# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4-Methyl-N-(2-methylphenyl)benzamide

# Vinola Z. Rodrigues,<sup>a</sup> Marek Fronc,<sup>b</sup> B. Thimme Gowda<sup>a</sup>\* and lozef Kožíšek<sup>b</sup>

<sup>a</sup>Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and <sup>b</sup>Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: gowdabt@yahoo.com

Received 15 May 2011; accepted 17 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.097; data-to-parameter ratio = 14.0.

The asymmetric unit of the title compound,  $C_{15}H_{15}NO$ , contains two independent molecules, which differ in the dihedral angle between the aromatic rings [48.98 (9) and 57.48 (8)°]. The methyl groups in *para* positions are disordered over two equally occupied positions. An intramolecular N-H···O hydrogen bond occurs. The crystal structure is stabilized by intermolecular N-H···O hydrogen bonds which link the molecules into chains running along the b axis.

## **Related literature**

For the preparation of the title compound, see: Gowda et al. (2003). For our study of the effect of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008, 2009); Saeed et al. (2010).



 $\gamma = 79.558 \ (5)^{\circ}$ 

Z = 4

V = 1279.29 (15) Å<sup>3</sup>

 $0.88 \times 0.09 \times 0.06 \; \mathrm{mm}$ 

Mo  $K\alpha$  radiation

 $\mu = 0.07 \text{ mm}^{-1}$ 

T = 293 K

## **Experimental**

#### Crystal data

C<sub>15</sub>H<sub>15</sub>NO  $M_r = 225.28$ Triclinic,  $P\overline{1}$ a = 7.2964 (6) Å b = 9.9075 (5) Å c = 18.1347 (13) Å  $\alpha = 88.331(5)^{\circ}$  $\beta = 82.892 \ (6)^{\circ}$ 

### Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark &

Reid (1995)]  $T_{\min} = 0.968, T_{\max} = 0.996$ 18269 measured reflections 4354 independent reflections 1602 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.088$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.042$ | 311 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.097$               | H-atom parameters constrained                              |
| S = 0.74                        | $\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$  |
| 4354 reflections                | $\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$ |

## Table 1

| Н | yd | lrogen | -bond | geom | etry | (A, | °) | • |
|---|----|--------|-------|------|------|-----|----|---|
|---|----|--------|-------|------|------|-----|----|---|

| $D - H \cdot \cdot \cdot A$                                                            | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $\overline{\begin{array}{c} N1 - H1A \cdots O2 \\ N2 - H2A \cdots O1^{i} \end{array}}$ | 0.86<br>0.86 | 2.05<br>2.05            | 2.878 (2)<br>2.883 (2) | 163<br>162                           |
|                                                                                        |              |                         |                        |                                      |

Symmetry code: (i) x, y - 1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

MF and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5550).

### References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.
- Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Crvst. C59, 01-03.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65. 01612.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2011). E67, o1500 [doi:10.1107/S1600536811018770]

# 4-Methyl-N-(2-methylphenyl)benzamide

# Vinola Z. Rodrigues, Marek Fronc, B. Thimme Gowda and Jozef Kožíšek

# S1. Comment

The structural aspects of *N*-aryl amides are of interest due to their chemical and biological importance (Bhat & Gowda, 2000; Bowes *et al.*, 2003; Gowda *et al.*, 2008, 2009; Saeed *et al.*, 2010). In the present work, as part of a study of the substituent effects on the structures of benzanilides (Gowda, *et al.*, 2008, 2009), the structure of 4-methyl-*N*-(2-methyl-phenyl)benzamide (I) has been determined (Fig.1). The asymmetric unit of (I) contains two independent molecules. In the crystal, the *ortho*-methyl substituent in the anilino ring is positioned *syn* to the N–H bond in one of the molecules and *anti* in the other molecule. Further, the N—H and C=O bonds in the C—NH—C(O)—C segment are *anti* to each other in both the molecules, similar to that observed in 2-methyl-*N*-(4-methylphenyl)benzamide (II)(Gowda *et al.*, 2008) and 4-methyl-*N*-(2,6-dimethylphenyl)benzamide (III) (Gowda *et al.*, 2009) and, with similar bond parameters.

The central amide group -NHCO- is tilted to the anilino ring with the C2—C1—N1—C8 and C6—C1—N1—C8 torsion angles of -118.2 (3)° and 63.9 (3)° in molecule 1, and the C17—C16—N2—C23 and C21—C16—N2—C23 torsion angles of -86.8 (3)° and 97.6 (3)° in molecule 2, while the C10—C9—C8—N1 and C14—C9—C8—N1 torsion angles in molecule 1, and and the C25—C24—C23—N2 and C29—C24—C23—N2 torsion angles in molecule 2 are -13.4 (4)° and 171.7 (2)°, and -150.4 (2)° and 27.9 (4)°, respectively.

The packing of molecules linked by N—H…O hydrogen bonds into infinite chains is shown in Fig. 2.

# S2. Experimental

The title compound was prepared according to the method described by Gowda *et al.* (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

# **S3. Refinement**

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic), 0.96Å (*C*-methyl) and N—H = 0.86 Å. The  $U_{iso}$ (H) values were set at 1.2  $U_{eq}$ (C-aromatic, N) and 1.5  $U_{eq}$ (*C*-methyl). The methyl groups in p-position of the aromatic ring are disordered over two equally occupied positions rotated with respect to each other by 60°.



# Figure 1

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.



# Figure 2

Part of the crystal structure of the title compound. Molecular chains are generated by N—H…O hydrogen bonds which are shown by dashed lines. H atoms not involved in intermolecular bonding have been omitted.

# 4-Methyl-N-(2-methylphenyl)benzamide

Crystal data

C<sub>15</sub>H<sub>15</sub>NO  $M_r = 225.28$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.2964 (6) Å b = 9.9075 (5) Å c = 18.1347 (13) Å a = 88.331 (5)°  $\beta = 82.892$  (6)°  $\gamma = 79.558$  (5)° V = 1279.29 (15) Å<sup>3</sup>

## Data collection

| Oxford Diffraction Xcalibur                  |
|----------------------------------------------|
| diffractometer with a Ruby (Gemini Cu)       |
| detector                                     |
| Radiation source: fine-focus sealed tube     |
| Graphite monochromator                       |
| $\omega$ scans                               |
| Absorption correction: analytical            |
| [CrysAlis RED (Oxford Diffraction, 2009),    |
| based on expressions derived by Clark & Reid |
| (1995)]                                      |

## Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.042$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.097$                               | neighbouring sites                                         |
| S = 0.74                                        | H-atom parameters constrained                              |
| 4354 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0367P)^2]$                    |
| 311 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$ |

# Special details

**Experimental**. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Z = 4

F(000) = 480

 $\theta = 3.5 - 29.3^{\circ}$ 

 $\mu = 0.07 \text{ mm}^{-1}$ 

Needle, colorless

 $0.88 \times 0.09 \times 0.06 \text{ mm}$ 

 $T_{\min} = 0.968, T_{\max} = 0.996$ 18269 measured reflections 4354 independent reflections 1602 reflections with  $I > 2\sigma(I)$ 

 $\theta_{\text{max}} = 24.7^{\circ}, \ \theta_{\text{min}} = 4.1^{\circ}$ 

T = 293 K

 $R_{\rm int} = 0.088$ 

 $h = -8 \rightarrow 8$   $k = -11 \rightarrow 11$  $l = -21 \rightarrow 21$ 

 $D_{\rm x} = 1.170 {\rm ~Mg} {\rm ~m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2440 reflections

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      |             |              |              |                             |           | _ |
|------|-------------|--------------|--------------|-----------------------------|-----------|---|
|      | x           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |   |
| 01   | 0.3561 (3)  | 0.83584 (15) | 0.23183 (11) | 0.0969 (7)                  |           |   |
| N1   | 0.3243 (3)  | 0.62248 (17) | 0.26640 (11) | 0.0687 (7)                  |           |   |
| H1A  | 0.3695      | 0.5366       | 0.2607       | 0.082*                      |           |   |
| C1   | 0.1559 (5)  | 0.6596 (2)   | 0.31651 (18) | 0.0614 (8)                  |           |   |
| C2   | 0.1579 (5)  | 0.6225 (2)   | 0.39053 (18) | 0.0622 (8)                  |           |   |
| C3   | -0.0084 (6) | 0.6555 (3)   | 0.43740 (17) | 0.0776 (9)                  |           |   |
| H3A  | -0.0099     | 0.6321       | 0.4875       | 0.093*                      |           |   |
| C4   | -0.1703 (5) | 0.7216 (3)   | 0.4122 (2)   | 0.0857 (10)                 |           |   |
| H4A  | -0.2804     | 0.7421       | 0.4447       | 0.103*                      |           |   |
| C5   | -0.1687 (5) | 0.7572 (3)   | 0.3388 (2)   | 0.0881 (10)                 |           |   |
| H5A  | -0.2783     | 0.8021       | 0.3212       | 0.106*                      |           |   |
| C6   | -0.0056 (6) | 0.7270 (3)   | 0.29071 (17) | 0.0768 (9)                  |           |   |
| H6A  | -0.0048     | 0.7522       | 0.2409       | 0.092*                      |           |   |
| C7   | 0.3332 (5)  | 0.5461 (3)   | 0.41909 (16) | 0.0928 (10)                 |           |   |
| H7A  | 0.3634      | 0.4553       | 0.3987       | 0.139*                      |           |   |
| H7B  | 0.3129      | 0.5403       | 0.4723       | 0.139*                      |           |   |
| H7C  | 0.4352      | 0.5940       | 0.4044       | 0.139*                      |           |   |
| C8   | 0.4170 (4)  | 0.7118 (2)   | 0.22826 (14) | 0.0648 (8)                  |           |   |
| C9   | 0.5994 (4)  | 0.6581 (2)   | 0.18350 (14) | 0.0590 (7)                  |           |   |
| C10  | 0.6996 (5)  | 0.5260 (2)   | 0.18947 (15) | 0.0772 (9)                  |           |   |
| H10A | 0.6467      | 0.4619       | 0.2194       | 0.093*                      |           |   |
| C11  | 0.8757 (5)  | 0.4888 (3)   | 0.15171 (16) | 0.0832 (9)                  |           |   |
| H11A | 0.9396      | 0.3994       | 0.1565       | 0.100*                      |           |   |
| C12  | 0.9607 (5)  | 0.5800 (3)   | 0.10686 (15) | 0.0772 (9)                  |           |   |
| C13  | 0.8592 (5)  | 0.7099 (3)   | 0.09924 (15) | 0.0803 (10)                 |           |   |
| H13A | 0.9114      | 0.7729       | 0.0682       | 0.096*                      |           |   |
| C14  | 0.6840 (5)  | 0.7481 (2)   | 0.13623 (15) | 0.0736 (9)                  |           |   |
| H14A | 0.6192      | 0.8367       | 0.1297       | 0.088*                      |           |   |
| C15  | 1.1607 (5)  | 0.5405 (3)   | 0.06924 (18) | 0.1129 (12)                 |           |   |
| H15A | 1.2388      | 0.4932       | 0.1042       | 0.135*                      | 0.50      |   |
| H15B | 1.2072      | 0.6218       | 0.0518       | 0.135*                      | 0.50      |   |
| H15C | 1.1624      | 0.4816       | 0.0280       | 0.135*                      | 0.50      |   |
| H15D | 1.2459      | 0.5820       | 0.0963       | 0.135*                      | 0.50      |   |
| H15E | 1.1741      | 0.5717       | 0.0194       | 0.135*                      | 0.50      |   |
| H15F | 1.2029      | 0.4415       | 0.0714       | 0.135*                      | 0.50      |   |
| O2   | 0.3997 (3)  | 0.32712 (14) | 0.26391 (11) | 0.0970 (7)                  |           |   |
| N2   | 0.4584 (3)  | 0.10245 (17) | 0.23914 (11) | 0.0622 (6)                  |           |   |
| H2A  | 0.4231      | 0.0247       | 0.2478       | 0.075*                      |           |   |
| C16  | 0.6234 (4)  | 0.1063 (2)   | 0.18894 (17) | 0.0541 (7)                  |           |   |
| C17  | 0.6124 (4)  | 0.1340 (2)   | 0.11454 (19) | 0.0665 (8)                  |           |   |
| C18  | 0.7779 (6)  | 0.1290 (3)   | 0.06697 (17) | 0.0799 (9)                  |           |   |
| H18A | 0.7723      | 0.1486       | 0.0168       | 0.096*                      |           |   |
| C19  | 0.9474 (5)  | 0.0960 (3)   | 0.0923 (2)   | 0.0806 (9)                  |           |   |
| H19A | 1.0564      | 0.0931       | 0.0595       | 0.097*                      |           |   |
| C20  | 0.9594 (5)  | 0.0668 (3)   | 0.1660 (2)   | 0.0866 (9)                  |           |   |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H20A | 1.0757      | 0.0432     | 0.1834       | 0.104*      |      |
|------|-------------|------------|--------------|-------------|------|
| C21  | 0.7952 (5)  | 0.0732 (2) | 0.21414 (16) | 0.0737 (9)  |      |
| H21A | 0.8018      | 0.0546     | 0.2644       | 0.088*      |      |
| C22  | 0.4253 (5)  | 0.1644 (4) | 0.08421 (19) | 0.1311 (13) |      |
| H22A | 0.3592      | 0.0897     | 0.0962       | 0.197*      |      |
| H22B | 0.4455      | 0.1755     | 0.0312       | 0.197*      |      |
| H22C | 0.3524      | 0.2473     | 0.1060       | 0.197*      |      |
| C23  | 0.3531 (4)  | 0.2138 (2) | 0.27375 (14) | 0.0615 (8)  |      |
| C24  | 0.1817 (4)  | 0.1941 (2) | 0.32233 (13) | 0.0551 (7)  |      |
| C25  | 0.0317 (4)  | 0.3016 (2) | 0.33069 (14) | 0.0659 (8)  |      |
| H25A | 0.0424      | 0.3857     | 0.3080       | 0.079*      |      |
| C26  | -0.1335 (4) | 0.2853 (2) | 0.37224 (15) | 0.0718 (8)  |      |
| H26A | -0.2340     | 0.3584     | 0.3766       | 0.086*      |      |
| C27  | -0.1537 (4) | 0.1625 (3) | 0.40784 (14) | 0.0667 (8)  |      |
| C28  | -0.0014 (4) | 0.0571 (2) | 0.40096 (14) | 0.0663 (8)  |      |
| H28A | -0.0101     | -0.0255    | 0.4256       | 0.080*      |      |
| C29  | 0.1638 (4)  | 0.0716 (2) | 0.35820 (13) | 0.0618 (8)  |      |
| H29A | 0.2639      | -0.0017    | 0.3535       | 0.074*      |      |
| C30  | -0.3368 (4) | 0.1441 (3) | 0.45296 (17) | 0.1005 (10) |      |
| H30A | -0.3499     | 0.1904     | 0.4996       | 0.121*      | 0.50 |
| H30B | -0.3368     | 0.0481     | 0.4618       | 0.121*      | 0.50 |
| H30C | -0.4397     | 0.1821     | 0.4260       | 0.121*      | 0.50 |
| H30D | -0.3245     | 0.0952     | 0.4985       | 0.121*      | 0.50 |
| H30E | -0.4078     | 0.0901     | 0.4238       | 0.121*      | 0.50 |
| H30F | -0.4215     | 0.2321     | 0.4626       | 0.121*      | 0.50 |
|      |             |            |              |             |      |

Atomic displacement parameters  $(Å^2)$ 

|     | 1/11        | I /22       | <i>L</i> 733 | 1/12         | 1/13         | <i>L</i> /23 |
|-----|-------------|-------------|--------------|--------------|--------------|--------------|
|     | U           | 0           | U            | 0            | U            | U            |
| 01  | 0.0967 (17) | 0.0388 (9)  | 0.1473 (19)  | -0.0146 (10) | 0.0214 (13)  | -0.0057 (10) |
| N1  | 0.092 (2)   | 0.0376 (11) | 0.0721 (16)  | -0.0128 (12) | 0.0087 (15)  | -0.0023 (11) |
| C1  | 0.072 (3)   | 0.0414 (14) | 0.071 (2)    | -0.0138 (16) | -0.001 (2)   | -0.0075 (14) |
| C2  | 0.075 (3)   | 0.0501 (14) | 0.062 (2)    | -0.0146 (15) | -0.006 (2)   | -0.0012 (14) |
| C3  | 0.085 (3)   | 0.0691 (18) | 0.077 (2)    | -0.0195 (18) | 0.007 (2)    | -0.0019 (16) |
| C4  | 0.079 (3)   | 0.078 (2)   | 0.099 (3)    | -0.024 (2)   | 0.013 (2)    | -0.0113 (19) |
| C5  | 0.067 (3)   | 0.082 (2)   | 0.117 (3)    | -0.0108 (17) | -0.018 (3)   | -0.012 (2)   |
| C6  | 0.088 (3)   | 0.0662 (17) | 0.078 (2)    | -0.0120 (18) | -0.018 (2)   | -0.0020 (16) |
| C7  | 0.097 (3)   | 0.0908 (19) | 0.088 (2)    | -0.0066 (19) | -0.018 (2)   | 0.0073 (16)  |
| C8  | 0.084 (2)   | 0.0408 (14) | 0.071 (2)    | -0.0161 (16) | -0.0057 (17) | -0.0070 (14) |
| C9  | 0.080 (2)   | 0.0410 (14) | 0.0574 (18)  | -0.0154 (15) | -0.0075 (16) | -0.0022 (13) |
| C10 | 0.091 (3)   | 0.0512 (16) | 0.086 (2)    | -0.0196 (17) | 0.008 (2)    | 0.0036 (14)  |
| C11 | 0.092 (3)   | 0.0567 (16) | 0.094 (2)    | -0.0100 (17) | 0.012 (2)    | -0.0026 (16) |
| C12 | 0.090 (3)   | 0.0732 (19) | 0.067 (2)    | -0.0194 (19) | 0.0062 (19)  | -0.0126 (16) |
| C13 | 0.105 (3)   | 0.0621 (18) | 0.071 (2)    | -0.0251 (18) | 0.014 (2)    | -0.0009 (15) |
| C14 | 0.104 (3)   | 0.0491 (15) | 0.066 (2)    | -0.0159 (17) | 0.0013 (19)  | 0.0037 (14)  |
| C15 | 0.113 (3)   | 0.106 (2)   | 0.112 (3)    | -0.019 (2)   | 0.019 (3)    | -0.0098 (19) |
| O2  | 0.1053 (17) | 0.0411 (9)  | 0.1356 (17)  | -0.0257 (10) | 0.0425 (13)  | -0.0120 (10) |
| N2  | 0.0637 (17) | 0.0417 (11) | 0.0764 (16)  | -0.0172 (11) | 0.0228 (14)  | -0.0052 (10) |

| C16 | 0.057 (2) | 0.0420 (13) | 0.063 (2)   | -0.0137 (14) | 0.0015 (19) | -0.0012 (13) |  |
|-----|-----------|-------------|-------------|--------------|-------------|--------------|--|
| C17 | 0.052 (2) | 0.0700 (16) | 0.074 (2)   | -0.0101 (14) | -0.001 (2)  | 0.0147 (15)  |  |
| C18 | 0.075 (3) | 0.093 (2)   | 0.071 (2)   | -0.0203 (18) | 0.000(2)    | 0.0133 (15)  |  |
| C19 | 0.070 (3) | 0.094 (2)   | 0.078 (3)   | -0.0254 (19) | 0.009 (2)   | -0.0146 (17) |  |
| C20 | 0.060 (3) | 0.117 (2)   | 0.086 (3)   | -0.0205 (18) | -0.012 (2)  | -0.0166 (19) |  |
| C21 | 0.074 (3) | 0.0844 (19) | 0.064 (2)   | -0.0216 (18) | -0.002 (2)  | -0.0082 (15) |  |
| C22 | 0.074 (3) | 0.192 (4)   | 0.116 (3)   | 0.002 (2)    | -0.012 (3)  | 0.040 (2)    |  |
| C23 | 0.069 (2) | 0.0423 (14) | 0.0704 (19) | -0.0121 (14) | 0.0078 (16) | -0.0048 (13) |  |
| C24 | 0.063 (2) | 0.0440 (14) | 0.0565 (18) | -0.0142 (14) | 0.0097 (15) | -0.0070 (12) |  |
| C25 | 0.068 (2) | 0.0494 (15) | 0.076 (2)   | -0.0110 (16) | 0.0076 (18) | -0.0050 (13) |  |
| C26 | 0.066 (2) | 0.0655 (17) | 0.078 (2)   | -0.0011 (15) | 0.0018 (18) | -0.0082 (15) |  |
| C27 | 0.068 (2) | 0.0765 (18) | 0.0561 (19) | -0.0220 (18) | 0.0075 (17) | -0.0103 (15) |  |
| C28 | 0.074 (2) | 0.0588 (16) | 0.064 (2)   | -0.0177 (16) | 0.0077 (17) | -0.0007 (13) |  |
| C29 | 0.070 (2) | 0.0498 (15) | 0.0624 (19) | -0.0120 (13) | 0.0097 (16) | -0.0049 (13) |  |
| C30 | 0.084 (3) | 0.111 (2)   | 0.102 (3)   | -0.0272 (19) | 0.022 (2)   | -0.0060 (17) |  |
|     |           |             |             |              |             |              |  |

Geometric parameters (Å, °)

| 01       | 1.229 (2) | O2—C23   | 1.233 (2) |
|----------|-----------|----------|-----------|
| N1-C8    | 1.336 (3) | N2—C23   | 1.347 (3) |
| N1-C1    | 1.432 (3) | N2—C16   | 1.423 (3) |
| N1—H1A   | 0.8596    | N2—H2A   | 0.8594    |
| C1—C6    | 1.374 (4) | C16—C21  | 1.368 (4) |
| C1—C2    | 1.383 (3) | C16—C17  | 1.378 (3) |
| С2—С3    | 1.385 (4) | C17—C18  | 1.389 (4) |
| С2—С7    | 1.506 (4) | C17—C22  | 1.511 (4) |
| C3—C4    | 1.367 (4) | C18—C19  | 1.354 (4) |
| С3—НЗА   | 0.9300    | C18—H18A | 0.9300    |
| C4—C5    | 1.367 (4) | C19—C20  | 1.369 (4) |
| C4—H4A   | 0.9300    | C19—H19A | 0.9300    |
| С5—С6    | 1.376 (4) | C20—C21  | 1.385 (4) |
| С5—Н5А   | 0.9300    | C20—H20A | 0.9300    |
| С6—Н6А   | 0.9300    | C21—H21A | 0.9300    |
| С7—Н7А   | 0.9600    | C22—H22A | 0.9600    |
| С7—Н7В   | 0.9600    | C22—H22B | 0.9600    |
| C7—H7C   | 0.9600    | C22—H22C | 0.9600    |
| С8—С9    | 1.488 (3) | C23—C24  | 1.477 (3) |
| C9—C10   | 1.387 (3) | C24—C25  | 1.379 (3) |
| C9—C14   | 1.391 (3) | C24—C29  | 1.380 (3) |
| C10-C11  | 1.372 (3) | C25—C26  | 1.373 (3) |
| C10—H10A | 0.9300    | C25—H25A | 0.9300    |
| C11—C12  | 1.378 (3) | C26—C27  | 1.384 (3) |
| C11—H11A | 0.9300    | C26—H26A | 0.9300    |
| C12—C13  | 1.375 (3) | C27—C28  | 1.376 (3) |
| C12—C15  | 1.520 (4) | C27—C30  | 1.515 (3) |
| C13—C14  | 1.362 (3) | C28—C29  | 1.378 (3) |
| C13—H13A | 0.9300    | C28—H28A | 0.9300    |
| C14—H14A | 0.9300    | C29—H29A | 0.9300    |

| С15—Н15А                    | 0.9600               | C30—H30A                      | 0.9600               |
|-----------------------------|----------------------|-------------------------------|----------------------|
| C15—H15B                    | 0.9600               | C30—H30B                      | 0.9600               |
| C15—H15C                    | 0.9600               | $C_{30}$ H30D                 | 0.9600               |
| C15—H15D                    | 0.9887               | C30—H30D                      | 0.9501               |
| C15—H15E                    | 0.9457               | C30_H30E                      | 1 0098               |
| C15_H15E                    | 0.9437               | C30 H30E                      | 0.0703               |
|                             | 0.9744               | 0.30-11301                    | 0.9793               |
| C8—N1—C1                    | 124.69 (19)          | C23—N2—C16                    | 123.84 (18)          |
| C8—N1—H1A                   | 117.6                | C23—N2—H2A                    | 117.9                |
| C1—N1—H1A                   | 117.7                | C16—N2—H2A                    | 118.3                |
| C6-C1-C2                    | 120.9 (3)            | C21—C16—C17                   | 119.8 (3)            |
| C6-C1-N1                    | 120.3 (3)            | $C_{21}$ — $C_{16}$ — $N_{2}$ | 119.3 (3)            |
| C2-C1-N1                    | 1187(3)              | C17 - C16 - N2                | 120.7(3)             |
| C1 - C2 - C3                | 117.7 (3)            | $C_{16} - C_{17} - C_{18}$    | 1186(3)              |
| C1 - C2 - C7                | 121 3 (3)            | $C_{16} - C_{17} - C_{22}$    | 1212(3)              |
| $C_{3}$ $C_{2}$ $C_{7}$     | 121.0(3)             | C18 - C17 - C22               | 121.2(3)<br>120.2(3) |
| $C_{4} - C_{3} - C_{2}^{2}$ | 121.0(3)<br>121.9(3) | C19 - C18 - C17               | 120.2(3)             |
| $C4 - C3 - H3 \Delta$       | 119.0                | C19 - C18 - H18A              | 121.2 (5)            |
| $C_2 = C_3 = H_3 \Delta$    | 119.0                | C17 - C18 - H18A              | 119.4                |
| $C_2 = C_3 = HSR$           | 110.3 (3)            | $C_{18}$ $C_{19}$ $C_{20}$    | 119.4                |
| $C_3 = C_4 = C_3$           | 119.5 (5)            | $C_{18} = C_{19} = C_{20}$    | 120.5 (5)            |
| $C_5 = C_4 = H_{4A}$        | 120.3                | $C_{10} = C_{10} = H_{10A}$   | 119.7                |
| $C_3 = C_4 = \Pi_4 A$       | 120.3<br>120.2(2)    | $C_{20} = C_{19} = M_{19} A$  | 119.7                |
| C4 = C5 = U5 A              | 120.5 (5)            | $C_{19} = C_{20} = C_{21}$    | 110.0 (5)            |
| C4 - C5 - H5A               | 119.8                | C19 - C20 - H20A              | 120.6                |
| $C_0 = C_3 = H_3 A$         | 119.8                | $C_{21} = C_{20} = H_{20}A$   | 120.0                |
| C1 = C6 = C5                | 119.9 (3)            | C16 - C21 - C20               | 121.1 (3)            |
|                             | 120.1                | C16—C21—H21A                  | 119.5                |
| C5—C6—H6A                   | 120.1                | C20—C21—H21A                  | 119.5                |
| $C_2 - C_1 - H_1 A$         | 109.5                | C17—C22—H22A                  | 109.5                |
| С2—С/—Н/В                   | 109.5                | С17—С22—Н22В                  | 109.5                |
| H/A—C/—H/B                  | 109.5                | H22A—C22—H22B                 | 109.5                |
| C2—C7—H7C                   | 109.5                | С17—С22—Н22С                  | 109.5                |
| H7A—C7—H7C                  | 109.5                | H22A—C22—H22C                 | 109.5                |
| H7B—C7—H7C                  | 109.5                | H22B—C22—H22C                 | 109.5                |
| 01—C8—N1                    | 120.8 (2)            | O2—C23—N2                     | 120.2 (2)            |
| 01—C8—C9                    | 120.7 (2)            | O2—C23—C24                    | 122.3 (2)            |
| N1—C8—C9                    | 118.4 (2)            | N2—C23—C24                    | 117.5 (2)            |
| C10—C9—C14                  | 116.8 (3)            | C25—C24—C29                   | 118.6 (2)            |
| C10—C9—C8                   | 124.5 (2)            | C25—C24—C23                   | 118.6 (2)            |
| C14—C9—C8                   | 118.5 (2)            | C29—C24—C23                   | 122.8 (2)            |
| C11—C10—C9                  | 120.8 (2)            | C26—C25—C24                   | 120.4 (2)            |
| C11—C10—H10A                | 119.6                | C26—C25—H25A                  | 119.8                |
| C9—C10—H10A                 | 119.6                | C24—C25—H25A                  | 119.8                |
| C10—C11—C12                 | 121.9 (3)            | C25—C26—C27                   | 121.5 (3)            |
| C10—C11—H11A                | 119.1                | C25—C26—H26A                  | 119.3                |
| C12—C11—H11A                | 119.1                | C27—C26—H26A                  | 119.3                |
| C13—C12—C11                 | 117.3 (3)            | C28—C27—C26                   | 117.7 (3)            |
| C13—C12—C15                 | 121.2 (3)            | C28—C27—C30                   | 120.9 (2)            |

| C11—C12—C15   | 121.5 (3)  | C26—C27—C30     | 121.4 (3)  |
|---------------|------------|-----------------|------------|
| C14—C13—C12   | 121.4 (3)  | C27—C28—C29     | 121.3 (2)  |
| C14—C13—H13A  | 119.3      | C27—C28—H28A    | 119.4      |
| C12—C13—H13A  | 119.3      | C29—C28—H28A    | 119.4      |
| C13—C14—C9    | 121.7 (2)  | C28—C29—C24     | 120.5 (2)  |
| C13—C14—H14A  | 119.1      | C28—C29—H29A    | 119.7      |
| C9—C14—H14A   | 119.1      | C24—C29—H29A    | 119.7      |
| C12—C15—H15A  | 109.5      | C27—C30—H30A    | 109.5      |
| C12—C15—H15B  | 109.5      | C27—C30—H30B    | 109.5      |
| H15A—C15—H15B | 109.5      | H30A—C30—H30B   | 109.5      |
| C12—C15—H15C  | 109.5      | C27—C30—H30C    | 109.5      |
| H15A—C15—H15C | 109.5      | H30A—C30—H30C   | 109.5      |
| H15B—C15—H15C | 109.5      | H30B—C30—H30C   | 109.5      |
| C12—C15—H15D  | 109.4      | C27—C30—H30D    | 115.3      |
| H15A—C15—H15D | 54.8       | H30A—C30—H30D   | 58.1       |
| H15B—C15—H15D | 57.7       | H30B-C30-H30D   | 52.6       |
| H15C—C15—H15D | 141.1      | H30C—C30—H30D   | 135.2      |
| C12—C15—H15E  | 112.3      | С27—С30—Н30Е    | 110.2      |
| H15A—C15—H15E | 138.2      | H30A—C30—H30E   | 140.3      |
| H15B—C15—H15E | 53.8       | H30B—C30—H30E   | 57.9       |
| H15C—C15—H15E | 57.7       | H30C—C30—H30E   | 54.3       |
| H15D—C15—H15E | 107.7      | H30D—C30—H30E   | 105.2      |
| C12—C15—H15F  | 110.8      | C27—C30—H30F    | 111.6      |
| H15A—C15—H15F | 54.7       | H30A—C30—H30F   | 58.1       |
| H15B—C15—H15F | 139.7      | H30B—C30—H30F   | 138.8      |
| H15C—C15—H15F | 57.4       | H30C—C30—H30F   | 53.7       |
| H15D—C15—H15F | 106.4      | H30D—C30—H30F   | 109.3      |
| H15E—C15—H15F | 110.1      | H30E—C30—H30F   | 104.5      |
|               |            |                 |            |
| C8—N1—C1—C6   | 63.9 (3)   | C23—N2—C16—C21  | 97.6 (3)   |
| C8—N1—C1—C2   | -118.2 (3) | C23—N2—C16—C17  | -86.8 (3)  |
| C6—C1—C2—C3   | 0.1 (3)    | C21—C16—C17—C18 | -0.7 (3)   |
| N1—C1—C2—C3   | -177.9 (2) | N2-C16-C17-C18  | -176.4(2)  |
| C6—C1—C2—C7   | 178.8 (2)  | C21—C16—C17—C22 | 177.1 (2)  |
| N1—C1—C2—C7   | 0.8 (3)    | N2-C16-C17-C22  | 1.4 (3)    |
| C1—C2—C3—C4   | 0.4 (4)    | C16—C17—C18—C19 | 0.8 (4)    |
| C7—C2—C3—C4   | -178.2 (2) | C22—C17—C18—C19 | -177.0 (3) |
| C2—C3—C4—C5   | -0.5 (4)   | C17—C18—C19—C20 | -0.1 (4)   |
| C3—C4—C5—C6   | -0.1 (4)   | C18—C19—C20—C21 | -0.7 (4)   |
| C2-C1-C6-C5   | -0.6 (3)   | C17—C16—C21—C20 | 0.0 (3)    |
| N1-C1-C6-C5   | 177.3 (2)  | N2-C16-C21-C20  | 175.7 (2)  |
| C4—C5—C6—C1   | 0.6 (4)    | C19—C20—C21—C16 | 0.8 (4)    |
| C1—N1—C8—O1   | -3.2 (4)   | C16—N2—C23—O2   | -1.5 (4)   |
| C1—N1—C8—C9   | 174.6 (3)  | C16—N2—C23—C24  | 177.9 (3)  |
| O1C8C10       | 164.4 (3)  | O2—C23—C24—C25  | 28.9 (4)   |
| N1            | -13.4 (4)  | N2-C23-C24-C25  | -150.4 (2) |
| O1C8C9C14     | -10.5 (4)  | O2—C23—C24—C29  | -152.7 (2) |
| N1            | 171.7 (2)  | N2-C23-C24-C29  | 27.9 (4)   |
|               |            |                 |            |

| C14—C9—C10—C11  | 1.7 (4)    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -1.7 (4)   |
|-----------------|------------|------------------------------------------------------|------------|
| C8—C9—C10—C11   | -173.2 (3) |                                                      | 176.6 (2)  |
| C9—C10—C11—C12  | 0.3 (4)    |                                                      | 1.1 (4)    |
| C10—C11—C12—C13 | -2.1 (4)   |                                                      | 0.8 (4)    |
| C10—C11—C12—C15 | 176.0 (3)  |                                                      | -179.3 (3) |
| C11—C12—C13—C14 | 1.9 (4)    |                                                      | -2.0 (4)   |
| C15—C12—C13—C14 | -176.2 (3) |                                                      | 178.0 (2)  |
| C12—C13—C14—C9  | 0.1 (4)    |                                                      | 1.4 (4)    |
| C10—C9—C14—C13  | -2.0 (4)   |                                                      | 0.5 (4)    |
| C10-C9-C14-C13  | -2.0 (4)   | C25—C24—C29—C28                                      | 0.5 (4)    |
| C8-C9-C14-C13   | 173.3 (3)  | C23—C24—C29—C28                                      | -177.8 (2) |

Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H  | Н…А  | D····A    | <i>D</i> —H…A |
|--------------------------|------|------|-----------|---------------|
| N1—H1A···O2              | 0.86 | 2.05 | 2.878 (2) | 163           |
| N2—H2A···O1 <sup>i</sup> | 0.86 | 2.05 | 2.883 (2) | 162           |

Symmetry code: (i) x, y-1, z.