolin-1-ium hydrogen D,L-tartrate dihydrate top
Crystal data top
C12H9N2+·C4H5O6·2H2OZ = 2
Mr = 366.32F(000) = 384
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0933 (7) ÅCell parameters from 2722 reflections
b = 10.5849 (11) Åθ = 2.5–28.2°
c = 11.4694 (11) ŵ = 0.12 mm1
α = 98.081 (1)°T = 100 K
β = 100.350 (1)°Prism, colorless
γ = 103.903 (1)°0.40 × 0.10 × 0.10 mm
V = 806.95 (14) Å3
Data collection top
Bruker SMART APEX
diffractometer
2880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 99
7610 measured reflectionsk = 1313
3635 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1012P)2 + 0.1854P]
where P = (Fo2 + 2Fc2)/3
3635 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H9N2+·C4H5O6·2H2Oγ = 103.903 (1)°
Mr = 366.32V = 806.95 (14) Å3
Triclinic, P1Z = 2
a = 7.0933 (7) ÅMo Kα radiation
b = 10.5849 (11) ŵ = 0.12 mm1
c = 11.4694 (11) ÅT = 100 K
α = 98.081 (1)°0.40 × 0.10 × 0.10 mm
β = 100.350 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2880 reflections with I > 2σ(I)
7610 measured reflectionsRint = 0.028
3635 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
3635 reflectionsΔρmin = 0.31 e Å3
267 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0272 (2)0.97612 (14)0.33939 (12)0.0172 (3)
O20.00294 (19)1.04199 (14)0.16223 (12)0.0167 (3)
O30.3922 (2)0.95680 (14)0.34847 (12)0.0163 (3)
O40.1832 (2)0.78094 (13)0.12086 (12)0.0154 (3)
O50.6410 (2)1.02428 (13)0.15147 (12)0.0153 (3)
O60.5609 (2)0.80301 (14)0.09605 (13)0.0192 (3)
O1W0.2228 (2)0.90933 (13)0.55174 (12)0.0145 (3)
O2W0.1595 (2)1.23818 (15)0.04324 (13)0.0174 (3)
N10.2289 (2)0.65380 (16)0.46822 (15)0.0143 (3)
N20.2713 (2)0.66417 (16)0.71074 (15)0.0171 (4)
C10.0952 (3)1.00580 (17)0.25142 (16)0.0125 (4)
C20.3085 (3)1.00188 (18)0.24666 (16)0.0124 (4)
H2A0.39021.09340.24750.015*
C30.3050 (3)0.91028 (18)0.12952 (16)0.0115 (4)
H3A0.25050.94730.05940.014*
C40.5161 (3)0.90552 (18)0.12418 (16)0.0122 (4)
C50.2130 (3)0.6578 (2)0.35202 (18)0.0184 (4)
H5A0.20270.73660.32400.022*
C60.2114 (3)0.5459 (2)0.27087 (19)0.0220 (5)
H60.20150.54870.18760.026*
C70.2243 (3)0.4319 (2)0.31181 (19)0.0213 (4)
H70.22160.35520.25670.026*
C80.2417 (3)0.42852 (19)0.43589 (19)0.0178 (4)
C90.2446 (3)0.54419 (18)0.51418 (17)0.0138 (4)
C100.2550 (3)0.3129 (2)0.4856 (2)0.0220 (5)
H100.25300.23400.43370.026*
C110.2704 (3)0.3145 (2)0.6049 (2)0.0224 (5)
H11A0.27780.23660.63560.027*
C120.2757 (3)0.43249 (19)0.68601 (19)0.0173 (4)
C130.2645 (3)0.54791 (18)0.64134 (18)0.0149 (4)
C140.2935 (3)0.4390 (2)0.8110 (2)0.0227 (5)
H140.30040.36330.84560.027*
C150.3006 (3)0.5558 (2)0.8818 (2)0.0236 (5)
H150.31350.56260.96650.028*
C160.2888 (3)0.6661 (2)0.82806 (18)0.0210 (4)
H160.29360.74640.87870.025*
H30.517 (5)1.006 (3)0.381 (3)0.048 (9)*
H40.066 (4)0.767 (3)0.067 (3)0.032 (7)*
H50.781 (5)1.020 (3)0.156 (3)0.057 (10)*
H110.145 (5)0.944 (4)0.593 (4)0.067 (11)*
H120.195 (4)0.938 (3)0.480 (3)0.039 (8)*
H210.120 (5)1.172 (4)0.074 (3)0.052 (10)*
H220.247 (5)1.223 (3)0.003 (3)0.037 (8)*
H10.233 (5)0.731 (3)0.520 (3)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0162 (7)0.0231 (7)0.0161 (7)0.0078 (6)0.0087 (5)0.0054 (5)
O20.0131 (7)0.0224 (7)0.0178 (7)0.0070 (5)0.0060 (5)0.0070 (6)
O30.0120 (7)0.0243 (7)0.0118 (7)0.0032 (6)0.0015 (5)0.0055 (5)
O40.0139 (7)0.0137 (7)0.0165 (7)0.0017 (5)0.0018 (5)0.0020 (5)
O50.0123 (7)0.0156 (7)0.0197 (7)0.0047 (5)0.0058 (5)0.0036 (5)
O60.0187 (7)0.0173 (7)0.0250 (8)0.0097 (6)0.0070 (6)0.0042 (6)
O1W0.0160 (7)0.0181 (7)0.0111 (7)0.0070 (5)0.0038 (5)0.0037 (5)
O2W0.0167 (7)0.0191 (7)0.0168 (7)0.0047 (6)0.0053 (6)0.0034 (6)
N10.0141 (8)0.0146 (8)0.0132 (8)0.0028 (6)0.0023 (6)0.0017 (6)
N20.0195 (8)0.0153 (8)0.0154 (8)0.0040 (6)0.0017 (7)0.0033 (6)
C10.0139 (9)0.0108 (8)0.0123 (9)0.0027 (7)0.0044 (7)0.0003 (7)
C20.0105 (8)0.0153 (9)0.0120 (9)0.0034 (7)0.0039 (7)0.0027 (7)
C30.0115 (8)0.0142 (8)0.0101 (8)0.0042 (7)0.0035 (7)0.0041 (7)
C40.0146 (9)0.0153 (8)0.0083 (8)0.0053 (7)0.0036 (7)0.0041 (7)
C50.0159 (9)0.0225 (10)0.0166 (10)0.0039 (8)0.0040 (7)0.0051 (8)
C60.0196 (10)0.0278 (11)0.0169 (10)0.0038 (8)0.0059 (8)0.0009 (8)
C70.0148 (9)0.0226 (10)0.0229 (11)0.0041 (8)0.0051 (8)0.0062 (8)
C80.0110 (9)0.0167 (9)0.0230 (10)0.0016 (7)0.0039 (7)0.0015 (8)
C90.0107 (8)0.0125 (8)0.0178 (10)0.0037 (7)0.0020 (7)0.0015 (7)
C100.0184 (10)0.0128 (9)0.0330 (12)0.0042 (8)0.0063 (9)0.0019 (8)
C110.0201 (10)0.0122 (9)0.0354 (12)0.0058 (8)0.0042 (9)0.0065 (8)
C120.0131 (9)0.0145 (9)0.0239 (11)0.0038 (7)0.0020 (8)0.0050 (8)
C130.0113 (8)0.0134 (9)0.0189 (10)0.0029 (7)0.0016 (7)0.0031 (7)
C140.0227 (10)0.0194 (10)0.0282 (11)0.0068 (8)0.0026 (9)0.0137 (9)
C150.0270 (11)0.0248 (11)0.0188 (10)0.0056 (9)0.0016 (8)0.0105 (8)
C160.0262 (11)0.0180 (10)0.0164 (10)0.0047 (8)0.0016 (8)0.0017 (8)
Geometric parameters (Å, º) top
O1—C11.241 (2)C3—H3A1.0000
O2—C11.269 (2)C5—C61.395 (3)
O3—C21.410 (2)C5—H5A0.9500
O3—H30.89 (3)C6—C71.372 (3)
O4—C31.412 (2)C6—H60.9500
O4—H40.91 (3)C7—C81.412 (3)
O5—C41.311 (2)C7—H70.9500
O5—H51.00 (3)C8—C91.406 (3)
O6—C41.219 (2)C8—C101.437 (3)
O1W—H110.90 (4)C9—C131.434 (3)
O1W—H120.92 (3)C10—C111.350 (3)
O2W—H210.84 (4)C10—H100.9500
O2W—H220.87 (3)C11—C121.437 (3)
N1—C51.325 (3)C11—H11A0.9500
N1—C91.360 (3)C12—C131.403 (3)
N1—H10.93 (3)C12—C141.407 (3)
N2—C161.326 (3)C14—C151.365 (3)
N2—C131.354 (2)C14—H140.9500
C1—C21.534 (2)C15—C161.407 (3)
C2—C31.535 (2)C15—H150.9500
C2—H2A1.0000C16—H160.9500
C3—C41.522 (2)
C2—O3—H3111 (2)C5—C6—H6120.1
C3—O4—H4110.2 (17)C6—C7—C8119.99 (19)
C4—O5—H5111.6 (19)C6—C7—H7120.0
H11—O1W—H12101 (3)C8—C7—H7120.0
H21—O2W—H22109 (3)C9—C8—C7118.09 (19)
C5—N1—C9122.93 (18)C9—C8—C10118.62 (19)
C5—N1—H1117.6 (19)C7—C8—C10123.30 (19)
C9—N1—H1119.4 (19)N1—C9—C8119.30 (18)
C16—N2—C13116.48 (17)N1—C9—C13119.82 (17)
O1—C1—O2125.36 (18)C8—C9—C13120.88 (18)
O1—C1—C2119.50 (17)C11—C10—C8121.05 (19)
O2—C1—C2115.13 (16)C11—C10—H10119.5
O3—C2—C1109.60 (14)C8—C10—H10119.5
O3—C2—C3110.78 (15)C10—C11—C12120.86 (19)
C1—C2—C3109.30 (14)C10—C11—H11A119.6
O3—C2—H2A109.0C12—C11—H11A119.6
C1—C2—H2A109.0C13—C12—C14117.29 (18)
C3—C2—H2A109.0C13—C12—C11119.93 (19)
O4—C3—C4109.91 (14)C14—C12—C11122.78 (18)
O4—C3—C2111.42 (14)N2—C13—C12124.24 (18)
C4—C3—C2109.66 (14)N2—C13—C9117.11 (17)
O4—C3—H3A108.6C12—C13—C9118.65 (18)
C4—C3—H3A108.6C15—C14—C12118.92 (19)
C2—C3—H3A108.6C15—C14—H14120.5
O6—C4—O5124.72 (17)C12—C14—H14120.5
O6—C4—C3123.46 (17)C14—C15—C16119.4 (2)
O5—C4—C3111.81 (15)C14—C15—H15120.3
N1—C5—C6119.94 (19)C16—C15—H15120.3
N1—C5—H5A120.0N2—C16—C15123.7 (2)
C6—C5—H5A120.0N2—C16—H16118.1
C7—C6—C5119.74 (19)C15—C16—H16118.1
C7—C6—H6120.1
O1—C1—C2—O32.5 (2)C10—C8—C9—C131.3 (3)
O2—C1—C2—O3178.33 (15)C9—C8—C10—C110.1 (3)
O1—C1—C2—C3124.08 (18)C7—C8—C10—C11179.65 (19)
O2—C1—C2—C356.7 (2)C8—C10—C11—C120.6 (3)
O3—C2—C3—O462.92 (19)C10—C11—C12—C130.1 (3)
C1—C2—C3—O457.94 (19)C10—C11—C12—C14179.4 (2)
O3—C2—C3—C458.99 (19)C16—N2—C13—C120.3 (3)
C1—C2—C3—C4179.86 (14)C16—N2—C13—C9179.70 (17)
O4—C3—C4—O611.4 (2)C14—C12—C13—N20.6 (3)
C2—C3—C4—O6134.17 (19)C11—C12—C13—N2178.96 (18)
O4—C3—C4—O5169.64 (14)C14—C12—C13—C9179.49 (17)
C2—C3—C4—O546.8 (2)C11—C12—C13—C91.0 (3)
C9—N1—C5—C60.1 (3)N1—C9—C13—N21.5 (3)
N1—C5—C6—C70.7 (3)C8—C9—C13—N2178.28 (17)
C5—C6—C7—C80.8 (3)N1—C9—C13—C12178.54 (17)
C6—C7—C8—C90.2 (3)C8—C9—C13—C121.7 (3)
C6—C7—C8—C10179.72 (19)C13—C12—C14—C150.6 (3)
C5—N1—C9—C80.8 (3)C11—C12—C14—C15178.92 (19)
C5—N1—C9—C13179.01 (18)C12—C14—C15—C160.4 (3)
C7—C8—C9—N10.6 (3)C13—N2—C16—C150.1 (3)
C10—C8—C9—N1178.97 (17)C14—C15—C16—N20.2 (3)
C7—C8—C9—C13179.19 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1wi0.89 (3)1.82 (3)2.709 (2)175 (3)
O4—H4···O2wii0.90 (3)1.84 (3)2.739 (2)172 (3)
O5—H5···O2iii0.99 (3)1.52 (3)2.508 (2)169 (3)
O1w—H12···O10.93 (3)1.97 (3)2.846 (2)157 (3)
O1w—H11···O1iv0.90 (4)1.86 (4)2.753 (2)173 (4)
O2w—H21···O20.84 (4)1.93 (4)2.764 (2)168 (3)
O2w—H22···O6v0.87 (3)1.97 (3)2.835 (2)176 (3)
N1—H1···O1w0.93 (3)1.89 (3)2.753 (2)153 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z; (iii) x+1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H9N2+·C4H5O6·2H2O
Mr366.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0933 (7), 10.5849 (11), 11.4694 (11)
α, β, γ (°)98.081 (1), 100.350 (1), 103.903 (1)
V3)806.95 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7610, 3635, 2880
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.160, 1.04
No. of reflections3635
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1wi0.89 (3)1.82 (3)2.709 (2)175 (3)
O4—H4···O2wii0.90 (3)1.84 (3)2.739 (2)172 (3)
O5—H5···O2iii0.99 (3)1.52 (3)2.508 (2)169 (3)
O1w—H12···O10.93 (3)1.97 (3)2.846 (2)157 (3)
O1w—H11···O1iv0.90 (4)1.86 (4)2.753 (2)173 (4)
O2w—H21···O20.84 (4)1.93 (4)2.764 (2)168 (3)
O2w—H22···O6v0.87 (3)1.97 (3)2.835 (2)176 (3)
N1—H1···O1w0.93 (3)1.89 (3)2.753 (2)153 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z; (iii) x+1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, o185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L., Li, M.-X., Wei, L.-H. & Wang, J.-P. (2006). Acta Cryst. E62, o2508–o2509.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds