organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1384-o1385

N,N-Di­hexyl-4-[2-(4-nitro­phen­yl)vin­yl]aniline

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 2 May 2011; accepted 3 May 2011; online 11 May 2011)

The title compound, C26H36N2O2, was prepared by Horner olefination of p-dihexyl­amino­benzaldehyde and diethyl p-nitro­benzyl­phospho­nate. It crystallizes with two independent mol­ecules in the asymmetric unit. Both have similar geometries of the π-systems but the conformations of all hexyl chains are different. Whereas one hexyl chain of the first mol­ecule shows the typical all-anti conformation, the second is arranged in a gauche-anti-gauche-anti conformation with N—C—C—C, C—C—C—C, C—C—C—C and C—C—C—C torsion angles of −65.1 (4), 167.3 (3), 63.3 (4), and 179.4 (3)°. One of the hexyl chains in the other mol­ecule has an anti-anti-gauche-anti conformation [N—C—C—C, C—C—C—C, C—C—C—C and C—C—C—C torsion angles = 179.6 (3), −179.8 (3), −68.7 (5) and −178.8 (4)°], the other starts with an anti-gauche-gauche sequence. Molecules A and B are composed of five planar subunits. The angle sums around the N atoms are in the range 356 (2)–360.0 (2)°. Torsion angles between these segments do not exceed 4.9 (4)°, except for one of the alkyl chains each [molecule A = 26.2 (4)°; molecule B = −6.0 (4)°]. The high planarity of the molecules and the short aniline C—N bonds [1.385 (3) Å in molecule A and 1.378 (3) Å in molecule B] indicate a strong electronic coupling through the stilbene unit. One methylene group is disordered over two positions with an occupancy ratio of 0.72:0.28.

Related literature

For chromophores and fluoro­phores based on quadrupolar donor–acceptor-substituted stilbenoid systems, see: Detert & Sugiono (2005[Detert, H. & Sugiono, E. (2005). J. Lumin. 112, 372-376.]); Strehmel et al. (2003[Strehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249-259.]); Nemkovich et al. (2010[Nemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37-41.]). Similar amino­nitro­stilbenes had been prepared earlier, see: Pfeiffer et al. (1915[Pfeiffer, P., Braude, S., Kleber, J., Marcon, G. & Wittkop, P. (1915). Ber. Dtsch Chem. Ges. 48, 1777-809.]); Chardonnens & Heinrich (1939[Chardonnens, L. & Heinrich, P. (1939). Helv. Chim. Acta, 22, 1471-82.]); Meier et al. (2004[Meier, H., Gerold, J., Kolshorn, H. & Muehling, B. (2004). Chem. Eur. J. 10, 360-370.]). The optical properties of these dyes are strongly dependent on charge transfer and torsion angles, see: Baumann et al. (1977[Baumann, W., Deckers, H., Loosen, K. D. & Petzke, F. (1977). Ber. Bunsen Ges. Phys. Chem. 81, 799-804.]); Goerner (1998[Goerner, H. (1998). Ber. Bunsen Ges. Phys. Chem. 102, 726-737.]); Dekhtyar & Rettig (2007[Dekhtyar, M. & Rettig, W. (2007). J. Phys. Chem. A, 111, 2035-2039.]). Conjugated oligomers with basic sites are sensing materials for polarity and cations, see: Wilson & Bunz (2005[Wilson, J. N. & Bunz, U. H. F. (2005). J. Am. Chem. Soc. 127, 4124-4125.]); Zucchero et al. (2009[Zucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075-13081.]). For a comparable compound, see: Fischer et al. (2011[Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.]).

[Scheme 1]

Experimental

Crystal data
  • C26H36N2O2

  • Mr = 408.57

  • Triclinic, [P \overline 1]

  • a = 9.6574 (9) Å

  • b = 11.4153 (10) Å

  • c = 23.604 (2) Å

  • α = 93.297 (3)°

  • β = 94.834 (3)°

  • γ = 112.696 (3)°

  • V = 2380.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.54 × 0.37 × 0.06 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.936, Tmax = 0.996

  • 90478 measured reflections

  • 11464 independent reflections

  • 7228 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.239

  • S = 1.02

  • 11464 reflections

  • 553 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as a reference compound in a project focusing on chromophores and fluorophores based on quadrupolar donor-acceptor substituted stilbenoid systems, see: Detert & Sugiono (2005); Strehmel et al. (2003); and Nemkovich et al. (2010). Crystals of the title compound are composed of two independent molecules A and B with nearly identical geometries of the π-systems but different conformations of the alkyl chains. Whereas one hexyl chain of A shows the typical all-anti conformation, the second is arranged in a gauche-anti-gauche-anti conformation with torsion angles -65.1 (4)°, 167.3 (3)°, 63.3 (4)°, and 179.4 (3)°. The hexyl chains in B are also different, one has an anti-anti-gauche-anti conformation (torsion angles: 179.6 (3)°, -179.8 (3)°, -68.7 (5)°, and -178.8 (4)°), the other starts with an anti-gauche-gauche sequence and the penultimate C20B is disordered. The strong acceptor effect of the nitro groups through the stilbene unit is reflected by short aniline C—N-bonds: 1.385 (3)Å for C12A—N15A and 1.378 (3)Å for C12B—N15B and planar amino groups with angle sums on the aniline-N of 356° (A) and 359.7° (B). Accordingly, the stilbene framework is nearly coplanar with torsion angles of 2.7 (4)° for C7A—C8A—C9A—C10A (178.8 (2)°in B), -178.2 (2)° for C1A—C7A—C8A—C9A (179.3 (2)°in B), and -3.0 (4)° for C6A—C1A—C7A—C8A (175.9 (2)° in B). These bond lengths and torsion angles are similar to those reported for a 2,5-bis(dimethylaminostyryl)pyrazine (Fischer et al., 2011). The packing of the molecules in the crystal is dominated by the voluminous side chains. Parallel but alternatingly twisted nitrostilbenes form a herringbone lattice, perpendicular to this layer, the orientation of the neighbouring molecules is antiparallel.

Related literature top

For chromophores and fluorophores based on quadrupolar donor–acceptor-substituted stilbenoid systems, see: Detert & Sugiono (2005); Strehmel et al. (2003); Nemkovich et al. (2010). Similar aminonitrostilbenes had been prepared earlier, see: Pfeiffer et al. (1915); Chardonnens & Heinrich (1939); Meier et al. (2004). The optical properties of these dyes are strongly dependent on charge transfer and torsion angles, see: Baumann et al. (1977); Goerner (1998); Dekhtyar & Rettig (2007). Conjugated oligomers with basic sites are sensing materials for polarity and cations, see: Wilson & Bunz (2005); Zucchero et al. (2009). For a comparable compound, see: Fischer et al. (2011).

Experimental top

The title compound was prepared by adding potassium tert-butylate (1.46 g, 13 mmol) under nitrogen to a cooled solution of p-N,N-dihexylaminobenzaldehyde (2.17 g, 10 mmol) and diethyl p-nitrobenzylphosphonate (2.83 g, 10 mmol) in THF (anhyd., 50 ml) and the mixture was stirred for 2 h at 273 K and for further 2 h at ambient temperature. Acetic acid (2M, 5 ml) and water (70 ml) were added, the mixture was extracted with toluene (3 x 20 ml) and the pooled organic solutions were washed with brine (3 x 20 ml), dried (CaCl2), concentrated in vacuo and the title compound was isolated from the red oil by chromatography on silica gel using toluene. Red crystals with m.p. = 351 K were obtained by slow evaporation of a solution of the title compound in methanol/chloroform.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). One methylene group is disordered over two positions with a site occupation factor of 0.72 for the major occupied site. For the final refinement, the site occupation factors of the disordered atoms were fixed. The highest peak (0.76 eÅ-3) in the final electron density map is located at 1.11Å from C16B.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing diagram of I. View along b-axis. Molecule A in white, molecule B in red colour.
N,N-Dihexyl-4-[2-(4-nitrophenyl)vinyl]aniline top
Crystal data top
C26H36N2O2Z = 4
Mr = 408.57F(000) = 888
Triclinic, P1Dx = 1.140 Mg m3
Hall symbol: -P 1Melting point: 351 K
a = 9.6574 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4153 (10) ÅCell parameters from 9897 reflections
c = 23.604 (2) Åθ = 2.2–27°
α = 93.297 (3)°µ = 0.07 mm1
β = 94.834 (3)°T = 173 K
γ = 112.696 (3)°Plate, red
V = 2380.6 (4) Å30.54 × 0.37 × 0.06 mm
Data collection top
Bruker SMART APEXII
diffractometer
11464 independent reflections
Radiation source: sealed Tube7228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
CCD scanθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(PLATON; Spek, 2009)
h = 1212
Tmin = 0.936, Tmax = 0.996k = 1515
90478 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0941P)2 + 2.795P]
where P = (Fo2 + 2Fc2)/3
11464 reflections(Δ/σ)max < 0.001
553 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C26H36N2O2γ = 112.696 (3)°
Mr = 408.57V = 2380.6 (4) Å3
Triclinic, P1Z = 4
a = 9.6574 (9) ÅMo Kα radiation
b = 11.4153 (10) ŵ = 0.07 mm1
c = 23.604 (2) ÅT = 173 K
α = 93.297 (3)°0.54 × 0.37 × 0.06 mm
β = 94.834 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
11464 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2009)
7228 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.996Rint = 0.062
90478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.02Δρmax = 0.76 e Å3
11464 reflectionsΔρmin = 0.46 e Å3
553 parameters
Special details top

Experimental. 1H-NMR (CDCl3): δ = 8.13 ("d", J = 8.4 Hz, 2 H, 3-H, 5-H, Ph-NO2); 7.52 ("d", J = 8.4 Hz, 2 H, 2-H, 6-H, Ph-NO2); 7.39 ("d", J = 8.3 Hz, 2 H, 3-H, 5-H Ph-NHex2); 7.17 (d, J = 16.5 Hz, 1 H, vin); 6.87 (d, J = 16.5 Hz, 1 H, vin); 6.62 ("d", J = 8.1 Hz, 2 H, 2-H, 6-H PhNHex2); 3.23 ("t", 4 H, NCH2); 1.60 (m, 4 H, CH2); 1.27 (m, 12 H, CH2); 0.90 ("t", 6 H, CH3). 13C-NMR (CDCl3): δ = 148.7, 145.6, 145.2, 133.8, 128.6, 125.9, 124.1, 123.1, 120.7, 111.5, 51.1, 31.7, 27.3, 26.8, 22.7, 14.1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.7433 (2)0.6361 (2)0.55422 (10)0.0267 (5)
C2A0.6830 (3)0.5037 (2)0.55662 (11)0.0292 (5)
H2A0.63120.44940.52300.035*
C3A0.6969 (3)0.4498 (2)0.60700 (11)0.0299 (5)
H3A0.65650.35980.60780.036*
C4A0.7708 (3)0.5296 (2)0.65599 (11)0.0286 (5)
C5A0.8300 (3)0.6620 (3)0.65598 (11)0.0333 (5)
H5A0.87840.71540.69020.040*
C6A0.8169 (3)0.7144 (2)0.60510 (11)0.0316 (5)
H6A0.85820.80450.60460.038*
C7A0.7272 (3)0.6856 (2)0.49919 (11)0.0289 (5)
H7A0.68000.62400.46730.035*
C8A0.7720 (3)0.8085 (2)0.48902 (11)0.0280 (5)
H8A0.82200.87020.52060.034*
C9A0.7519 (2)0.8571 (2)0.43441 (10)0.0253 (5)
C10A0.6745 (3)0.7776 (2)0.38404 (11)0.0285 (5)
H10A0.63910.68770.38460.034*
C11A0.6488 (3)0.8271 (2)0.33405 (11)0.0296 (5)
H11A0.59530.77040.30130.036*
C12A0.7001 (3)0.9604 (2)0.33048 (11)0.0288 (5)
C13A0.7832 (3)1.0403 (2)0.38008 (11)0.0301 (5)
H13A0.82321.13030.37920.036*
C14A0.8068 (3)0.9889 (2)0.42997 (11)0.0285 (5)
H14A0.86251.04540.46260.034*
N15A0.6672 (3)1.0079 (2)0.28070 (9)0.0358 (5)
C16A0.5310 (3)0.9287 (3)0.24208 (12)0.0367 (6)
H16A0.47980.98400.22870.044*
H16B0.46120.86500.26410.044*
C17A0.5583 (3)0.8580 (3)0.18967 (11)0.0365 (6)
H17A0.61240.92100.16370.044*
H17B0.62380.81350.20220.044*
C18A0.4126 (3)0.7616 (3)0.15729 (12)0.0426 (7)
H18A0.34630.80610.14570.051*
H18B0.35980.69790.18320.051*
C19A0.4365 (3)0.6919 (3)0.10420 (13)0.0492 (7)
H19A0.48560.75530.07760.059*
H19B0.50610.65030.11560.059*
C20A0.2913 (4)0.5916 (4)0.07301 (16)0.0611 (9)
H20A0.22110.63280.06180.073*
H20B0.24260.52750.09940.073*
C21A0.3172 (6)0.5242 (5)0.0199 (2)0.0898 (14)
H21A0.35590.58570.00800.135*
H21B0.22160.45620.00320.135*
H21C0.39090.48710.03040.135*
C22A0.7282 (4)1.1465 (3)0.27664 (12)0.0441 (7)
H22A0.82411.18640.30230.053*
H22B0.65621.18090.29050.053*
C23A0.7578 (3)1.1851 (3)0.21672 (13)0.0458 (7)
H23A0.66261.14280.19080.055*
H23B0.78651.27830.21740.055*
C24A0.8803 (3)1.1523 (3)0.19208 (13)0.0414 (6)
H24A0.86471.06350.19870.050*
H24B0.98021.20940.21210.050*
C25A0.8794 (4)1.1664 (4)0.12703 (16)0.0613 (9)
H25A0.95471.13660.11250.074*
H25B0.77881.10960.10760.074*
C26A0.9133 (5)1.2980 (4)0.11120 (16)0.0713 (11)
H26A1.01381.35570.13050.086*
H26B0.83741.32800.12490.086*
C27A0.9124 (7)1.3054 (6)0.04722 (19)0.1085 (18)
H27A0.99061.27960.03370.163*
H27B0.93261.39320.03870.163*
H27C0.81331.24820.02790.163*
N28A0.7893 (2)0.4731 (2)0.70886 (10)0.0372 (5)
O29A0.8486 (3)0.5447 (2)0.75293 (9)0.0525 (6)
O30A0.7460 (3)0.3564 (2)0.70650 (10)0.0582 (6)
C1B0.7306 (3)0.1556 (2)0.55379 (10)0.0259 (5)
C2B0.8781 (3)0.1709 (2)0.57579 (11)0.0295 (5)
H2B0.96210.22480.55850.035*
C3B0.9028 (3)0.1091 (2)0.62198 (11)0.0299 (5)
H3B1.00250.11980.63610.036*
C4B0.7792 (3)0.0308 (2)0.64740 (10)0.0284 (5)
C5B0.6329 (3)0.0132 (2)0.62734 (11)0.0324 (5)
H5B0.54970.04040.64510.039*
C6B0.6098 (3)0.0750 (2)0.58092 (11)0.0311 (5)
H6B0.50950.06260.56690.037*
C7B0.6979 (3)0.2171 (2)0.50471 (10)0.0283 (5)
H7B0.59430.19470.49180.034*
C8B0.7989 (3)0.3022 (2)0.47587 (10)0.0281 (5)
H8B0.90250.32540.48910.034*
C9B0.7659 (3)0.3625 (2)0.42645 (10)0.0267 (5)
C10B0.8844 (3)0.4518 (2)0.40158 (11)0.0328 (5)
H10B0.98530.47350.41820.039*
C11B0.8600 (3)0.5092 (3)0.35394 (11)0.0352 (6)
H11B0.94410.56970.33910.042*
C12B0.7125 (3)0.4798 (2)0.32682 (11)0.0306 (5)
C13B0.5924 (3)0.3903 (2)0.35199 (11)0.0320 (5)
H13B0.49140.36760.33530.038*
C14B0.6190 (3)0.3355 (2)0.40022 (11)0.0301 (5)
H14B0.53520.27750.41620.036*
N15B0.6857 (3)0.5360 (2)0.27927 (10)0.0399 (5)
C16B0.8077 (4)0.6393 (3)0.25697 (14)0.0484 (7)
H16C0.88250.69120.28930.058*
H16D0.76510.69530.23820.058*
C17B0.8870 (4)0.5911 (3)0.21473 (15)0.0531 (8)
H17C0.81400.54160.18150.064*
H17D0.92910.53410.23290.064*
C18B1.0185 (4)0.7074 (4)0.19407 (18)0.0707 (11)
H18C1.08460.75910.22840.085*
H18D1.07960.67280.17210.085*
C19B0.9767 (6)0.7943 (5)0.1586 (2)0.0883 (15)
H19C0.91550.82960.18010.106*0.72
H19D1.07020.86660.15230.106*0.72
H19E0.86620.76580.15900.106*0.28
H19F1.02180.87810.18170.106*0.28
C20B0.8959 (6)0.7375 (5)0.1057 (3)0.0666 (14)0.72
H20C0.79420.67600.11170.080*0.72
H20D0.94810.68930.08680.080*0.72
C20C1.0014 (17)0.8248 (15)0.0996 (6)0.068 (4)0.28
H20E1.02290.75580.07990.081*0.28
H20F1.09350.90410.10120.081*0.28
C21B0.8777 (7)0.8424 (5)0.0632 (2)0.1038 (18)
H21D0.81360.88180.07910.156*0.72
H21E0.83120.79900.02530.156*0.72
H21F0.97750.90850.06020.156*0.72
H21G0.82650.88250.08700.156*0.28
H21H0.80490.75920.04560.156*0.28
H21I0.92070.89710.03330.156*0.28
C22B0.5380 (3)0.4863 (3)0.24494 (12)0.0399 (6)
H22C0.53260.55150.22000.048*
H22D0.45850.47120.27080.048*
C23B0.5053 (3)0.3612 (3)0.20748 (14)0.0473 (7)
H23C0.58470.37660.18160.057*
H23D0.51160.29630.23250.057*
C24B0.3527 (4)0.3085 (4)0.17207 (16)0.0614 (9)
H24C0.34620.37270.14670.074*
H24D0.27290.29280.19780.074*
C25B0.3234 (5)0.1819 (4)0.13500 (18)0.0762 (12)
H25C0.34020.12140.16040.091*
H25D0.21570.14420.11890.091*
C26B0.4170 (5)0.1923 (5)0.0872 (2)0.0840 (13)
H26C0.52510.22680.10260.101*
H26D0.40190.25270.06130.101*
C27B0.3756 (7)0.0624 (5)0.0532 (2)0.1055 (18)
H27D0.39010.00240.07880.158*
H27E0.44060.07210.02260.158*
H27F0.26970.02970.03660.158*
N28B0.8047 (3)0.0349 (2)0.69623 (10)0.0383 (5)
O29B0.9345 (3)0.0210 (2)0.71236 (10)0.0575 (6)
O30B0.6945 (3)0.1038 (2)0.71804 (10)0.0596 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0187 (10)0.0273 (12)0.0363 (13)0.0110 (9)0.0049 (9)0.0032 (10)
C2A0.0235 (11)0.0274 (12)0.0366 (13)0.0103 (10)0.0048 (9)0.0006 (10)
C3A0.0227 (11)0.0271 (12)0.0420 (14)0.0112 (10)0.0078 (10)0.0051 (10)
C4A0.0209 (11)0.0343 (13)0.0363 (13)0.0157 (10)0.0081 (9)0.0057 (10)
C5A0.0281 (12)0.0386 (14)0.0339 (13)0.0151 (11)0.0007 (10)0.0012 (11)
C6A0.0284 (12)0.0262 (12)0.0402 (14)0.0114 (10)0.0028 (10)0.0016 (10)
C7A0.0228 (11)0.0276 (12)0.0358 (13)0.0100 (10)0.0020 (9)0.0010 (10)
C8A0.0197 (11)0.0283 (12)0.0359 (13)0.0096 (9)0.0038 (9)0.0011 (10)
C9A0.0170 (10)0.0252 (11)0.0365 (13)0.0103 (9)0.0077 (9)0.0046 (9)
C10A0.0229 (11)0.0223 (11)0.0405 (13)0.0083 (9)0.0069 (10)0.0036 (10)
C11A0.0280 (12)0.0280 (12)0.0327 (12)0.0105 (10)0.0058 (10)0.0015 (10)
C12A0.0249 (11)0.0306 (12)0.0357 (13)0.0139 (10)0.0111 (10)0.0070 (10)
C13A0.0278 (12)0.0228 (11)0.0410 (14)0.0101 (10)0.0098 (10)0.0027 (10)
C14A0.0222 (11)0.0256 (12)0.0381 (13)0.0097 (9)0.0058 (9)0.0010 (10)
N15A0.0406 (12)0.0324 (11)0.0357 (12)0.0147 (10)0.0066 (9)0.0077 (9)
C16A0.0326 (13)0.0430 (15)0.0418 (15)0.0208 (12)0.0088 (11)0.0118 (12)
C17A0.0317 (13)0.0415 (15)0.0393 (14)0.0165 (12)0.0062 (11)0.0076 (11)
C18A0.0302 (14)0.0505 (17)0.0442 (16)0.0120 (12)0.0047 (11)0.0087 (13)
C19A0.0385 (16)0.0561 (19)0.0482 (17)0.0134 (14)0.0042 (13)0.0054 (14)
C20A0.054 (2)0.060 (2)0.060 (2)0.0147 (17)0.0010 (16)0.0039 (17)
C21A0.085 (3)0.087 (3)0.084 (3)0.026 (3)0.005 (2)0.026 (3)
C22A0.0618 (19)0.0332 (14)0.0434 (16)0.0226 (14)0.0147 (14)0.0107 (12)
C23A0.0422 (16)0.0447 (16)0.0552 (18)0.0197 (13)0.0109 (13)0.0155 (14)
C24A0.0304 (14)0.0432 (16)0.0539 (17)0.0160 (12)0.0098 (12)0.0130 (13)
C25A0.0460 (19)0.070 (2)0.071 (2)0.0246 (17)0.0136 (16)0.0029 (19)
C26A0.063 (2)0.080 (3)0.063 (2)0.015 (2)0.0167 (19)0.021 (2)
C27A0.129 (5)0.131 (5)0.060 (3)0.040 (4)0.014 (3)0.036 (3)
N28A0.0298 (11)0.0476 (14)0.0411 (13)0.0211 (10)0.0074 (9)0.0115 (11)
O29A0.0680 (15)0.0632 (14)0.0372 (11)0.0392 (12)0.0007 (10)0.0037 (10)
O30A0.0649 (15)0.0431 (12)0.0606 (14)0.0135 (11)0.0012 (11)0.0210 (11)
C1B0.0266 (12)0.0211 (11)0.0322 (12)0.0114 (9)0.0067 (9)0.0009 (9)
C2B0.0210 (11)0.0297 (12)0.0373 (13)0.0083 (10)0.0081 (9)0.0035 (10)
C3B0.0225 (11)0.0302 (12)0.0366 (13)0.0104 (10)0.0031 (9)0.0012 (10)
C4B0.0304 (12)0.0261 (12)0.0326 (12)0.0142 (10)0.0072 (10)0.0049 (9)
C5B0.0252 (12)0.0308 (13)0.0426 (14)0.0104 (10)0.0120 (10)0.0074 (11)
C6B0.0203 (11)0.0304 (12)0.0448 (14)0.0111 (10)0.0076 (10)0.0064 (11)
C7B0.0250 (11)0.0267 (12)0.0361 (13)0.0132 (10)0.0048 (9)0.0010 (10)
C8B0.0244 (11)0.0279 (12)0.0345 (13)0.0130 (10)0.0041 (9)0.0006 (10)
C9B0.0251 (11)0.0252 (11)0.0332 (12)0.0128 (9)0.0075 (9)0.0018 (9)
C10B0.0232 (12)0.0349 (13)0.0393 (14)0.0098 (10)0.0051 (10)0.0044 (11)
C11B0.0258 (12)0.0352 (14)0.0424 (15)0.0081 (11)0.0083 (11)0.0095 (11)
C12B0.0304 (13)0.0292 (12)0.0369 (13)0.0154 (10)0.0084 (10)0.0072 (10)
C13B0.0246 (12)0.0351 (13)0.0404 (14)0.0154 (10)0.0065 (10)0.0059 (11)
C14B0.0258 (12)0.0282 (12)0.0376 (13)0.0101 (10)0.0106 (10)0.0070 (10)
N15B0.0327 (12)0.0424 (13)0.0471 (13)0.0154 (10)0.0067 (10)0.0167 (11)
C16B0.0522 (18)0.0490 (18)0.0496 (17)0.0233 (15)0.0124 (14)0.0159 (14)
C17B0.0476 (18)0.058 (2)0.063 (2)0.0310 (16)0.0076 (15)0.0102 (16)
C18B0.051 (2)0.092 (3)0.076 (3)0.028 (2)0.0311 (19)0.031 (2)
C19B0.101 (4)0.085 (3)0.100 (4)0.047 (3)0.053 (3)0.036 (3)
C20B0.052 (3)0.050 (3)0.098 (4)0.025 (2)0.002 (3)0.010 (3)
C20C0.072 (9)0.079 (10)0.060 (8)0.034 (8)0.011 (7)0.029 (7)
C21B0.128 (5)0.109 (4)0.095 (4)0.077 (4)0.021 (3)0.002 (3)
C22B0.0383 (15)0.0479 (16)0.0432 (15)0.0257 (13)0.0066 (12)0.0127 (13)
C23B0.0376 (16)0.0514 (18)0.0565 (19)0.0209 (14)0.0056 (13)0.0078 (14)
C24B0.0423 (18)0.075 (2)0.071 (2)0.0289 (17)0.0038 (16)0.0003 (19)
C25B0.053 (2)0.089 (3)0.074 (3)0.020 (2)0.0077 (19)0.009 (2)
C26B0.074 (3)0.094 (3)0.080 (3)0.031 (3)0.003 (2)0.007 (3)
C27B0.145 (5)0.113 (4)0.078 (3)0.078 (4)0.000 (3)0.013 (3)
N28B0.0439 (13)0.0387 (13)0.0393 (12)0.0223 (11)0.0091 (10)0.0095 (10)
O29B0.0466 (13)0.0743 (16)0.0606 (14)0.0321 (12)0.0014 (10)0.0250 (12)
O30B0.0543 (14)0.0668 (15)0.0651 (15)0.0247 (12)0.0219 (11)0.0365 (12)
Geometric parameters (Å, º) top
C1A—C2A1.401 (3)C3B—C4B1.394 (3)
C1A—C6A1.411 (3)C3B—H3B0.9500
C1A—C7A1.466 (3)C4B—C5B1.385 (3)
C2A—C3A1.390 (3)C4B—N28B1.465 (3)
C2A—H2A0.9500C5B—C6B1.384 (4)
C3A—C4A1.384 (4)C5B—H5B0.9500
C3A—H3A0.9500C6B—H6B0.9500
C4A—C5A1.394 (4)C7B—C8B1.347 (3)
C4A—N28A1.466 (3)C7B—H7B0.9500
C5A—C6A1.390 (4)C8B—C9B1.461 (3)
C5A—H5A0.9500C8B—H8B0.9500
C6A—H6A0.9500C9B—C10B1.406 (3)
C7A—C8A1.342 (3)C9B—C14B1.408 (3)
C7A—H7A0.9500C10B—C11B1.381 (4)
C8A—C9A1.460 (3)C10B—H10B0.9500
C8A—H8A0.9500C11B—C12B1.416 (4)
C9A—C14A1.403 (3)C11B—H11B0.9500
C9A—C10A1.414 (3)C12B—N15B1.378 (3)
C10A—C11A1.382 (3)C12B—C13B1.419 (3)
C10A—H10A0.9500C13B—C14B1.382 (3)
C11A—C12A1.417 (3)C13B—H13B0.9500
C11A—H11A0.9500C14B—H14B0.9500
C12A—N15A1.385 (3)N15B—C22B1.463 (4)
C12A—C13A1.414 (4)N15B—C16B1.469 (4)
C13A—C14A1.386 (3)C16B—C17B1.508 (4)
C13A—H13A0.9500C16B—H16C0.9900
C14A—H14A0.9500C16B—H16D0.9900
N15A—C16A1.471 (3)C17B—C18B1.578 (5)
N15A—C22A1.471 (3)C17B—H17C0.9900
C16A—C17A1.535 (4)C17B—H17D0.9900
C16A—H16A0.9900C18B—C19B1.482 (6)
C16A—H16B0.9900C18B—H18C0.9900
C17A—C18A1.518 (4)C18B—H18D0.9900
C17A—H17A0.9900C19B—C20B1.393 (7)
C17A—H17B0.9900C19B—C20C1.472 (13)
C18A—C19A1.527 (4)C19B—H19C0.9900
C18A—H18A0.9900C19B—H19D0.9900
C18A—H18B0.9900C19B—H19E0.9900
C19A—C20A1.520 (4)C19B—H19F0.9900
C19A—H19A0.9900C20B—C21B1.655 (7)
C19A—H19B0.9900C20B—H20C0.9900
C20A—C21A1.523 (5)C20B—H20D0.9900
C20A—H20A0.9900C20C—C21B1.495 (14)
C20A—H20B0.9900C20C—H20E0.9900
C21A—H21A0.9800C20C—H20F0.9900
C21A—H21B0.9800C21B—H21D0.9800
C21A—H21C0.9800C21B—H21E0.9800
C22A—C23A1.523 (4)C21B—H21F0.9800
C22A—H22A0.9900C21B—H21G0.9800
C22A—H22B0.9900C21B—H21H0.9800
C23A—C24A1.520 (4)C21B—H21I0.9800
C23A—H23A0.9900C22B—C23B1.543 (4)
C23A—H23B0.9900C22B—H22C0.9900
C24A—C25A1.553 (5)C22B—H22D0.9900
C24A—H24A0.9900C23B—C24B1.511 (4)
C24A—H24B0.9900C23B—H23C0.9900
C25A—C26A1.487 (5)C23B—H23D0.9900
C25A—H25A0.9900C24B—C25B1.559 (5)
C25A—H25B0.9900C24B—H24C0.9900
C26A—C27A1.517 (5)C24B—H24D0.9900
C26A—H26A0.9900C25B—C26B1.487 (6)
C26A—H26B0.9900C25B—H25C0.9900
C27A—H27A0.9800C25B—H25D0.9900
C27A—H27B0.9800C26B—C27B1.534 (6)
C27A—H27C0.9800C26B—H26C0.9900
N28A—O30A1.229 (3)C26B—H26D0.9900
N28A—O29A1.232 (3)C27B—H27D0.9800
C1B—C6B1.408 (3)C27B—H27E0.9800
C1B—C2B1.415 (3)C27B—H27F0.9800
C1B—C7B1.462 (3)N28B—O29B1.225 (3)
C2B—C3B1.385 (3)N28B—O30B1.229 (3)
C2B—H2B0.9500
C2A—C1A—C6A117.9 (2)C6B—C5B—H5B120.6
C2A—C1A—C7A118.5 (2)C4B—C5B—H5B120.6
C6A—C1A—C7A123.6 (2)C5B—C6B—C1B122.0 (2)
C3A—C2A—C1A121.6 (2)C5B—C6B—H6B119.0
C3A—C2A—H2A119.2C1B—C6B—H6B119.0
C1A—C2A—H2A119.2C8B—C7B—C1B127.0 (2)
C4A—C3A—C2A118.8 (2)C8B—C7B—H7B116.5
C4A—C3A—H3A120.6C1B—C7B—H7B116.5
C2A—C3A—H3A120.6C7B—C8B—C9B126.9 (2)
C3A—C4A—C5A121.6 (2)C7B—C8B—H8B116.6
C3A—C4A—N28A119.0 (2)C9B—C8B—H8B116.6
C5A—C4A—N28A119.4 (2)C10B—C9B—C14B115.9 (2)
C6A—C5A—C4A118.9 (2)C10B—C9B—C8B120.1 (2)
C6A—C5A—H5A120.5C14B—C9B—C8B123.9 (2)
C4A—C5A—H5A120.5C11B—C10B—C9B122.6 (2)
C5A—C6A—C1A121.0 (2)C11B—C10B—H10B118.7
C5A—C6A—H6A119.5C9B—C10B—H10B118.7
C1A—C6A—H6A119.5C10B—C11B—C12B121.4 (2)
C8A—C7A—C1A127.0 (2)C10B—C11B—H11B119.3
C8A—C7A—H7A116.5C12B—C11B—H11B119.3
C1A—C7A—H7A116.5N15B—C12B—C11B122.4 (2)
C7A—C8A—C9A126.7 (2)N15B—C12B—C13B121.5 (2)
C7A—C8A—H8A116.6C11B—C12B—C13B116.1 (2)
C9A—C8A—H8A116.6C14B—C13B—C12B121.6 (2)
C14A—C9A—C10A116.1 (2)C14B—C13B—H13B119.2
C14A—C9A—C8A120.4 (2)C12B—C13B—H13B119.2
C10A—C9A—C8A123.4 (2)C13B—C14B—C9B122.3 (2)
C11A—C10A—C9A121.8 (2)C13B—C14B—H14B118.8
C11A—C10A—H10A119.1C9B—C14B—H14B118.8
C9A—C10A—H10A119.1C12B—N15B—C22B121.4 (2)
C10A—C11A—C12A121.7 (2)C12B—N15B—C16B121.7 (2)
C10A—C11A—H11A119.2C22B—N15B—C16B116.6 (2)
C12A—C11A—H11A119.2N15B—C16B—C17B113.0 (3)
N15A—C12A—C13A122.6 (2)N15B—C16B—H16C109.0
N15A—C12A—C11A120.7 (2)C17B—C16B—H16C109.0
C13A—C12A—C11A116.7 (2)N15B—C16B—H16D109.0
C14A—C13A—C12A120.8 (2)C17B—C16B—H16D109.0
C14A—C13A—H13A119.6H16C—C16B—H16D107.8
C12A—C13A—H13A119.6C16B—C17B—C18B109.8 (3)
C13A—C14A—C9A122.8 (2)C16B—C17B—H17C109.7
C13A—C14A—H14A118.6C18B—C17B—H17C109.7
C9A—C14A—H14A118.6C16B—C17B—H17D109.7
C12A—N15A—C16A118.6 (2)C18B—C17B—H17D109.7
C12A—N15A—C22A120.0 (2)H17C—C17B—H17D108.2
C16A—N15A—C22A117.4 (2)C19B—C18B—C17B118.0 (3)
N15A—C16A—C17A115.4 (2)C19B—C18B—H18C107.8
N15A—C16A—H16A108.4C17B—C18B—H18C107.8
C17A—C16A—H16A108.4C19B—C18B—H18D107.8
N15A—C16A—H16B108.4C17B—C18B—H18D107.8
C17A—C16A—H16B108.4H18C—C18B—H18D107.1
H16A—C16A—H16B107.5C20B—C19B—C18B114.5 (5)
C18A—C17A—C16A112.6 (2)C20C—C19B—C18B131.5 (7)
C18A—C17A—H17A109.1C20B—C19B—H19C108.6
C16A—C17A—H17A109.1C20C—C19B—H19C119.7
C18A—C17A—H17B109.1C18B—C19B—H19C108.6
C16A—C17A—H17B109.1C20B—C19B—H19D108.6
H17A—C17A—H17B107.8C18B—C19B—H19D108.6
C17A—C18A—C19A113.6 (2)H19C—C19B—H19D107.6
C17A—C18A—H18A108.8C20C—C19B—H19E104.4
C19A—C18A—H18A108.8C18B—C19B—H19E104.4
C17A—C18A—H18B108.8C20C—C19B—H19F104.4
C19A—C18A—H18B108.8C18B—C19B—H19F104.4
H18A—C18A—H18B107.7H19E—C19B—H19F105.6
C20A—C19A—C18A113.7 (3)C19B—C20B—C21B112.8 (4)
C20A—C19A—H19A108.8C19B—C20B—H20C109.0
C18A—C19A—H19A108.8C21B—C20B—H20C109.0
C20A—C19A—H19B108.8C19B—C20B—H20D109.0
C18A—C19A—H19B108.8C21B—C20B—H20D109.0
H19A—C19A—H19B107.7H20C—C20B—H20D107.8
C19A—C20A—C21A112.9 (3)C19B—C20C—C21B117.9 (10)
C19A—C20A—H20A109.0C19B—C20C—H20E107.8
C21A—C20A—H20A109.0C21B—C20C—H20E107.8
C19A—C20A—H20B109.0C19B—C20C—H20F107.8
C21A—C20A—H20B109.0C21B—C20C—H20F107.8
H20A—C20A—H20B107.8H20E—C20C—H20F107.2
C20A—C21A—H21A109.5C20C—C21B—H21D121.9
C20A—C21A—H21B109.5C20B—C21B—H21D109.5
H21A—C21A—H21B109.5C20C—C21B—H21E126.7
C20A—C21A—H21C109.5C20B—C21B—H21E109.5
H21A—C21A—H21C109.5H21D—C21B—H21E109.5
H21B—C21A—H21C109.5C20B—C21B—H21F109.5
N15A—C22A—C23A114.5 (2)H21D—C21B—H21F109.5
N15A—C22A—H22A108.6H21E—C21B—H21F109.5
C23A—C22A—H22A108.6C20C—C21B—H21G109.5
N15A—C22A—H22B108.6C20B—C21B—H21G100.2
C23A—C22A—H22B108.6H21E—C21B—H21G121.3
H22A—C22A—H22B107.6H21F—C21B—H21G106.3
C24A—C23A—C22A114.9 (2)C20C—C21B—H21H109.5
C24A—C23A—H23A108.5H21D—C21B—H21H103.3
C22A—C23A—H23A108.5H21G—C21B—H21H109.5
C24A—C23A—H23B108.5C20C—C21B—H21I109.5
C22A—C23A—H23B108.5H21D—C21B—H21I102.6
H23A—C23A—H23B107.5H21G—C21B—H21I109.5
C23A—C24A—C25A111.7 (2)H21H—C21B—H21I109.5
C23A—C24A—H24A109.3N15B—C22B—C23B113.5 (2)
C25A—C24A—H24A109.3N15B—C22B—H22C108.9
C23A—C24A—H24B109.3C23B—C22B—H22C108.9
C25A—C24A—H24B109.3N15B—C22B—H22D108.9
H24A—C24A—H24B107.9C23B—C22B—H22D108.9
C26A—C25A—C24A115.0 (3)H22C—C22B—H22D107.7
C26A—C25A—H25A108.5C24B—C23B—C22B113.9 (3)
C24A—C25A—H25A108.5C24B—C23B—H23C108.8
C26A—C25A—H25B108.5C22B—C23B—H23C108.8
C24A—C25A—H25B108.5C24B—C23B—H23D108.8
H25A—C25A—H25B107.5C22B—C23B—H23D108.8
C25A—C26A—C27A112.3 (4)H23C—C23B—H23D107.7
C25A—C26A—H26A109.1C23B—C24B—C25B112.5 (3)
C27A—C26A—H26A109.1C23B—C24B—H24C109.1
C25A—C26A—H26B109.1C25B—C24B—H24C109.1
C27A—C26A—H26B109.1C23B—C24B—H24D109.1
H26A—C26A—H26B107.9C25B—C24B—H24D109.1
C26A—C27A—H27A109.5H24C—C24B—H24D107.8
C26A—C27A—H27B109.5C26B—C25B—C24B116.3 (4)
H27A—C27A—H27B109.5C26B—C25B—H25C108.2
C26A—C27A—H27C109.5C24B—C25B—H25C108.2
H27A—C27A—H27C109.5C26B—C25B—H25D108.2
H27B—C27A—H27C109.5C24B—C25B—H25D108.2
O30A—N28A—O29A123.6 (2)H25C—C25B—H25D107.4
O30A—N28A—C4A117.8 (2)C25B—C26B—C27B111.4 (4)
O29A—N28A—C4A118.5 (2)C25B—C26B—H26C109.3
C6B—C1B—C2B117.2 (2)C27B—C26B—H26C109.3
C6B—C1B—C7B119.1 (2)C25B—C26B—H26D109.3
C2B—C1B—C7B123.7 (2)C27B—C26B—H26D109.3
C3B—C2B—C1B121.5 (2)H26C—C26B—H26D108.0
C3B—C2B—H2B119.3C26B—C27B—H27D109.5
C1B—C2B—H2B119.3C26B—C27B—H27E109.5
C2B—C3B—C4B119.0 (2)H27D—C27B—H27E109.5
C2B—C3B—H3B120.5C26B—C27B—H27F109.5
C4B—C3B—H3B120.5H27D—C27B—H27F109.5
C5B—C4B—C3B121.6 (2)H27E—C27B—H27F109.5
C5B—C4B—N28B119.3 (2)O29B—N28B—O30B123.2 (2)
C3B—C4B—N28B119.2 (2)O29B—N28B—C4B118.4 (2)
C6B—C5B—C4B118.9 (2)O30B—N28B—C4B118.4 (2)
C6A—C1A—C2A—C3A1.3 (3)C2B—C3B—C4B—C5B0.4 (4)
C7A—C1A—C2A—C3A178.5 (2)C2B—C3B—C4B—N28B179.9 (2)
C1A—C2A—C3A—C4A0.8 (3)C3B—C4B—C5B—C6B0.0 (4)
C2A—C3A—C4A—C5A0.5 (3)N28B—C4B—C5B—C6B179.5 (2)
C2A—C3A—C4A—N28A178.4 (2)C4B—C5B—C6B—C1B0.4 (4)
C3A—C4A—C5A—C6A1.4 (3)C2B—C1B—C6B—C5B0.3 (4)
N28A—C4A—C5A—C6A177.5 (2)C7B—C1B—C6B—C5B179.6 (2)
C4A—C5A—C6A—C1A0.9 (4)C6B—C1B—C7B—C8B175.9 (2)
C2A—C1A—C6A—C5A0.4 (3)C2B—C1B—C7B—C8B4.8 (4)
C7A—C1A—C6A—C5A179.4 (2)C1B—C7B—C8B—C9B179.3 (2)
C2A—C1A—C7A—C8A177.2 (2)C7B—C8B—C9B—C10B178.8 (2)
C6A—C1A—C7A—C8A3.0 (4)C7B—C8B—C9B—C14B2.4 (4)
C1A—C7A—C8A—C9A178.2 (2)C14B—C9B—C10B—C11B0.7 (4)
C7A—C8A—C9A—C14A179.1 (2)C8B—C9B—C10B—C11B178.3 (2)
C7A—C8A—C9A—C10A2.7 (4)C9B—C10B—C11B—C12B0.7 (4)
C14A—C9A—C10A—C11A2.7 (3)C10B—C11B—C12B—N15B180.0 (2)
C8A—C9A—C10A—C11A175.6 (2)C10B—C11B—C12B—C13B1.1 (4)
C9A—C10A—C11A—C12A0.7 (4)N15B—C12B—C13B—C14B178.9 (2)
C10A—C11A—C12A—N15A177.1 (2)C11B—C12B—C13B—C14B0.0 (4)
C10A—C11A—C12A—C13A1.9 (3)C12B—C13B—C14B—C9B1.5 (4)
N15A—C12A—C13A—C14A176.5 (2)C10B—C9B—C14B—C13B1.8 (4)
C11A—C12A—C13A—C14A2.5 (3)C8B—C9B—C14B—C13B177.1 (2)
C12A—C13A—C14A—C9A0.4 (4)C11B—C12B—N15B—C22B167.1 (2)
C10A—C9A—C14A—C13A2.1 (3)C13B—C12B—N15B—C22B14.0 (4)
C8A—C9A—C14A—C13A176.1 (2)C11B—C12B—N15B—C16B6.0 (4)
C13A—C12A—N15A—C16A152.7 (2)C13B—C12B—N15B—C16B172.9 (3)
C11A—C12A—N15A—C16A26.2 (3)C12B—N15B—C16B—C17B88.2 (3)
C13A—C12A—N15A—C22A4.3 (4)C22B—N15B—C16B—C17B85.2 (3)
C11A—C12A—N15A—C22A176.7 (2)N15B—C16B—C17B—C18B178.6 (3)
C12A—N15A—C16A—C17A100.9 (3)C16B—C17B—C18B—C19B67.8 (5)
C22A—N15A—C16A—C17A101.5 (3)C17B—C18B—C19B—C20B63.9 (6)
N15A—C16A—C17A—C18A170.3 (2)C17B—C18B—C19B—C20C117.3 (10)
C16A—C17A—C18A—C19A178.8 (2)C20C—C19B—C20B—C21B45.2 (9)
C17A—C18A—C19A—C20A177.7 (3)C18B—C19B—C20B—C21B170.0 (4)
C18A—C19A—C20A—C21A179.5 (3)C20B—C19B—C20C—C21B55.2 (10)
C12A—N15A—C22A—C23A149.4 (2)C18B—C19B—C20C—C21B141.3 (8)
C16A—N15A—C22A—C23A53.3 (3)C19B—C20C—C21B—C20B48.7 (8)
N15A—C22A—C23A—C24A65.1 (4)C19B—C20B—C21B—C20C49.5 (9)
C22A—C23A—C24A—C25A167.3 (3)C12B—N15B—C22B—C23B74.1 (3)
C23A—C24A—C25A—C26A63.3 (4)C16B—N15B—C22B—C23B99.4 (3)
C24A—C25A—C26A—C27A179.4 (3)N15B—C22B—C23B—C24B179.6 (3)
C3A—C4A—N28A—O30A4.3 (3)C22B—C23B—C24B—C25B179.8 (3)
C5A—C4A—N28A—O30A174.7 (2)C23B—C24B—C25B—C26B68.7 (5)
C3A—C4A—N28A—O29A176.5 (2)C24B—C25B—C26B—C27B178.8 (4)
C5A—C4A—N28A—O29A4.6 (3)C5B—C4B—N28B—O29B178.0 (2)
C6B—C1B—C2B—C3B0.1 (3)C3B—C4B—N28B—O29B1.6 (4)
C7B—C1B—C2B—C3B179.1 (2)C5B—C4B—N28B—O30B0.2 (4)
C1B—C2B—C3B—C4B0.4 (4)C3B—C4B—N28B—O30B179.8 (2)

Experimental details

Crystal data
Chemical formulaC26H36N2O2
Mr408.57
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.6574 (9), 11.4153 (10), 23.604 (2)
α, β, γ (°)93.297 (3), 94.834 (3), 112.696 (3)
V3)2380.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.54 × 0.37 × 0.06
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(PLATON; Spek, 2009)
Tmin, Tmax0.936, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
90478, 11464, 7228
Rint0.062
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.239, 1.02
No. of reflections11464
No. of parameters553
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.46

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaumann, W., Deckers, H., Loosen, K. D. & Petzke, F. (1977). Ber. Bunsen Ges. Phys. Chem. 81, 799–804.  CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChardonnens, L. & Heinrich, P. (1939). Helv. Chim. Acta, 22, 1471–82.  CrossRef CAS Google Scholar
First citationDekhtyar, M. & Rettig, W. (2007). J. Phys. Chem. A, 111, 2035–2039.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDetert, H. & Sugiono, E. (2005). J. Lumin. 112, 372–376.  Web of Science CrossRef CAS Google Scholar
First citationFischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoerner, H. (1998). Ber. Bunsen Ges. Phys. Chem. 102, 726–737.  CAS Google Scholar
First citationMeier, H., Gerold, J., Kolshorn, H. & Muehling, B. (2004). Chem. Eur. J. 10, 360–370.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNemkovich, N. A., Detert, H. & Schmitt, V. (2010). Chem. Phys. 378, 37–41.  Web of Science CrossRef CAS Google Scholar
First citationPfeiffer, P., Braude, S., Kleber, J., Marcon, G. & Wittkop, P. (1915). Ber. Dtsch Chem. Ges. 48, 1777–809.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrehmel, B., Sarker, A. M. & Detert, H. (2003). ChemPhysChem, 4, 249–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilson, J. N. & Bunz, U. H. F. (2005). J. Am. Chem. Soc. 127, 4124–4125.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZucchero, A. J., Tolosa, J., Tolbert, L. M. & Bunz, U. H. F. (2009). Chem. Eur. J. 15, 13075–13081.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1384-o1385
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds