metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­bromidobis(tri­phenyl­phosphane)platinum(II) chloro­form monosolvate

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland, and bCavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England
*Correspondence e-mail: jdw3@st-and.ac.uk

(Received 2 May 2011; accepted 4 May 2011; online 7 May 2011)

Both the platininum complex and the solvent mol­ecule of the title compound, [PtBr2(C18H15P)2]·CHCl3, are located on a twofold rotation axis. The CH unit and the Cl atoms of the CHCl3 mol­ecule are disordered over two equally occupied positions. The complex shows a trans square-planar geometry about the Pt atom.

Related literature

For the dichloro­methane solvate analogue of the title structure, see: Sharma et al. (2003[Sharma, P., Cabrera, A., Alvarez, C., Rosas, N., Gomez, E. & Toscano, A. (2003). Anal. Sci. 19, 1341-1342.]). For the structure of the cis isomer of the title complex, see: Rigamonti et al. (2010[Rigamonti, L., Forni, A., Manaserro, M., Manaserro, C. & Pasini, A. (2010). Inorg. Chem. 49, 123-135.]). For the low temperature structure of the chloro­form solvate of the cis isomer of the title complex, see: Waddell et al. (2010[Waddell, P. G., Slawin, A. M. Z. & Woollins, J. D. (2010). Dalton Trans. pp. 8620-8625.]). For more information on the effect of the trans influence of ligands on platinum-phospho­rus complexes, see: Allen et al. (1970[Allen, F. H., Pidcock, A. & Waterhouse, C. R. (1970). J. Chem. Soc. A, pp. 2087-2093.]); Appleton et al. (1973[Appleton, T. G., Clark, H. C. & Manzer, L. E. (1973). Coord. Chem. Rev. 10, 335-422.]).

[Scheme 1]

Experimental

Crystal data
  • [PtBr2(C18H15P)2]·CHCl3

  • Mr = 998.82

  • Monoclinic, C 2/c

  • a = 12.2581 (11) Å

  • b = 14.5375 (13) Å

  • c = 20.1433 (18) Å

  • β = 92.402 (6)°

  • V = 3586.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.48 mm−1

  • T = 125 K

  • 0.20 × 0.12 × 0.09 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.364, Tmax = 0.600

  • 14789 measured reflections

  • 3161 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.047

  • S = 1.09

  • 3161 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006b[Rigaku (2006a). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal­Structure (Rigaku, 2006a[Rigaku (2006b). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The trans-Bis(triphenylphosphane)dibromoplatinum(II) molecule in the title structure bears a close resemblance to that of the dichloromethane solvate of the same complex (Sharma et al. 2003). The geometry about platinum is similar in both structures. As would be expected, due to the different trans infuences of triphenylphosphane and bromide (Allen et al. 1970; Appleton et al. 1973), the Pt—Br distances are observed to be shorter and the Pt—P distances longer in the title structure than those of the structures of the cis isomer of the complex (Rigamonti et al. 2010; Waddell et al. 2010). A twofold disorder is observed in the chloroform molecule.

Related literature top

For the dichloromethane solvate analogue of the title structure, see: Sharma et al. (2003). For the structure of the cis isomer of the title complex, see: Rigamonti et al. (2010). For the low temperature structure of the chloroform solvate of the cis isomer of the title complex, see: Waddell et al. (2010). For more information on the effect of the trans influence of ligands on platinum-phosphorus complexes, see: Allen et al. (1970); Appleton et al. (1973).

Experimental top

trans-bis(benzonitrile)platinum(II) dibromide (0.5 g, 0.9 mmol) was vigorously stirred in acetone (20 ml), to which triphenylphosphane (0.472 g, 1.8 mmol) dissolved in acetone (20 ml) was added, affording a yellow precipitate. Crystals were grown for X-ray crystallography via slow diffusion of hexane into a solution of the product in chloroform. Yield: 0.726 g (0.8 mmol), 92%.

Refinement top

All H atoms were included in calculated positions (C—H distances are 0.96 Å for methyl H atoms, 0.97 Å for methylene H atoms and 0.98 Å for methine H atoms) and were refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, methylene and methine H atoms) or Uiso(H) = 1.5 Ueq (parent atom, methyl H atoms).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006a); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2006b); software used to prepare material for publication: CrystalStructure (Rigaku, 2006b.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level, hydrogen atoms and the disordered CHCl3 omitted for clarity. Symmetry operator for generating equivalent atoms (A): -x + 1,y,-z + 1/2.
trans-Dibromidobis(triphenylphosphane)platinum(II) chloroform monosolvate top
Crystal data top
[PtBr2(C18H15P)2]·CHCl3F(000) = 1928
Mr = 998.82Dx = 1.85 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 14699 reflections
a = 12.2581 (11) Åθ = 3–27.4°
b = 14.5375 (13) ŵ = 6.48 mm1
c = 20.1433 (18) ÅT = 125 K
β = 92.402 (6)°Prism, yellow
V = 3586.4 (6) Å30.2 × 0.12 × 0.09 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3161 independent reflections
Graphite monochromator2495 reflections with I > 2σ(I)
Detector resolution: 6.85 pixels mm-1Rint = 0.043
ω scansθmax = 25°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.364, Tmax = 0.600k = 1717
14789 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0095P)2 + 13.9423P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[PtBr2(C18H15P)2]·CHCl3V = 3586.4 (6) Å3
Mr = 998.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.2581 (11) ŵ = 6.48 mm1
b = 14.5375 (13) ÅT = 125 K
c = 20.1433 (18) Å0.2 × 0.12 × 0.09 mm
β = 92.402 (6)°
Data collection top
Rigaku SCXmini
diffractometer
3161 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2495 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.600Rint = 0.043
14789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0095P)2 + 13.9423P]
where P = (Fo2 + 2Fc2)/3
3161 reflectionsΔρmax = 0.58 e Å3
218 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.50.247997 (17)0.250.01380 (6)
Br10.67746 (3)0.24647 (3)0.199294 (18)0.02189 (10)
Cl10.06034 (12)0.09593 (10)0.19017 (7)0.0479 (3)
Cl20.0238 (3)0.26606 (18)0.2359 (2)0.0593 (12)0.5
P10.40680 (8)0.24595 (8)0.14711 (5)0.0152 (2)
C10.4819 (3)0.2713 (2)0.07256 (19)0.0166 (9)
C20.5531 (4)0.2057 (3)0.0482 (2)0.0276 (11)
H20.56210.14850.07060.033*
C30.6107 (4)0.2230 (3)0.0081 (2)0.0330 (12)
H30.65810.17740.02450.04*
C40.5996 (4)0.3062 (3)0.0405 (2)0.0276 (11)
H40.64050.31830.07860.033*
C50.5295 (4)0.3713 (3)0.0178 (2)0.0274 (11)
H50.52030.4280.04080.033*
C60.4719 (3)0.3544 (3)0.0389 (2)0.0231 (10)
H60.42490.40060.05490.028*
C70.3475 (3)0.1333 (2)0.1283 (2)0.0153 (9)
C80.3484 (3)0.0654 (3)0.1772 (2)0.0181 (10)
H80.3810.07750.21990.022*
C90.3014 (4)0.0204 (3)0.1635 (2)0.0246 (10)
H90.30210.06640.19690.03*
C100.2541 (4)0.0387 (3)0.1017 (2)0.0243 (10)
H100.220.09640.09320.029*
C110.2563 (4)0.0275 (3)0.0518 (2)0.0278 (11)
H110.22590.0140.00870.033*
C120.3027 (4)0.1131 (3)0.0648 (2)0.0248 (10)
H120.30410.15810.03070.03*
C130.2975 (3)0.3308 (3)0.14371 (19)0.0171 (9)
C140.1927 (3)0.3134 (3)0.1176 (2)0.0250 (10)
H140.17430.2540.10090.03*
C150.1145 (4)0.3834 (3)0.1160 (2)0.0330 (12)
H150.04270.37150.09850.04*
C160.1417 (4)0.4701 (3)0.1400 (2)0.0359 (13)
H160.08820.51740.13920.043*
C170.2453 (4)0.4882 (3)0.1649 (2)0.0346 (12)
H170.26390.54810.18040.041*
C180.3229 (4)0.4186 (3)0.1673 (2)0.0253 (11)
H180.39430.4310.18540.03*
C190.0326 (8)0.1586 (7)0.2592 (6)0.035 (3)0.5
H190.093 (8)0.172 (7)0.280 (5)0.04 (3)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01756 (11)0.01119 (10)0.01270 (11)00.00113 (8)0
Br10.0228 (2)0.0222 (2)0.0209 (2)0.0013 (2)0.00405 (17)0.0001 (2)
Cl10.0518 (8)0.0557 (8)0.0375 (8)0.0015 (7)0.0168 (7)0.0071 (7)
Cl20.064 (3)0.0486 (16)0.068 (4)0.0134 (16)0.031 (2)0.0093 (17)
P10.0188 (5)0.0119 (4)0.0148 (5)0.0016 (5)0.0016 (4)0.0005 (5)
C10.017 (2)0.020 (2)0.013 (2)0.0013 (16)0.0015 (17)0.0012 (16)
C20.033 (3)0.026 (2)0.024 (3)0.005 (2)0.006 (2)0.004 (2)
C30.034 (3)0.039 (3)0.027 (3)0.012 (2)0.009 (2)0.006 (2)
C40.027 (3)0.039 (3)0.017 (2)0.007 (2)0.006 (2)0.001 (2)
C50.037 (3)0.025 (2)0.019 (2)0.006 (2)0.000 (2)0.007 (2)
C60.028 (2)0.022 (2)0.020 (2)0.0002 (19)0.003 (2)0.0006 (19)
C70.020 (2)0.0112 (19)0.015 (2)0.0001 (17)0.0033 (18)0.0007 (17)
C80.022 (2)0.016 (2)0.016 (2)0.0024 (18)0.0012 (19)0.0003 (18)
C90.034 (3)0.016 (2)0.024 (3)0.0021 (19)0.011 (2)0.0025 (19)
C100.027 (2)0.020 (2)0.027 (3)0.0042 (19)0.005 (2)0.007 (2)
C110.034 (3)0.029 (2)0.020 (2)0.004 (2)0.002 (2)0.009 (2)
C120.035 (3)0.017 (2)0.022 (3)0.0028 (19)0.000 (2)0.0037 (19)
C130.024 (2)0.018 (2)0.010 (2)0.0035 (18)0.0066 (18)0.0023 (17)
C140.027 (3)0.026 (2)0.022 (2)0.0026 (19)0.004 (2)0.001 (2)
C150.024 (3)0.048 (3)0.028 (3)0.012 (2)0.005 (2)0.015 (2)
C160.043 (3)0.038 (3)0.028 (3)0.028 (2)0.012 (2)0.014 (2)
C170.062 (4)0.020 (2)0.023 (3)0.016 (2)0.009 (3)0.001 (2)
C180.032 (3)0.023 (2)0.021 (3)0.002 (2)0.003 (2)0.002 (2)
C190.022 (7)0.052 (6)0.030 (7)0.003 (4)0.006 (6)0.001 (5)
Geometric parameters (Å, º) top
Pt1—P12.3245 (9)C8—C91.396 (5)
Pt1—P1i2.3245 (9)C8—H80.95
Pt1—Br12.4417 (4)C9—C101.376 (6)
Pt1—Br1i2.4417 (4)C9—H90.95
Cl1—C191.708 (12)C10—C111.392 (6)
Cl1—C19ii1.807 (11)C10—H100.95
Cl2—Cl2ii0.796 (6)C11—C121.390 (6)
Cl2—C19ii1.569 (11)C11—H110.95
Cl2—C191.763 (10)C12—H120.95
P1—C131.820 (4)C13—C141.391 (6)
P1—C71.825 (4)C13—C181.393 (6)
P1—C11.831 (4)C14—C151.397 (6)
C1—C61.389 (5)C14—H140.95
C1—C21.394 (6)C15—C161.386 (7)
C2—C31.385 (6)C15—H150.95
C2—H20.95C16—C171.371 (7)
C3—C41.378 (6)C16—H160.95
C3—H30.95C17—C181.389 (6)
C4—C51.370 (6)C17—H170.95
C4—H40.95C18—H180.95
C5—C61.389 (6)C19—C19ii0.865 (18)
C5—H50.95C19—Cl2ii1.569 (10)
C6—H60.95C19—Cl1ii1.807 (11)
C7—C81.395 (5)C19—H190.86 (9)
C7—C121.400 (6)
P1—Pt1—P1i178.54 (6)C9—C10—C11120.0 (4)
P1—Pt1—Br192.30 (3)C9—C10—H10120
P1i—Pt1—Br187.69 (3)C11—C10—H10120
P1—Pt1—Br1i87.69 (3)C12—C11—C10120.1 (4)
P1i—Pt1—Br1i92.30 (3)C12—C11—H11119.9
Br1—Pt1—Br1i178.96 (3)C10—C11—H11119.9
Cl2ii—Cl2—C19ii90.3 (4)C11—C12—C7120.1 (4)
Cl2ii—Cl2—C1962.9 (3)C11—C12—H12119.9
C13—P1—C7108.31 (19)C7—C12—H12119.9
C13—P1—C1103.16 (18)C14—C13—C18119.1 (4)
C7—P1—C1102.66 (17)C14—C13—P1123.9 (3)
C13—P1—Pt1111.00 (13)C18—C13—P1117.0 (3)
C7—P1—Pt1111.91 (13)C13—C14—C15119.9 (4)
C1—P1—Pt1118.91 (13)C13—C14—H14120.1
C6—C1—C2117.8 (4)C15—C14—H14120.1
C6—C1—P1122.5 (3)C16—C15—C14120.0 (4)
C2—C1—P1119.6 (3)C16—C15—H15120
C3—C2—C1120.8 (4)C14—C15—H15120
C3—C2—H2119.6C17—C16—C15120.5 (4)
C1—C2—H2119.6C17—C16—H16119.8
C4—C3—C2120.3 (4)C15—C16—H16119.8
C4—C3—H3119.9C16—C17—C18119.7 (4)
C2—C3—H3119.9C16—C17—H17120.1
C5—C4—C3119.9 (4)C18—C17—H17120.1
C5—C4—H4120.1C17—C18—C13120.8 (4)
C3—C4—H4120.1C17—C18—H18119.6
C4—C5—C6120.1 (4)C13—C18—H18119.6
C4—C5—H5120C19ii—C19—Cl2ii87.8 (4)
C6—C5—H5120C19ii—C19—Cl182.2 (13)
C5—C6—C1121.1 (4)Cl2ii—C19—Cl1126.8 (7)
C5—C6—H6119.4C19ii—C19—Cl262.8 (3)
C1—C6—H6119.4Cl1—C19—Cl2110.2 (6)
C8—C7—C12119.2 (4)C19ii—C19—Cl1ii69.5 (12)
C8—C7—P1119.8 (3)Cl2ii—C19—Cl1ii114.8 (7)
C12—C7—P1121.0 (3)Cl1—C19—Cl1ii110.0 (5)
C7—C8—C9120.1 (4)Cl2—C19—Cl1ii110.3 (6)
C7—C8—H8120C19ii—C19—H19166 (7)
C9—C8—H8120Cl2ii—C19—H1978 (7)
C10—C9—C8120.4 (4)Cl1—C19—H19109 (7)
C10—C9—H9119.8Cl2—C19—H19104 (7)
C8—C9—H9119.8Cl1ii—C19—H19113 (7)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[PtBr2(C18H15P)2]·CHCl3
Mr998.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)125
a, b, c (Å)12.2581 (11), 14.5375 (13), 20.1433 (18)
β (°) 92.402 (6)
V3)3586.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.48
Crystal size (mm)0.2 × 0.12 × 0.09
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.364, 0.600
No. of measured, independent and
observed [I > 2σ(I)] reflections
14789, 3161, 2495
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.047, 1.09
No. of reflections3161
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0095P)2 + 13.9423P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.58, 0.71

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006a), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2006b), CrystalStructure (Rigaku, 2006b.

 

Footnotes

Other affiliation: Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.

References

First citationAllen, F. H., Pidcock, A. & Waterhouse, C. R. (1970). J. Chem. Soc. A, pp. 2087–2093.  CrossRef Google Scholar
First citationAppleton, T. G., Clark, H. C. & Manzer, L. E. (1973). Coord. Chem. Rev. 10, 335–422.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006a). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006b). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigamonti, L., Forni, A., Manaserro, M., Manaserro, C. & Pasini, A. (2010). Inorg. Chem. 49, 123–135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharma, P., Cabrera, A., Alvarez, C., Rosas, N., Gomez, E. & Toscano, A. (2003). Anal. Sci. 19, 1341–1342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaddell, P. G., Slawin, A. M. Z. & Woollins, J. D. (2010). Dalton Trans. pp. 8620–8625.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds