Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## N,N-Dihexyl-4-[2-(4-nitrophenyl)vinyl]aniline

#### **Dieter Schollmeyer and Heiner Detert\***

University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany Correspondence e-mail: detert@uni-mainz.de

Received 2 May 2011; accepted 3 May 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.082; wR factor = 0.239; data-to-parameter ratio = 20.7.

The title compound, C<sub>26</sub>H<sub>36</sub>N<sub>2</sub>O<sub>2</sub>, was prepared by Horner olefination of p-dihexylaminobenzaldehyde and diethyl pnitrobenzylphosphonate. It crystallizes with two independent molecules in the asymmetric unit. Both have similar geometries of the  $\pi$ -systems but the conformations of all hexyl chains are different. Whereas one hexyl chain of the first molecule shows the typical all-anti conformation, the second is arranged in a gauche-anti-gauche-anti conformation with N-C-C-C, C-C-C-C, C-C-C-C and C-C-C-C torsion angles of -65.1(4), 167.3(3), 63.3(4), and  $179.4 (3)^{\circ}$ . One of the hexyl chains in the other molecule has an anti-anti-gauche-anti conformation [N-C-C-C, C-C-C-C, C-C-C-C and C-C-C-C torsion angles = 179.6 (3), -179.8 (3), -68.7 (5) and -178.8 (4)°], the other starts with an anti-gauche-gauche sequence. Molecules A and B are composed of five planar subunits. The angle sums around the N atoms are in the range 356(2)- $360.0(2)^{\circ}$ . Torsion angles between these segments do not exceed 4.9  $(4)^{\circ}$ , except for one of the alkyl chains each [molecule A = 26.2 (4)°; molecule  $B = -6.0 (4)^{\circ}$ ]. The high planarity of the molecules and the short aniline C–N bonds [1.385 (3) Å in molecule A and 1.378 (3) Å in molecule B indicate a strong electronic coupling through the stilbene unit. One methylene group is disordered over two positions with an occupancy ratio of 0.72:0.28.

#### **Related literature**

For chromophores and fluorophores based on quadrupolar donor-acceptor-substituted stilbenoid systems, see: Detert & Sugiono (2005); Strehmel et al. (2003); Nemkovich et al. (2010). Similar aminonitrostilbenes had been prepared earlier, see: Pfeiffer et al. (1915); Chardonnens & Heinrich (1939); Meier et al. (2004). The optical properties of these dyes are strongly dependent on charge transfer and torsion angles, see: Baumann et al. (1977); Goerner (1998); Dekhtyar & Rettig (2007). Conjugated oligomers with basic sites are sensing Zucchero et al. (2009). For a comparable compound, see: Fischer et al. (2011).

 $\gamma = 112.696 (3)^{\circ}$ 

Z = 4

V = 2380.6 (4) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.54 \times 0.37 \times 0.06 \text{ mm}$ 

90478 measured reflections

11464 independent reflections

7228 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.07 \text{ mm}^{-1}$ 

T = 173 K

 $R_{\rm int} = 0.062$ 

materials for polarity and cations, see: Wilson & Bunz (2005);

#### **Experimental**

Crystal data

C26H36N2O2  $M_r = 408.57$ Triclinic,  $P\overline{1}$ a = 9.6574 (9) Å b = 11.4153 (10) Åc = 23.604 (2) Å  $\alpha = 93.297 (3)^{\circ}$  $\beta = 94.834(3)^{\circ}$ 

#### Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (PLATON; Spek, 2009)  $T_{\rm min}=0.936,\ T_{\rm max}=0.996$ 

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.082$ | 553 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.239$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 11464 reflections               | $\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$ |

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5539).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Baumann, W., Deckers, H., Loosen, K. D. & Petzke, F. (1977). Ber. Bunsen Ges. Phys. Chem. 81, 799-804.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chardonnens, L. & Heinrich, P. (1939). Helv. Chim. Acta, 22, 1471-82.
- Dekhtyar, M. & Rettig, W. (2007). J. Phys. Chem. A, 111, 2035-2039.
- Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.
- Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, 0875.
- Goerner, H. (1998). Ber. Bunsen Ges. Phys. Chem. 102, 726-737.
- Meier, H., Gerold, J., Kolshorn, H. & Muehling, B. (2004). Chem. Eur. J. 10, 360–370.
- Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.
  Pfeiffer, P., Braude, S., Kleber, J., Marcon, G. & Wittkop, P. (1915). Ber. Dtsch Chem. Ges. 48, 1777–809.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Strehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249-259.
- Wilson, J. N. & Bunz, U. H. F. (2005). J. Am. Chem. Soc. 127, 4124-4125.
- Zucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). *Chem. Eur. J.* **15**, 13075–13081.

# supporting information

Acta Cryst. (2011). E67, o1384-o1385 [doi:10.1107/S1600536811016709]

# N,N-Dihexyl-4-[2-(4-nitrophenyl)vinyl]aniline

## **Dieter Schollmeyer and Heiner Detert**

## S1. Comment

The title compound was prepared as a reference compound in a project focusing on chromophores and fluorophores based on quadrupolar donor-acceptor substituted stilbenoid systems, see: Detert & Sugiono (2005); Strehmel et al. (2003); and Nemkovich et al. (2010). Crystals of the title compound are composed of two independent molecules A and B with nearly identical geometries of the  $\pi$ -systems but different conformations of the alkyl chains. Whereas one hexyl chain of A shows the typical all-anti conformation, the second is arranged in a gauche-anti-gauche-anti conformation with torsion angles -65.1 (4)°, 167.3 (3)°, 63.3 (4)°, and 179.4 (3)°. The hexyl chains in B are also different, one has an antianti-gauche-anti conformation (torsion angles: 179.6 (3)°, -179.8 (3)°, -68.7 (5)°, and -178.8 (4)°), the other starts with an anti-gauche-gauche sequence and the penultimate C20B is disordered. The strong acceptor effect of the nitro groups through the stilbene unit is reflected by short aniline C-N-bonds: 1.385 (3)Å for C12A-N15A and 1.378 (3)Å for C12B—N15B and planar amino groups with angle sums on the aniline-N of 356° (A) and 359.7° (B). Accordingly, the stilbene framework is nearly coplanar with torsion angles of 2.7 (4)° for C7A—C8A—C9A—C10A (178.8 (2)°in B), -178.2 (2)° for C1A—C7A—C8A—C9A (179.3 (2)° in B), and -3.0 (4)° for C6A—C1A—C7A—C8A (175.9 (2)° in B). These bond lengths and torsion angles are similar to those reported for a 2,5-bis(dimethylaminostyryl)pyrazine (Fischer et al., 2011). The packing of the molecules in the crystal is dominated by the voluminous side chains. Parallel but alternatingly twisted nitrostilbenes form a herringbone lattice, perpendicular to this layer, the orientation of the neighbouring molecules is antiparallel.

## S2. Experimental

The title compound was prepared by adding potassium *tert*-butylate (1.46 g, 13 mmol) under nitrogen to a cooled solution of *p*-*N*,*N*-dihexylaminobenzaldehyde (2.17 g, 10 mmol) and diethyl *p*-nitrobenzylphosphonate (2.83 g, 10 mmol) in THF (anhyd., 50 ml) and the mixture was stirred for 2 h at 273 K and for further 2 h at ambient temperature. Acetic acid (2*M*, 5 ml) and water (70 ml) were added, the mixture was extracted with toluene (3 *x* 20 ml) and the pooled organic solutions were washed with brine (3 *x* 20 ml), dried (CaCl<sub>2</sub>), concentrated *in vacuo* and the title compound was isolated from the red oil by chromatography on silica gel using toluene. Red crystals with m.p. = 351 K were obtained by slow evaporation of a solution of the title compound in methanol/chloroform.

## S3. Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (*sp*<sup>3</sup> C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the  $U_{eq}$  of the parent atom). One methylene group is disordered over two positions with a site occupation factor of 0.72 for the major occupied site. For the final refinement, the site occupation factors of the disordered atoms were fixed. The highest peak (0.76 eÅ<sup>-3</sup>) in the final electron density map is located at 1.11Å from C16B.



#### Figure 1

View of compound I. Displacement ellipsoids are drawn at the 50% probability level.



#### Figure 2

Part of the packing diagram of I. View along *b*-axis. Molecule A in white, molecule B in red colour.

#### *N*,*N*-Dihexyl-4-[2-(4-nitrophenyl)vinyl]aniline

| Crystal data                     |                                                       |
|----------------------------------|-------------------------------------------------------|
| $C_{26}H_{36}N_2O_2$             | Z = 4                                                 |
| $M_r = 408.57$                   | F(000) = 888                                          |
| Triclinic, $P\overline{1}$       | $D_{\rm x} = 1.140 { m Mg m^{-3}}$                    |
| Hall symbol: -P 1                | Melting point: 351 K                                  |
| a = 9.6574 (9)  Å                | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 11.4153 (10)  Å              | Cell parameters from 9897 reflections                 |
| c = 23.604 (2)  Å                | $\theta = 2.2 - 27^{\circ}$                           |
| $\alpha = 93.297 \ (3)^{\circ}$  | $\mu=0.07~\mathrm{mm^{-1}}$                           |
| $\beta = 94.834 \ (3)^{\circ}$   | T = 173  K                                            |
| $\gamma = 112.696 \ (3)^{\circ}$ | Plate, red                                            |
| $V = 2380.6 (4) Å^3$             | $0.54 \times 0.37 \times 0.06 \text{ mm}$             |
|                                  |                                                       |

Data collection

| Bruker SMART APEXII<br>diffractometer<br>Radiation source: sealed Tube<br>Graphite monochromator<br>CCD scan<br>Absorption correction: multi-scan<br>(PLATON; Spek, 2009)<br>$T_{min} = 0.936, T_{max} = 0.996$<br>Refinement | 90478 measured reflections<br>11464 independent reflections<br>7228 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.062$<br>$\theta_{max} = 28.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -15 \rightarrow 15$<br>$l = -31 \rightarrow 31$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$                                                                                                                                                                                                           | Secondary atom site location: difference Fourier                                                                                                                                                                                                                              |
| Least-squares matrix: full                                                                                                                                                                                                    | map                                                                                                                                                                                                                                                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.082$                                                                                                                                                                                               | Hydrogen site location: inferred from                                                                                                                                                                                                                                         |
| $wR(F^2) = 0.239$                                                                                                                                                                                                             | neighbouring sites                                                                                                                                                                                                                                                            |
| S = 1.02                                                                                                                                                                                                                      | H-atom parameters constrained                                                                                                                                                                                                                                                 |
| 11464 reflections                                                                                                                                                                                                             | $w = 1/[\sigma^2(F_o^2) + (0.0941P)^2 + 2.795P]$                                                                                                                                                                                                                              |
| 553 parameters                                                                                                                                                                                                                | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                                |
| 0 restraints                                                                                                                                                                                                                  | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                                                                                                                                               |
| Primary atom site location: structure-invariant                                                                                                                                                                               | $\Delta\rho_{max} = 0.76 \text{ e} \text{ Å}^{-3}$                                                                                                                                                                                                                            |
| direct methods                                                                                                                                                                                                                | $\Delta\rho_{min} = -0.46 \text{ e} \text{ Å}^{-3}$                                                                                                                                                                                                                           |

#### Special details

**Experimental**. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta = 8.13$  ("d", J = 8.4 Hz, 2 H, 3-H, 5-H, Ph-NO<sub>2</sub>); 7.52 ("d", J = 8.4 Hz, 2 H, 2-H, 6-H, Ph-NO<sub>2</sub>); 7.39 ("d", J = 8.3 Hz, 2 H, 3-H, 5-H Ph-NHex<sub>2</sub>); 7.17 (d, J = 16.5 Hz, 1 H, vin); 6.87 (d, J = 16.5 Hz, 1 H, vin); 6.62 ("d", J = 8.1 Hz, 2 H, 2-H, 6-H PhNHex<sub>2</sub>); 3.23 ("t", 4 H, NCH<sub>2</sub>); 1.60 (m, 4 H, CH<sub>2</sub>); 1.27 (m, 12 H, CH<sub>2</sub>); 0.90 ("t", 6 H, CH<sub>3</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta = 148.7$ , 145.6, 145.2, 133.8, 128.6, 125.9, 124.1, 123.1, 120.7, 111.5, 51.1, 31.7, 27.3, 26.8, 22.7, 14.1.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x          | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|------------|------------|--------------|-----------------------------|-----------|
| C1A | 0.7433 (2) | 0.6361 (2) | 0.55422 (10) | 0.0267 (5)                  |           |
| C2A | 0.6830 (3) | 0.5037 (2) | 0.55662 (11) | 0.0292 (5)                  |           |
| H2A | 0.6312     | 0.4494     | 0.5230       | 0.035*                      |           |
| C3A | 0.6969 (3) | 0.4498 (2) | 0.60700 (11) | 0.0299 (5)                  |           |
| H3A | 0.6565     | 0.3598     | 0.6078       | 0.036*                      |           |
| C4A | 0.7708 (3) | 0.5296 (2) | 0.65599 (11) | 0.0286 (5)                  |           |
| C5A | 0.8300 (3) | 0.6620(3)  | 0.65598 (11) | 0.0333 (5)                  |           |
| H5A | 0.8784     | 0.7154     | 0.6902       | 0.040*                      |           |
| C6A | 0.8169 (3) | 0.7144 (2) | 0.60510(11)  | 0.0316 (5)                  |           |
| H6A | 0.8582     | 0.8045     | 0.6046       | 0.038*                      |           |
| C7A | 0.7272 (3) | 0.6856 (2) | 0.49919 (11) | 0.0289 (5)                  |           |
| H7A | 0.6800     | 0.6240     | 0.4673       | 0.035*                      |           |
|     |            |            |              |                             |           |

| C8A            | 0.7720 (3)          | 0.8085 (2) | 0.48902 (11)           | 0.0280 (5)      |
|----------------|---------------------|------------|------------------------|-----------------|
| H8A            | 0.8220              | 0.8702     | 0.5206                 | 0.034*          |
| C9A            | 0.7519 (2)          | 0.8571 (2) | 0.43441 (10)           | 0.0253 (5)      |
| C10A           | 0.6745 (3)          | 0.7776 (2) | 0.38404 (11)           | 0.0285 (5)      |
| H10A           | 0.6391              | 0.6877     | 0.3846                 | 0.034*          |
| C11A           | 0.6488 (3)          | 0.8271 (2) | 0.33405 (11)           | 0.0296 (5)      |
| H11A           | 0.5953              | 0.7704     | 0.3013                 | 0.036*          |
| C12A           | 0.7001 (3)          | 0.9604 (2) | 0.33048 (11)           | 0.0288 (5)      |
| C13A           | 0.7832 (3)          | 1.0403 (2) | 0.38008 (11)           | 0.0301 (5)      |
| H13A           | 0.8232              | 1.1303     | 0.3792                 | 0.036*          |
| C14A           | 0.8068 (3)          | 0.9889 (2) | 0.42997 (11)           | 0.0285 (5)      |
| H14A           | 0.8625              | 1.0454     | 0.4626                 | 0.034*          |
| N15A           | 0.6672 (3)          | 1.0079 (2) | 0.28070 (9)            | 0.0358 (5)      |
| C16A           | 0.5310(3)           | 0.9287(3)  | 0.24208(12)            | 0.0367 (6)      |
| H16A           | 0.4798              | 0.9840     | 0.2287                 | 0.044*          |
| H16R           | 0.4612              | 0.8650     | 0.2207                 | 0.044*          |
| C17A           | 0.5583 (3)          | 0.8580 (3) | 0.2041                 | 0.0365 (6)      |
|                | 0.5585 (5)          | 0.0300 (3) | 0.1637                 | 0.0303 (0)      |
| 1117A<br>1117D | 0.6229              | 0.9210     | 0.1037                 | 0.044           |
|                | 0.0238<br>0.4126(2) | 0.0133     | 0.2022<br>0.15720 (12) | $0.044^{\circ}$ |
|                | 0.4120(3)           | 0.7010(3)  | 0.13729 (12)           | 0.0420(7)       |
| HIAA           | 0.3403              | 0.8061     | 0.1457                 | 0.051*          |
| HI8B           | 0.3598              | 0.6979     | 0.1832                 | 0.051*          |
| CI9A           | 0.4365 (3)          | 0.6919 (3) | 0.10420 (13)           | 0.0492 (7)      |
| HI9A           | 0.4856              | 0.7553     | 0.0776                 | 0.059*          |
| H19B           | 0.5061              | 0.6503     | 0.1156                 | 0.059*          |
| C20A           | 0.2913 (4)          | 0.5916 (4) | 0.07301 (16)           | 0.0611 (9)      |
| H20A           | 0.2211              | 0.6328     | 0.0618                 | 0.073*          |
| H20B           | 0.2426              | 0.5275     | 0.0994                 | 0.073*          |
| C21A           | 0.3172 (6)          | 0.5242 (5) | 0.0199 (2)             | 0.0898 (14)     |
| H21A           | 0.3559              | 0.5857     | -0.0080                | 0.135*          |
| H21B           | 0.2216              | 0.4562     | 0.0032                 | 0.135*          |
| H21C           | 0.3909              | 0.4871     | 0.0304                 | 0.135*          |
| C22A           | 0.7282 (4)          | 1.1465 (3) | 0.27664 (12)           | 0.0441 (7)      |
| H22A           | 0.8241              | 1.1864     | 0.3023                 | 0.053*          |
| H22B           | 0.6562              | 1.1809     | 0.2905                 | 0.053*          |
| C23A           | 0.7578 (3)          | 1.1851 (3) | 0.21672 (13)           | 0.0458 (7)      |
| H23A           | 0.6626              | 1.1428     | 0.1908                 | 0.055*          |
| H23B           | 0.7865              | 1.2783     | 0.2174                 | 0.055*          |
| C24A           | 0.8803 (3)          | 1.1523 (3) | 0.19208 (13)           | 0.0414 (6)      |
| H24A           | 0.8647              | 1.0635     | 0.1987                 | 0.050*          |
| H24B           | 0.9802              | 1.2094     | 0.2121                 | 0.050*          |
| C25A           | 0.8794 (4)          | 1.1664 (4) | 0.12703 (16)           | 0.0613 (9)      |
| H25A           | 0.9547              | 1.1366     | 0.1125                 | 0.074*          |
| H25B           | 0.7788              | 1,1096     | 0.1076                 | 0.074*          |
| C26A           | 0.9133 (5)          | 1 2980 (4) | 0 11120 (16)           | 0 0713 (11)     |
| H26A           | 1 0138              | 1 3557     | 0 1305                 | 0.086*          |
| H26R           | 0.8374              | 1.3280     | 0.1249                 | 0.086*          |
| C27A           | 0.0377              | 1.3200     | 0.1279<br>0.04722 (10) | 0.000           |
| $U_{2/A}$      | 0.7124(7)           | 1.5054 (0) | 0.04722(19)            | 0.1003 (10)     |

| H27A  | 0.9906     | 1.2796     | 0.0337               | 0.163*               |      |
|-------|------------|------------|----------------------|----------------------|------|
| H27B  | 0.9326     | 1.3932     | 0.0387               | 0.163*               |      |
| H27C  | 0.8133     | 1.2482     | 0.0279               | 0.163*               |      |
| N28A  | 0.7893 (2) | 0.4731 (2) | 0.70886 (10)         | 0.0372 (5)           |      |
| O29A  | 0.8486 (3) | 0.5447 (2) | 0.75293 (9)          | 0.0525 (6)           |      |
| O30A  | 0.7460 (3) | 0.3564 (2) | 0.70650 (10)         | 0.0582 (6)           |      |
| C1B   | 0.7306 (3) | 0.1556 (2) | 0.55379 (10)         | 0.0259 (5)           |      |
| C2B   | 0.8781 (3) | 0.1709 (2) | 0.57579 (11)         | 0.0295 (5)           |      |
| H2B   | 0.9621     | 0.2248     | 0.5585               | 0.035*               |      |
| C3B   | 0.9028 (3) | 0.1091 (2) | 0.62198 (11)         | 0.0299 (5)           |      |
| H3B   | 1.0025     | 0.1198     | 0.6361               | 0.036*               |      |
| C4B   | 0.7792 (3) | 0.0308 (2) | 0.64740 (10)         | 0.0284 (5)           |      |
| C5B   | 0.6329 (3) | 0.0132 (2) | 0.62734 (11)         | 0.0324 (5)           |      |
| H5B   | 0.5497     | -0.0404    | 0.6451               | 0.039*               |      |
| C6B   | 0.6098 (3) | 0.0750 (2) | 0.58092 (11)         | 0.0311 (5)           |      |
| H6B   | 0.5095     | 0.0626     | 0.5669               | 0.037*               |      |
| C7B   | 0.6979 (3) | 0.2171 (2) | 0.50471 (10)         | 0.0283 (5)           |      |
| H7B   | 0.5943     | 0.1947     | 0.4918               | 0.034*               |      |
| C8B   | 0.7989 (3) | 0.3022 (2) | 0.47587 (10)         | 0.0281 (5)           |      |
| H8B   | 0.9025     | 0.3254     | 0.4891               | 0.034*               |      |
| C9B   | 0.7659(3)  | 0.3625 (2) | 0.42645 (10)         | 0.0267 (5)           |      |
| C10B  | 0.8844 (3) | 0.4518 (2) | 0.40158 (11)         | 0.0328 (5)           |      |
| H10B  | 0.9853     | 0.4735     | 0.4182               | 0.039*               |      |
| C11B  | 0.8600 (3) | 0.5092 (3) | 0.35394 (11)         | 0.0352 (6)           |      |
| H11B  | 0.9441     | 0.5697     | 0.3391               | 0.042*               |      |
| C12B  | 0.7125 (3) | 0.4798 (2) | 0.32682 (11)         | 0.0306 (5)           |      |
| C13B  | 0.5924 (3) | 0.3903 (2) | 0.35199 (11)         | 0.0320 (5)           |      |
| H13B  | 0.4914     | 0.3676     | 0.3353               | 0.038*               |      |
| C14B  | 0.6190 (3) | 0.3355 (2) | 0.40022 (11)         | 0.0301 (5)           |      |
| H14B  | 0.5352     | 0.2775     | 0.4162               | 0.036*               |      |
| N15B  | 0.6857(3)  | 0.5360 (2) | 0.27927 (10)         | 0.0399 (5)           |      |
| C16B  | 0.8077 (4) | 0.6393 (3) | 0.25697 (14)         | 0.0484 (7)           |      |
| H16C  | 0.8825     | 0.6912     | 0.2893               | 0.058*               |      |
| H16D  | 0.7651     | 0.6953     | 0.2382               | 0.058*               |      |
| C17B  | 0.8870(4)  | 0.5911 (3) | 0.21473(15)          | 0.0531 (8)           |      |
| H17C  | 0.8140     | 0.5416     | 0.1815               | 0.064*               |      |
| H17D  | 0.9291     | 0 5341     | 0 2329               | 0.064*               |      |
| C18B  | 1.0185(4)  | 0 7074 (4) | 0.19407(18)          | 0.0707 (11)          |      |
| H18C  | 1.0846     | 0.7591     | 0 2284               | 0.085*               |      |
| H18D  | 1.0796     | 0.6728     | 0.1721               | 0.085*               |      |
| C19B  | 0.9767 (6) | 0.7943(5)  | 0.1721<br>0.1586 (2) | 0.083(15)            |      |
| H19C  | 0.9155     | 0.8296     | 0.1801               | 0.106*               | 0.72 |
| H19D  | 1 0702     | 0.8250     | 0.1523               | 0.106*               | 0.72 |
| H10F  | 0.8662     | 0.7658     | 0.1520               | 0.106*               | 0.72 |
| H19F  | 1 0218     | 0.8781     | 0.1817               | 0.106*               | 0.28 |
| C20B  | 0.8950 (6) | 0.7375 (5) | 0.1057 (3)           | 0.100<br>0.0666 (14) | 0.28 |
| H20C  | 0.0939(0)  | 0.7575(5)  | 0.1037 (3)           | 0.080*               | 0.72 |
| H20C  | 0.7942     | 0.6803     | 0.1117               | 0.000                | 0.72 |
| 11200 | 0.9401     | 0.0095     | 0.0000               | 0.000                | 0.72 |

| C20C | 1.0014 (17) | 0.8248 (15) | 0.0996 (6)   | 0.068 (4)   | 0.28 |
|------|-------------|-------------|--------------|-------------|------|
| H20E | 1.0229      | 0.7558      | 0.0799       | 0.081*      | 0.28 |
| H20F | 1.0935      | 0.9041      | 0.1012       | 0.081*      | 0.28 |
| C21B | 0.8777 (7)  | 0.8424 (5)  | 0.0632 (2)   | 0.1038 (18) |      |
| H21D | 0.8136      | 0.8818      | 0.0791       | 0.156*      | 0.72 |
| H21E | 0.8312      | 0.7990      | 0.0253       | 0.156*      | 0.72 |
| H21F | 0.9775      | 0.9085      | 0.0602       | 0.156*      | 0.72 |
| H21G | 0.8265      | 0.8825      | 0.0870       | 0.156*      | 0.28 |
| H21H | 0.8049      | 0.7592      | 0.0456       | 0.156*      | 0.28 |
| H21I | 0.9207      | 0.8971      | 0.0333       | 0.156*      | 0.28 |
| C22B | 0.5380 (3)  | 0.4863 (3)  | 0.24494 (12) | 0.0399 (6)  |      |
| H22C | 0.5326      | 0.5515      | 0.2200       | 0.048*      |      |
| H22D | 0.4585      | 0.4712      | 0.2708       | 0.048*      |      |
| C23B | 0.5053 (3)  | 0.3612 (3)  | 0.20748 (14) | 0.0473 (7)  |      |
| H23C | 0.5847      | 0.3766      | 0.1816       | 0.057*      |      |
| H23D | 0.5116      | 0.2963      | 0.2325       | 0.057*      |      |
| C24B | 0.3527 (4)  | 0.3085 (4)  | 0.17207 (16) | 0.0614 (9)  |      |
| H24C | 0.3462      | 0.3727      | 0.1467       | 0.074*      |      |
| H24D | 0.2729      | 0.2928      | 0.1978       | 0.074*      |      |
| C25B | 0.3234 (5)  | 0.1819 (4)  | 0.13500 (18) | 0.0762 (12) |      |
| H25C | 0.3402      | 0.1214      | 0.1604       | 0.091*      |      |
| H25D | 0.2157      | 0.1442      | 0.1189       | 0.091*      |      |
| C26B | 0.4170 (5)  | 0.1923 (5)  | 0.0872 (2)   | 0.0840 (13) |      |
| H26C | 0.5251      | 0.2268      | 0.1026       | 0.101*      |      |
| H26D | 0.4019      | 0.2527      | 0.0613       | 0.101*      |      |
| C27B | 0.3756 (7)  | 0.0624 (5)  | 0.0532 (2)   | 0.1055 (18) |      |
| H27D | 0.3901      | 0.0024      | 0.0788       | 0.158*      |      |
| H27E | 0.4406      | 0.0721      | 0.0226       | 0.158*      |      |
| H27F | 0.2697      | 0.0297      | 0.0366       | 0.158*      |      |
| N28B | 0.8047 (3)  | -0.0349 (2) | 0.69623 (10) | 0.0383 (5)  |      |
| O29B | 0.9345 (3)  | -0.0210 (2) | 0.71236 (10) | 0.0575 (6)  |      |
| O30B | 0.6945 (3)  | -0.1038 (2) | 0.71804 (10) | 0.0596 (6)  |      |
|      |             |             |              |             |      |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|------|-------------|-------------|-------------|-------------|-------------|--------------|
| C1A  | 0.0187 (10) | 0.0273 (12) | 0.0363 (13) | 0.0110 (9)  | 0.0049 (9)  | 0.0032 (10)  |
| C2A  | 0.0235 (11) | 0.0274 (12) | 0.0366 (13) | 0.0103 (10) | 0.0048 (9)  | -0.0006 (10) |
| C3A  | 0.0227 (11) | 0.0271 (12) | 0.0420 (14) | 0.0112 (10) | 0.0078 (10) | 0.0051 (10)  |
| C4A  | 0.0209 (11) | 0.0343 (13) | 0.0363 (13) | 0.0157 (10) | 0.0081 (9)  | 0.0057 (10)  |
| C5A  | 0.0281 (12) | 0.0386 (14) | 0.0339 (13) | 0.0151 (11) | 0.0007 (10) | -0.0012 (11) |
| C6A  | 0.0284 (12) | 0.0262 (12) | 0.0402 (14) | 0.0114 (10) | 0.0028 (10) | 0.0016 (10)  |
| C7A  | 0.0228 (11) | 0.0276 (12) | 0.0358 (13) | 0.0100 (10) | 0.0020 (9)  | 0.0010 (10)  |
| C8A  | 0.0197 (11) | 0.0283 (12) | 0.0359 (13) | 0.0096 (9)  | 0.0038 (9)  | 0.0011 (10)  |
| C9A  | 0.0170 (10) | 0.0252 (11) | 0.0365 (13) | 0.0103 (9)  | 0.0077 (9)  | 0.0046 (9)   |
| C10A | 0.0229 (11) | 0.0223 (11) | 0.0405 (13) | 0.0083 (9)  | 0.0069 (10) | 0.0036 (10)  |
| C11A | 0.0280 (12) | 0.0280 (12) | 0.0327 (12) | 0.0105 (10) | 0.0058 (10) | 0.0015 (10)  |
| C12A | 0.0249 (11) | 0.0306 (12) | 0.0357 (13) | 0.0139 (10) | 0.0111 (10) | 0.0070 (10)  |

| C13A | 0.0278 (12) | 0.0228 (11) | 0.0410 (14) | 0.0101 (10) | 0.0098 (10)  | 0.0027 (10)  |
|------|-------------|-------------|-------------|-------------|--------------|--------------|
| C14A | 0.0222 (11) | 0.0256 (12) | 0.0381 (13) | 0.0097 (9)  | 0.0058 (9)   | 0.0010 (10)  |
| N15A | 0.0406 (12) | 0.0324 (11) | 0.0357 (12) | 0.0147 (10) | 0.0066 (9)   | 0.0077 (9)   |
| C16A | 0.0326 (13) | 0.0430 (15) | 0.0418 (15) | 0.0208 (12) | 0.0088 (11)  | 0.0118 (12)  |
| C17A | 0.0317 (13) | 0.0415 (15) | 0.0393 (14) | 0.0165 (12) | 0.0062 (11)  | 0.0076 (11)  |
| C18A | 0.0302 (14) | 0.0505 (17) | 0.0442 (16) | 0.0120 (12) | 0.0047 (11)  | 0.0087 (13)  |
| C19A | 0.0385 (16) | 0.0561 (19) | 0.0482 (17) | 0.0134 (14) | 0.0042 (13)  | 0.0054 (14)  |
| C20A | 0.054 (2)   | 0.060 (2)   | 0.060 (2)   | 0.0147 (17) | -0.0010 (16) | -0.0039(17)  |
| C21A | 0.085 (3)   | 0.087 (3)   | 0.084 (3)   | 0.026 (3)   | 0.005 (2)    | -0.026(3)    |
| C22A | 0.0618 (19) | 0.0332 (14) | 0.0434 (16) | 0.0226 (14) | 0.0147 (14)  | 0.0107 (12)  |
| C23A | 0.0422 (16) | 0.0447 (16) | 0.0552 (18) | 0.0197 (13) | 0.0109 (13)  | 0.0155 (14)  |
| C24A | 0.0304 (14) | 0.0432 (16) | 0.0539 (17) | 0.0160 (12) | 0.0098 (12)  | 0.0130 (13)  |
| C25A | 0.0460 (19) | 0.070 (2)   | 0.071 (2)   | 0.0246 (17) | 0.0136 (16)  | 0.0029 (19)  |
| C26A | 0.063 (2)   | 0.080 (3)   | 0.063 (2)   | 0.015 (2)   | 0.0167 (19)  | 0.021 (2)    |
| C27A | 0.129 (5)   | 0.131 (5)   | 0.060 (3)   | 0.040 (4)   | 0.014 (3)    | 0.036 (3)    |
| N28A | 0.0298(11)  | 0.0476 (14) | 0.0411 (13) | 0.0211 (10) | 0.0074 (9)   | 0.0115 (11)  |
| 029A | 0.0680(15)  | 0.0632 (14) | 0.0372(11)  | 0.0392(12)  | -0.0007(10)  | 0.0037 (10)  |
| 030A | 0.0649 (15) | 0.0431 (12) | 0.0606 (14) | 0.0135(11)  | 0.0012 (11)  | 0.0210 (11)  |
| C1B  | 0.0266 (12) | 0.0211 (11) | 0.0322(12)  | 0.0114 (9)  | 0.0067 (9)   | 0.0009 (9)   |
| C2B  | 0.0210 (11) | 0.0297 (12) | 0.0373 (13) | 0.0083 (10) | 0.0081 (9)   | 0.0035 (10)  |
| C3B  | 0.0225 (11) | 0.0302 (12) | 0.0366 (13) | 0.0104 (10) | 0.0031 (9)   | 0.0012 (10)  |
| C4B  | 0.0304 (12) | 0.0261 (12) | 0.0326 (12) | 0.0142 (10) | 0.0072 (10)  | 0.0049 (9)   |
| C5B  | 0.0252 (12) | 0.0308 (13) | 0.0426 (14) | 0.0104 (10) | 0.0120 (10)  | 0.0074 (11)  |
| C6B  | 0.0203 (11) | 0.0304 (12) | 0.0448 (14) | 0.0111 (10) | 0.0076 (10)  | 0.0064 (11)  |
| C7B  | 0.0250 (11) | 0.0267 (12) | 0.0361 (13) | 0.0132 (10) | 0.0048 (9)   | 0.0010 (10)  |
| C8B  | 0.0244 (11) | 0.0279 (12) | 0.0345 (13) | 0.0130 (10) | 0.0041 (9)   | 0.0006 (10)  |
| C9B  | 0.0251 (11) | 0.0252 (11) | 0.0332 (12) | 0.0128 (9)  | 0.0075 (9)   | 0.0018 (9)   |
| C10B | 0.0232 (12) | 0.0349 (13) | 0.0393 (14) | 0.0098 (10) | 0.0051 (10)  | 0.0044 (11)  |
| C11B | 0.0258 (12) | 0.0352 (14) | 0.0424 (15) | 0.0081 (11) | 0.0083 (11)  | 0.0095 (11)  |
| C12B | 0.0304 (13) | 0.0292 (12) | 0.0369 (13) | 0.0154 (10) | 0.0084 (10)  | 0.0072 (10)  |
| C13B | 0.0246 (12) | 0.0351 (13) | 0.0404 (14) | 0.0154 (10) | 0.0065 (10)  | 0.0059 (11)  |
| C14B | 0.0258 (12) | 0.0282 (12) | 0.0376 (13) | 0.0101 (10) | 0.0106 (10)  | 0.0070 (10)  |
| N15B | 0.0327 (12) | 0.0424 (13) | 0.0471 (13) | 0.0154 (10) | 0.0067 (10)  | 0.0167 (11)  |
| C16B | 0.0522 (18) | 0.0490 (18) | 0.0496 (17) | 0.0233 (15) | 0.0124 (14)  | 0.0159 (14)  |
| C17B | 0.0476 (18) | 0.058 (2)   | 0.063 (2)   | 0.0310 (16) | 0.0076 (15)  | 0.0102 (16)  |
| C18B | 0.051 (2)   | 0.092 (3)   | 0.076 (3)   | 0.028 (2)   | 0.0311 (19)  | 0.031 (2)    |
| C19B | 0.101 (4)   | 0.085 (3)   | 0.100 (4)   | 0.047 (3)   | 0.053 (3)    | 0.036 (3)    |
| C20B | 0.052 (3)   | 0.050 (3)   | 0.098 (4)   | 0.025 (2)   | -0.002(3)    | -0.010(3)    |
| C20C | 0.072 (9)   | 0.079 (10)  | 0.060 (8)   | 0.034 (8)   | 0.011 (7)    | 0.029 (7)    |
| C21B | 0.128 (5)   | 0.109 (4)   | 0.095 (4)   | 0.077 (4)   | -0.021(3)    | -0.002(3)    |
| C22B | 0.0383 (15) | 0.0479 (16) | 0.0432 (15) | 0.0257 (13) | 0.0066 (12)  | 0.0127 (13)  |
| C23B | 0.0376 (16) | 0.0514 (18) | 0.0565 (19) | 0.0209 (14) | 0.0056 (13)  | 0.0078 (14)  |
| C24B | 0.0423 (18) | 0.075 (2)   | 0.071 (2)   | 0.0289 (17) | 0.0038 (16)  | -0.0003 (19) |
| C25B | 0.053 (2)   | 0.089 (3)   | 0.074 (3)   | 0.020 (2)   | -0.0077 (19) | -0.009 (2)   |
| C26B | 0.074 (3)   | 0.094 (3)   | 0.080 (3)   | 0.031 (3)   | -0.003 (2)   | 0.007 (3)    |
| C27B | 0.145 (5)   | 0.113 (4)   | 0.078 (3)   | 0.078 (4)   | 0.000 (3)    | -0.013 (3)   |
| N28B | 0.0439 (13) | 0.0387 (13) | 0.0393 (12) | 0.0223 (11) | 0.0091 (10)  | 0.0095 (10)  |
| O29B | 0.0466 (13) | 0.0743 (16) | 0.0606 (14) | 0.0321 (12) | 0.0014 (10)  | 0.0250 (12)  |
|      |             |             |             |             | · /          | × /          |

## Acta Cryst. (2011). E67, o1384–o1385

| O30B    | 0.0543 (14)       | 0.0668 (15) | 0.0651 (15) | 0.0247 (12) | 0.0219 (11) | 0.0365 (12) |
|---------|-------------------|-------------|-------------|-------------|-------------|-------------|
| Geometr | ic parameters (Å, | <i>°</i> )  |             |             |             |             |
| CIA—C   | 2A                | 1.401 (3)   | (           | C3B—C4B     |             | 1.394 (3)   |
| C1A—C   | 6A                | 1.411 (3)   | C           | СЗВ—НЗВ     |             | 0.9500      |
| C1A—C   | 7A                | 1.466 (3)   | C           | C4B—C5B     |             | 1.385 (3)   |
| C2A—C   | 3A                | 1.390 (3)   | C           | C4B—N28B    |             | 1.465 (3)   |
| С2А—Н   | [2A               | 0.9500      | C           | C5B—C6B     |             | 1.384 (4)   |
| СЗА—С   | 4A                | 1.384 (4)   | C           | C5B—H5B     |             | 0.9500      |
| СЗА—Н   | [3A               | 0.9500      | C           | С6В—Н6В     |             | 0.9500      |
| C4A—C   | 5A                | 1.394 (4)   | C           | C7B—C8B     |             | 1.347 (3)   |
| C4A—N   | 28A               | 1.466 (3)   | C           | С7В—Н7В     |             | 0.9500      |
| C5A—C   | 6A                | 1.390 (4)   | C           | C8B—C9B     |             | 1.461 (3)   |
| С5А—Н   | [5A               | 0.9500      | C           | C8B—H8B     |             | 0.9500      |
| С6А—Н   | [6A               | 0.9500      | C           | C9B—C10B    |             | 1.406 (3)   |
| C7A—C   | 8A                | 1.342 (3)   | C           | C9B—C14B    |             | 1.408 (3)   |
| С7А—Н   | [7A               | 0.9500      | C           | C10B—C11B   |             | 1.381 (4)   |
| C8A—C   | 9A                | 1.460 (3)   | C           | C10B—H10B   |             | 0.9500      |
| C8A—H   | [8A               | 0.9500      | C           | C11B—C12B   |             | 1.416 (4)   |
| С9А—С   | 14A               | 1.403 (3)   | C           | C11B—H11B   |             | 0.9500      |
| С9А—С   | 10A               | 1.414 (3)   | C           | C12B—N15B   |             | 1.378 (3)   |
| C10A—   | C11A              | 1.382 (3)   | C           | C12B—C13B   |             | 1.419 (3)   |
| C10A—   | H10A              | 0.9500      | C           | C13B—C14B   |             | 1.382 (3)   |
| C11A—   | C12A              | 1.417 (3)   | C           | C13B—H13B   |             | 0.9500      |
| C11A—   | H11A              | 0.9500      | C           | C14B—H14B   |             | 0.9500      |
| C12A—   | N15A              | 1.385 (3)   | Ν           | 15B—C22B    |             | 1.463 (4)   |
| C12A—   | C13A              | 1.414 (4)   | Ν           | V15B—C16B   |             | 1.469 (4)   |
| C13A—   | C14A              | 1.386 (3)   | C           | C16B—C17B   |             | 1.508 (4)   |
| C13A—   | H13A              | 0.9500      | C           | C16B—H16C   |             | 0.9900      |
| C14A—   | H14A              | 0.9500      | C           | C16B—H16D   |             | 0.9900      |
| N15A—   | C16A              | 1.471 (3)   | C           | C17B—C18B   |             | 1.578 (5)   |
| N15A—   | C22A              | 1.471 (3)   | C           | C17B—H17C   |             | 0.9900      |
| C16A—   | C17A              | 1.535 (4)   | C           | C17B—H17D   |             | 0.9900      |
| C16A—   | H16A              | 0.9900      | C           | C18B—C19B   |             | 1.482 (6)   |
| C16A—   | H16B              | 0.9900      | C           | C18B—H18C   |             | 0.9900      |
| C17A—   | C18A              | 1.518 (4)   | C           | C18B—H18D   |             | 0.9900      |
| C17A—]  | H17A              | 0.9900      | C           | C19B—C20B   |             | 1.393 (7)   |
| C17A—   | H17B              | 0.9900      | C           | C19B—C20C   |             | 1.472 (13)  |
| C18A—   | C19A              | 1.527 (4)   | C           | C19B—H19C   |             | 0.9900      |
| C18A—   | H18A              | 0.9900      | C           | C19B—H19D   |             | 0.9900      |
| C18A—1  | H18B              | 0.9900      | C           | C19B—H19E   |             | 0.9900      |
| C19A—   | C20A              | 1.520 (4)   | C           | C19B—H19F   |             | 0.9900      |
| C19A—   | H19A              | 0.9900      | C           | C20B—C21B   |             | 1.655 (7)   |
| C19A—   | H19B              | 0.9900      | C           | C20B—H20C   |             | 0.9900      |
| C20A-   | C21A              | 1.523 (5)   | C           | C20B—H20D   |             | 0.9900      |
| C20A—   | H20A              | 0.9900      | C           | C20C—C21B   |             | 1.495 (14)  |
| C20A—   | H20B              | 0.9900      | C           | C20C—H20E   |             | 0.9900      |

| C21A—H21A    | 0.9800    | C20C—H20F      | 0.9900    |
|--------------|-----------|----------------|-----------|
| C21A—H21B    | 0.9800    | C21B—H21D      | 0.9800    |
| C21A—H21C    | 0.9800    | C21B—H21E      | 0.9800    |
| C22A—C23A    | 1.523 (4) | C21B—H21F      | 0.9800    |
| C22A—H22A    | 0.9900    | C21B—H21G      | 0.9800    |
| C22A—H22B    | 0.9900    | C21B—H21H      | 0.9800    |
| C23A—C24A    | 1.520 (4) | C21B—H21I      | 0.9800    |
| С23А—Н23А    | 0.9900    | C22B—C23B      | 1.543 (4) |
| С23А—Н23В    | 0.9900    | C22B—H22C      | 0.9900    |
| C24A—C25A    | 1.553 (5) | C22B—H22D      | 0.9900    |
| C24A—H24A    | 0.9900    | C23B—C24B      | 1.511 (4) |
| C24A—H24B    | 0.9900    | С23В—Н23С      | 0.9900    |
| C25A—C26A    | 1.487 (5) | C23B—H23D      | 0.9900    |
| С25А—Н25А    | 0.9900    | C24B—C25B      | 1.559 (5) |
| С25А—Н25В    | 0.9900    | C24B—H24C      | 0.9900    |
| C26A—C27A    | 1.517 (5) | C24B—H24D      | 0.9900    |
| C26A—H26A    | 0.9900    | C25B—C26B      | 1.487 (6) |
| C26A—H26B    | 0.9900    | C25B—H25C      | 0.9900    |
| С27А—Н27А    | 0.9800    | C25B—H25D      | 0.9900    |
| C27A—H27B    | 0.9800    | C26B—C27B      | 1.534 (6) |
| C27A—H27C    | 0.9800    | C26B—H26C      | 0.9900    |
| N28A—O30A    | 1.229 (3) | C26B—H26D      | 0.9900    |
| N28A—029A    | 1.232 (3) | C27B—H27D      | 0.9800    |
| C1B—C6B      | 1.408 (3) | С27В—Н27Е      | 0.9800    |
| C1B—C2B      | 1.415 (3) | C27B—H27F      | 0.9800    |
| C1B—C7B      | 1.462 (3) | N28B—O29B      | 1.225 (3) |
| C2B—C3B      | 1.385 (3) | N28B-030B      | 1.229 (3) |
| C2B—H2B      | 0.9500    |                |           |
|              |           |                |           |
| C2A—C1A—C6A  | 117.9 (2) | C6B—C5B—H5B    | 120.6     |
| C2A—C1A—C7A  | 118.5 (2) | C4B—C5B—H5B    | 120.6     |
| C6A—C1A—C7A  | 123.6 (2) | C5B—C6B—C1B    | 122.0 (2) |
| C3A—C2A—C1A  | 121.6 (2) | C5B—C6B—H6B    | 119.0     |
| C3A—C2A—H2A  | 119.2     | C1B—C6B—H6B    | 119.0     |
| C1A—C2A—H2A  | 119.2     | C8B—C7B—C1B    | 127.0 (2) |
| C4A—C3A—C2A  | 118.8 (2) | C8B—C7B—H7B    | 116.5     |
| С4А—С3А—НЗА  | 120.6     | C1B—C7B—H7B    | 116.5     |
| С2А—С3А—НЗА  | 120.6     | C7B—C8B—C9B    | 126.9 (2) |
| C3A—C4A—C5A  | 121.6 (2) | C7B—C8B—H8B    | 116.6     |
| C3A—C4A—N28A | 119.0 (2) | C9B—C8B—H8B    | 116.6     |
| C5A—C4A—N28A | 119.4 (2) | C10B—C9B—C14B  | 115.9 (2) |
| C6A—C5A—C4A  | 118.9 (2) | C10B—C9B—C8B   | 120.1 (2) |
| С6А—С5А—Н5А  | 120.5     | C14B—C9B—C8B   | 123.9 (2) |
| С4А—С5А—Н5А  | 120.5     | C11B—C10B—C9B  | 122.6 (2) |
| C5A—C6A—C1A  | 121.0 (2) | C11B—C10B—H10B | 118.7     |
| С5А—С6А—Н6А  | 119.5     | C9B—C10B—H10B  | 118.7     |
| С1А—С6А—Н6А  | 119.5     | C10B—C11B—C12B | 121.4 (2) |
| C8A—C7A—C1A  | 127.0 (2) | C10B—C11B—H11B | 119.3     |
|              | × /       |                |           |

| С8А—С7А—Н7А                   | 116.5                | C12B—C11B—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.3             |
|-------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| C1A—C7A—H7A                   | 116.5                | N15B—C12B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.4 (2)         |
| C7A—C8A—C9A                   | 126.7 (2)            | N15B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.5 (2)         |
| C7A—C8A—H8A                   | 116.6                | C11B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.1 (2)         |
| С9А—С8А—Н8А                   | 116.6                | C14B—C13B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.6 (2)         |
| C14A—C9A—C10A                 | 116.1 (2)            | C14B—C13B—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.2             |
| C14A—C9A—C8A                  | 120.4 (2)            | C12B—C13B—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.2             |
| C10A—C9A—C8A                  | 123.4 (2)            | C13B—C14B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.3 (2)         |
| C11A—C10A—C9A                 | 121.8 (2)            | C13B—C14B—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118.8             |
| C11A—C10A—H10A                | 119.1                | C9B—C14B—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.8             |
| C9A—C10A—H10A                 | 119.1                | C12B—N15B—C22B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.4 (2)         |
| C10A— $C11A$ — $C12A$         | 121.7 (2)            | C12B—N15B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.7(2)          |
| C10A - C11A - H11A            | 119.2                | $C^{22B}$ N15B $C^{16B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1166(2)           |
| C12A— $C11A$ — $H11A$         | 119.2                | N15B-C16B-C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.0(2)          |
| N15A - C12A - C13A            | 122.6 (2)            | N15B— $C16B$ — $H16C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.0             |
| N15A - C12A - C11A            | 122.0(2)<br>120.7(2) | C17B-C16B-H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0             |
| $C_{13} - C_{12} - C_{11}$    | 120.7(2)<br>116.7(2) | N15B-C16B-H16D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0             |
| C14A - C13A - C12A            | 110.7(2)<br>120.8(2) | C17B-C16B-H16D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0             |
| C14A - C13A - H13A            | 119.6                | $H_{16C}$ $-C_{16B}$ $-H_{16D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107.8             |
| $C_{12} = C_{13} = H_{13}$    | 119.6                | C16B-C17B-C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.0<br>109.8(3) |
| C12A = C13A = M3A             | 112.8 (2)            | C16B-C17B-H17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.8 (3)         |
| C13A - C14A - H14A            | 118.6                | C18B-C17B-H17C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.7             |
| $C_{13}$ $C_{14}$ $H_{14}$    | 118.6                | C16B $C17B$ $H17D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.7             |
| $C_{3A} = C_{14A} = III_{4A}$ | 118.6(2)             | C10B - C17B - H17D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.7             |
| C12A $N15A$ $C22A$            | 110.0(2)             | $H_{17C} = C_{17B} = H_{17D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.7             |
| C12A $N15A$ $C22A$            | 120.0(2)             | $\Pi / C = C I / B = \Pi / D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.2             |
| C10A $M15A$ $C22A$            | 117.4(2)             | C19B - C18B - C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.0 (5)         |
| N15A = C16A = U16A            | 113.4 (2)            | C17D $C18D$ $H18C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.8             |
| NI3A - CI6A - HI6A            | 108.4                | C1/D - C18D - D18C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.8             |
| CI/A = CI(A = HI0A            | 108.4                | C17D $C18D$ $H18D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.8             |
| NI3A - CI6A - HI6B            | 108.4                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107.8             |
| CI/A - CI6A - HI6B            | 108.4                | H18C - C18B - H18D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/.1             |
| H16A - C16A - H16B            | 107.5                | $C_{20B}$ $-C_{19B}$ $-C_{18B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114.5 (5)         |
| C18A - C17A - C16A            | 112.6 (2)            | $C_{20}C_{}C_{19}B_{}C_{18}B_{}C_{18}B_{}C_{19}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{18}B_{}C_{1$ | 131.5 (/)         |
|                               | 109.1                | C20B—C19B—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.6             |
| C16A - C17A - H17A            | 109.1                | C20C—C19B—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.7             |
| C18A—C17A—H17B                | 109.1                | C18B—C19B—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.6             |
| С16А—С17А—Н17В                | 109.1                | C20B—C19B—H19D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.6             |
| H17A—C17A—H17B                | 107.8                | C18B—C19B—H19D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 108.6             |
| C17A—C18A—C19A                | 113.6 (2)            | H19C—C19B—H19D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.6             |
| C17A—C18A—H18A                | 108.8                | C20C—C19B—H19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.4             |
| C19A—C18A—H18A                | 108.8                | C18B—C19B—H19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.4             |
| C17A—C18A—H18B                | 108.8                | C20C—C19B—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.4             |
| C19A—C18A—H18B                | 108.8                | C18B—C19B—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 104.4             |
| H18A—C18A—H18B                | 107.7                | H19E—C19B—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 105.6             |
| C20A—C19A—C18A                | 113.7 (3)            | C19B—C20B—C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.8 (4)         |
| C20A—C19A—H19A                | 108.8                | C19B—C20B—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0             |
| C18A—C19A—H19A                | 108.8                | C21B—C20B—H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0             |
| C20A—C19A—H19B                | 108.8                | C19B—C20B—H20D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.0             |

| C18A- |            | 108.8     | C21B—C20B—H20D | 109.0      |
|-------|------------|-----------|----------------|------------|
| H19A- |            | 107.7     | H20C-C20B-H20D | 107.8      |
| C19A- |            | 112.9 (3) | C19B—C20C—C21B | 117.9 (10) |
| C19A- |            | 109.0     | C19B—C20C—H20E | 107.8      |
| C21A- |            | 109.0     | C21B—C20C—H20E | 107.8      |
| C19A- |            | 109.0     | C19B—C20C—H20F | 107.8      |
| C21A- |            | 109.0     | C21B—C20C—H20F | 107.8      |
| H20A- |            | 107.8     | H20E—C20C—H20F | 107.2      |
| C20A- |            | 109.5     | C20C—C21B—H21D | 121.9      |
| C20A- |            | 109.5     | C20B—C21B—H21D | 109.5      |
| H21A- |            | 109.5     | C20C—C21B—H21E | 126.7      |
| C20A- |            | 109.5     | C20B—C21B—H21E | 109.5      |
| H21A- |            | 109.5     | H21D—C21B—H21E | 109.5      |
| H21B- |            | 109.5     | C20B—C21B—H21F | 109.5      |
| N15A- |            | 114.5 (2) | H21D—C21B—H21F | 109.5      |
| N15A- | —С22А—Н22А | 108.6     | H21E—C21B—H21F | 109.5      |
| C23A- | —С22А—Н22А | 108.6     | C20C—C21B—H21G | 109.5      |
| N15A- |            | 108.6     | C20B—C21B—H21G | 100.2      |
| C23A- | —С22А—Н22В | 108.6     | H21E—C21B—H21G | 121.3      |
| H22A- | —С22А—Н22В | 107.6     | H21F—C21B—H21G | 106.3      |
| C24A- |            | 114.9 (2) | C20C—C21B—H21H | 109.5      |
| C24A- | —С23А—Н23А | 108.5     | H21D—C21B—H21H | 103.3      |
| C22A- |            | 108.5     | H21G—C21B—H21H | 109.5      |
| C24A- | —С23А—Н23В | 108.5     | C20C—C21B—H21I | 109.5      |
| C22A- |            | 108.5     | H21D—C21B—H21I | 102.6      |
| H23A- | —С23А—Н23В | 107.5     | H21G—C21B—H21I | 109.5      |
| C23A- |            | 111.7 (2) | H21H—C21B—H21I | 109.5      |
| C23A- |            | 109.3     | N15B—C22B—C23B | 113.5 (2)  |
| C25A- |            | 109.3     | N15B—C22B—H22C | 108.9      |
| C23A- |            | 109.3     | C23B—C22B—H22C | 108.9      |
| C25A- |            | 109.3     | N15B—C22B—H22D | 108.9      |
| H24A- |            | 107.9     | C23B—C22B—H22D | 108.9      |
| C26A- |            | 115.0 (3) | H22C—C22B—H22D | 107.7      |
| C26A- | —С25А—Н25А | 108.5     | C24B—C23B—C22B | 113.9 (3)  |
| C24A- | —С25А—Н25А | 108.5     | C24B—C23B—H23C | 108.8      |
| C26A- | —С25А—Н25В | 108.5     | C22B—C23B—H23C | 108.8      |
| C24A- | —С25А—Н25В | 108.5     | C24B—C23B—H23D | 108.8      |
| H25A- | —С25А—Н25В | 107.5     | C22B—C23B—H23D | 108.8      |
| C25A- |            | 112.3 (4) | H23C—C23B—H23D | 107.7      |
| C25A- | —С26А—Н26А | 109.1     | C23B—C24B—C25B | 112.5 (3)  |
| C27A- | —С26А—Н26А | 109.1     | C23B—C24B—H24C | 109.1      |
| C25A- | —С26А—Н26В | 109.1     | C25B—C24B—H24C | 109.1      |
| C27A- | —С26А—Н26В | 109.1     | C23B—C24B—H24D | 109.1      |
| H26A- | —С26А—Н26В | 107.9     | C25B—C24B—H24D | 109.1      |
| C26A- | —С27А—Н27А | 109.5     | H24C—C24B—H24D | 107.8      |
| C26A- | —С27А—Н27В | 109.5     | C26B—C25B—C24B | 116.3 (4)  |
| H27A- | —С27А—Н27В | 109.5     | C26B—C25B—H25C | 108.2      |
| C26A- | —С27А—Н27С | 109.5     | C24B—C25B—H25C | 108.2      |
|       |            |           |                |            |

| H27A—C27A—H27C                | 109.5                | C26B—C25B—H25D                          | 108.2               |
|-------------------------------|----------------------|-----------------------------------------|---------------------|
| H27B—C27A—H27C                | 109.5                | C24B—C25B—H25D                          | 108.2               |
| O30A—N28A—O29A                | 123.6 (2)            | H25C—C25B—H25D                          | 107.4               |
| O30A—N28A—C4A                 | 117.8 (2)            | C25B—C26B—C27B                          | 111.4 (4)           |
| O29A—N28A—C4A                 | 118.5 (2)            | C25B—C26B—H26C                          | 109.3               |
| C6B—C1B—C2B                   | 117.2 (2)            | C27B—C26B—H26C                          | 109.3               |
| C6B—C1B—C7B                   | 119.1 (2)            | C25B—C26B—H26D                          | 109.3               |
| C2B—C1B—C7B                   | 123.7 (2)            | C27B—C26B—H26D                          | 109.3               |
| C3B—C2B—C1B                   | 121.5 (2)            | H26C—C26B—H26D                          | 108.0               |
| C3B—C2B—H2B                   | 119.3                | C26B—C27B—H27D                          | 109.5               |
| C1B—C2B—H2B                   | 119.3                | C26B—C27B—H27E                          | 109.5               |
| C2B—C3B—C4B                   | 119.0 (2)            | H27D—C27B—H27E                          | 109.5               |
| C2B-C3B-H3B                   | 120.5                | C26B—C27B—H27F                          | 109.5               |
| C4B—C3B—H3B                   | 120.5                | H27D—C27B—H27F                          | 109.5               |
| C5B-C4B-C3B                   | 121.6 (2)            | H27E—C27B—H27F                          | 109.5               |
| C5B-C4B-N28B                  | 1193(2)              | 029B - N28B - 030B                      | 123 2 (2)           |
| C3B-C4B-N28B                  | 119.3(2)<br>119.2(2) | O29B $N28B$ $C4B$                       | 123.2(2)<br>1184(2) |
| C6B-C5B-C4B                   | 119.2(2)<br>118.9(2) | $O_{20}B = N_{20}B = C_{4}B$            | 118.4(2)            |
|                               | 110.9 (2)            |                                         | 110.4 (2)           |
| C6A—C1A—C2A—C3A               | -1.3(3)              | C2B-C3B-C4B-C5B                         | 0.4 (4)             |
| C7A—C1A—C2A—C3A               | 178.5 (2)            | C2B—C3B—C4B—N28B                        | 179.9 (2)           |
| C1A—C2A—C3A—C4A               | 0.8 (3)              | C3B—C4B—C5B—C6B                         | 0.0 (4)             |
| C2A—C3A—C4A—C5A               | 0.5 (3)              | N28B—C4B—C5B—C6B                        | -179.5(2)           |
| C2A—C3A—C4A—N28A              | -178.4(2)            | C4B—C5B—C6B—C1B                         | -0.4 (4)            |
| C3A—C4A—C5A—C6A               | -1.4 (3)             | C2B—C1B—C6B—C5B                         | 0.3 (4)             |
| N28A—C4A—C5A—C6A              | 177.5 (2)            | C7B—C1B—C6B—C5B                         | 179.6 (2)           |
| C4A—C5A—C6A—C1A               | 0.9 (4)              | C6B—C1B—C7B—C8B                         | 175.9 (2)           |
| C2A—C1A—C6A—C5A               | 0.4 (3)              | C2B—C1B—C7B—C8B                         | -4.8 (4)            |
| C7A—C1A—C6A—C5A               | -179.4 (2)           | C1B—C7B—C8B—C9B                         | 179.3 (2)           |
| C2A—C1A—C7A—C8A               | 177.2 (2)            | C7B-C8B-C9B-C10B                        | 178.8 (2)           |
| C6A—C1A—C7A—C8A               | -3.0 (4)             | C7B—C8B—C9B—C14B                        | -2.4(4)             |
| C1A—C7A—C8A—C9A               | -178.2 (2)           | C14B—C9B—C10B—C11B                      | -0.7 (4)            |
| C7A—C8A—C9A—C14A              | -179.1 (2)           | C8B—C9B—C10B—C11B                       | 178.3 (2)           |
| C7A—C8A—C9A—C10A              | 2.7 (4)              | C9B—C10B—C11B—C12B                      | -0.7(4)             |
| C14A—C9A—C10A—C11A            | -2.7(3)              | C10B—C11B—C12B—N15B                     | 180.0 (2)           |
| C8A—C9A—C10A—C11A             | 175.6 (2)            | C10B—C11B—C12B—C13B                     | 1.1 (4)             |
| C9A—C10A—C11A—C12A            | 0.7 (4)              | N15B—C12B—C13B—C14B                     | -178.9(2)           |
| C10A—C11A—C12A—N15A           | -177.1 (2)           | C11B—C12B—C13B—C14B                     | 0.0 (4)             |
| C10A—C11A—C12A—C13A           | 1.9 (3)              | C12B—C13B—C14B—C9B                      | -1.5 (4)            |
| N15A—C12A—C13A—C14A           | 176.5 (2)            | C10B—C9B—C14B—C13B                      | 1.8 (4)             |
| C11A—C12A—C13A—C14A           | -2.5(3)              | C8B-C9B-C14B-C13B                       | -177.1(2)           |
| C12A— $C13A$ — $C14A$ — $C9A$ | 0.4(4)               | C11B-C12B-N15B-C22B                     | 167.1(2)            |
| C10A - C9A - C14A - C13A      | 2.1 (3)              | C13B-C12B-N15B-C22B                     | -14.0(4)            |
| C8A - C9A - C14A - C13A       | -176.1 (2)           | C11B-C12B-N15B-C16B                     | -6.0 (4)            |
| C13A - C12A - N15A - C16A     | -152.7 (2)           | $C_{13B} - C_{12B} - N_{15B} - C_{16B}$ | 172.9 (3)           |
| C11A - C12A - N15A - C16A     | 26.2 (3)             | C12B = N15B = C16B = C17B               | 88.2 (3)            |
| C13A - C12A - N15A - C22A     | 4.3 (4)              | C22B = N15B = C16B = C17B               | -85.2(3)            |
| C11A - C12A - N15A - C22A     | -1767(2)             | N15B-C16B-C17B-C18B                     | -1786(3)            |
| 01211 01211 101011 02211      | 1,0., (2)            |                                         | 1,0.0 (0)           |

| C12A—N15A—C16A—C17A | -100.9 (3) | C16B—C17B—C18B—C19B | -67.8 (5)   |
|---------------------|------------|---------------------|-------------|
| C22A—N15A—C16A—C17A | 101.5 (3)  | C17B—C18B—C19B—C20B | -63.9 (6)   |
| N15A—C16A—C17A—C18A | 170.3 (2)  | C17B—C18B—C19B—C20C | -117.3 (10) |
| C16A—C17A—C18A—C19A | 178.8 (2)  | C20C-C19B-C20B-C21B | -45.2 (9)   |
| C17A—C18A—C19A—C20A | 177.7 (3)  | C18B—C19B—C20B—C21B | -170.0 (4)  |
| C18A—C19A—C20A—C21A | 179.5 (3)  | C20B-C19B-C20C-C21B | 55.2 (10)   |
| C12A—N15A—C22A—C23A | 149.4 (2)  | C18B—C19B—C20C—C21B | 141.3 (8)   |
| C16A—N15A—C22A—C23A | -53.3 (3)  | C19B—C20C—C21B—C20B | -48.7 (8)   |
| N15A—C22A—C23A—C24A | -65.1 (4)  | C19B—C20B—C21B—C20C | 49.5 (9)    |
| C22A—C23A—C24A—C25A | 167.3 (3)  | C12B—N15B—C22B—C23B | -74.1 (3)   |
| C23A—C24A—C25A—C26A | 63.3 (4)   | C16B—N15B—C22B—C23B | 99.4 (3)    |
| C24A—C25A—C26A—C27A | 179.4 (3)  | N15B-C22B-C23B-C24B | 179.6 (3)   |
| C3A—C4A—N28A—O30A   | 4.3 (3)    | C22B—C23B—C24B—C25B | -179.8 (3)  |
| C5A—C4A—N28A—O30A   | -174.7 (2) | C23B—C24B—C25B—C26B | -68.7 (5)   |
| C3A—C4A—N28A—O29A   | -176.5 (2) | C24B—C25B—C26B—C27B | -178.8 (4)  |
| C5A—C4A—N28A—O29A   | 4.6 (3)    | C5B—C4B—N28B—O29B   | 178.0 (2)   |
| C6B—C1B—C2B—C3B     | 0.1 (3)    | C3B—C4B—N28B—O29B   | -1.6 (4)    |
| C7B—C1B—C2B—C3B     | -179.1 (2) | C5B-C4B-N28B-O30B   | -0.2 (4)    |
| C1B—C2B—C3B—C4B     | -0.4 (4)   | C3B—C4B—N28B—O30B   | -179.8 (2)  |
|                     |            |                     |             |