metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[5-(2-pyridyl­meth­yl)tetra­zol­ato-κ2N1,N5]zinc(II)

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: encui_yang@yahoo.com.cn

(Received 20 May 2011; accepted 23 May 2011; online 28 May 2011)

In the title mononuclear complex, [Zn(C7H6N5)2(H2O)2], the ZnII atom, located on an inversion centre, is in a distorted octa­hedral coordination geometry formed by four N atoms from two chelating 5-(2-pyridyl­meth­yl)tetra­zolate ligands and two O donors from two water mol­ecules. Inter­molecular O—H⋯N hydrogen bonds between the coordinated water mol­ecule and the tetra­zolyl group of the 5-(2-pyridyl­meth­yl)tetra­zolate ligand lead to the formation of a three-dimensional network.

Related literature

For metal-organic frameworks with tetra­zolate ligands and their applications in magnetism, fluorescence and gas storage, see: Yang et al. (2011[Yang, E.-C., Feng, Y., Liu, Z.-Y. & Zhao, X.-J. (2011). CrystEngComm, 13, 230-242.]); Feng et al. (2010[Feng, Y., Yang, E.-C., Fu, M. & Zhao, X.-J. (2010). Z. Anorg. Allg. Chem. 636, 253-257.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Panda et al. (2011[Panda, T., Pachfule, P., Chen, Y., Jiang, J. & Banerjee, R. (2011). Chem. Commun. 47, 2011-2013.]). For metal complexes with in situ-generated 5-(2-pyridyl­meth­yl)-tetra­zolate ligands, see: Xu et al. (2009[Xu, G.-H., Tian, H., Pan, K.-J. & Ye, Q. (2009). J. Coord. Chem. 62, 2457-2464.]); Wang (2008[Wang, W. (2008). Acta Cryst. E64, m999.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H6N5)2(H2O)2]

  • Mr = 421.74

  • Monoclinic, P 21 /c

  • a = 6.6695 (4) Å

  • b = 13.8949 (8) Å

  • c = 10.8718 (5) Å

  • β = 127.055 (2)°

  • V = 804.05 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 173 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.885

  • 3929 measured reflections

  • 1388 independent reflections

  • 1335 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.05

  • 1388 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N4i 0.85 2.00 2.8395 (19) 171
O1—H1B⋯N2ii 0.85 2.16 2.9386 (18) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and construction of metal-organic frameworks (MOFs) with in situ generated tetrazolate ligands are of great interest due to their intriguing structures and topology (Zhao et al., 2008), promising applications in magnetism (Yang et al. 2011), luminscence (Feng et al. 2010), and gas storage (Panda et al. 2011) as well as the effectiveness, simplicity, and environmental friendliness of the in situ synthetic route. Up to date, lots of tetrazolyl-based MOFs have been reported with special interest on the tuning of the organic nitrile and metal ions (Xu et al. 2009; Wang et al., 2008). Herein, as our continuing investigations on the coordination chemistry of the tetrazolyl ligand, we report the crystal structure of a diaquazinc(II) complex with an in situ generated 5-(2-pyridylmethyl)-tetrazolate ligand.

The molecular structure of the title mononuclear complex is show Figure 1. The ZnII ion in the mononuclear structure of I, locating on an inversion center, exhibits a slightly distorted octahedral geometry involoving four N donors from two in situ generated 5-(pyridin-2-ylmethyl)tetrazolate ligands, and two O atoms from a pair of coordinated water molecules. The flexible 5-(pyridin-2-ylmethyl)tetrazolate anion acts as a bidentate chelating ligand to coordinate with ZnII through pyridyl and tetrazolyl N donors.

In the crystal structure, intermolecular O—H···N hydrogen bonds between the coordinated water molecules and the tetrazolyl group of 5-(2-pyridylmethyl)- tetrazolate ligand (Table 2) lead to the formation of a three-dimensional network (Figure 2).

Related literature top

For metal-organic frameworks with tetrazolate ligands and their applications in magnetism, fluorescence and gas storage, see Yang et al. (2011); Feng et al. (2010); Zhao et al. (2008); Panda et al. (2011). For metal complexes with in situ-generated 5-(2-pyridylmethyl)-tetrazolate ligands, see: Xu et al. (2009); Wang (2008).

Experimental top

A mixture containing 2-(pyridin-2-yl)acetonitrile (26 mg, 0.2 mmol), Zn(NO3)2 (29.7 mg, 0.1 mmol), 1,3,5-benzenetricarboxylic acid (21.0 mg, 0.1 mmol), NaN3 (13.0 mg, 0.2 mmol), and doubly deionized water (10.0 ml) was sealed in a Teflon-lined reactor (23.0 ml) and heated at 125 °C for 72 h. After the mixture was cooled to room temperature at a rate of 5.5°C/h, pale-yellow block-shaped crystals suitable for X-ray diffraction analysis were obtained. Yield: 56% based on ZnII salt. Anal. Calcd.for C14H16N10O2Zn: C, 39.87; H, 3.82; N, 33.21%. Found: C, 39.85; H, 3.82; N, 33.24%.

Refinement top

H atoms were located in a difference map but refined using a riding model with O-H = 0.85Å, Caromatic-H = 0.95Å, Cmethylene-H = 0.99Å and with U(H) set to 1.2 U of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level [Symmetry code: (A) 1 – x, 2 – y, – z].
[Figure 2] Fig. 2. Three-dimensional network of the title complex assembled from hydrogen-bonding interactions.
Diaquabis[5-(2-pyridylmethyl)tetrazolato-κ2N1,N5]zinc(II) top
Crystal data top
[Zn(C7H6N5)2(H2O)2]F(000) = 432
Mr = 421.74Dx = 1.742 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6695 (4) ÅCell parameters from 3869 reflections
b = 13.8949 (8) Åθ = 2.8–28.4°
c = 10.8718 (5) ŵ = 1.57 mm1
β = 127.055 (2)°T = 173 K
V = 804.05 (8) Å3Block, pale yellow
Z = 20.20 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
1388 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.745, Tmax = 0.885k = 1611
3929 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0146P)2 + 0.7405P]
where P = (Fo2 + 2Fc2)/3
1388 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn(C7H6N5)2(H2O)2]V = 804.05 (8) Å3
Mr = 421.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6695 (4) ŵ = 1.57 mm1
b = 13.8949 (8) ÅT = 173 K
c = 10.8718 (5) Å0.20 × 0.10 × 0.08 mm
β = 127.055 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1388 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1335 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.885Rint = 0.030
3929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.05Δρmax = 0.62 e Å3
1388 reflectionsΔρmin = 0.30 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50001.00000.00000.01318 (11)
O10.6481 (2)0.90283 (9)0.08811 (14)0.0196 (3)
H1A0.58090.85100.13820.024*
H1B0.79950.91310.05320.024*
N10.4006 (3)0.88555 (10)0.07937 (16)0.0144 (3)
N20.1830 (3)0.86762 (11)0.05983 (17)0.0164 (3)
N30.2217 (3)0.79864 (11)0.15370 (17)0.0185 (3)
N40.4661 (3)0.77039 (11)0.23846 (16)0.0161 (3)
N50.8595 (3)0.99858 (9)0.22729 (17)0.0135 (3)
C10.5681 (3)0.82608 (12)0.18945 (19)0.0140 (4)
C20.8406 (3)0.82446 (13)0.2548 (2)0.0166 (4)
H2A0.85530.80470.17300.020*
H2B0.92890.77590.33810.020*
C30.9670 (3)0.92064 (13)0.3181 (2)0.0146 (4)
C40.9710 (3)1.08445 (13)0.2853 (2)0.0159 (4)
H40.89521.13980.22180.019*
C51.1913 (3)1.09628 (14)0.4334 (2)0.0189 (4)
H51.26411.15820.47040.023*
C61.3018 (3)1.01590 (14)0.5256 (2)0.0196 (4)
H61.45241.02160.62760.023*
C71.1908 (3)0.92742 (14)0.4676 (2)0.0175 (4)
H71.26590.87120.52890.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01153 (16)0.01131 (17)0.01161 (16)0.00133 (10)0.00427 (13)0.00173 (10)
O10.0142 (6)0.0174 (7)0.0229 (6)0.0019 (5)0.0089 (5)0.0076 (6)
N10.0128 (7)0.0135 (7)0.0140 (7)0.0012 (6)0.0066 (6)0.0001 (6)
N20.0138 (7)0.0160 (8)0.0174 (7)0.0018 (6)0.0083 (6)0.0003 (7)
N30.0160 (7)0.0183 (8)0.0189 (7)0.0012 (6)0.0093 (6)0.0004 (7)
N40.0150 (7)0.0145 (7)0.0169 (7)0.0003 (6)0.0086 (6)0.0018 (6)
N50.0127 (7)0.0136 (8)0.0141 (7)0.0005 (5)0.0080 (6)0.0011 (5)
C10.0160 (8)0.0104 (8)0.0143 (8)0.0005 (7)0.0085 (7)0.0020 (7)
C20.0153 (8)0.0139 (9)0.0189 (9)0.0028 (7)0.0094 (7)0.0029 (8)
C30.0141 (8)0.0176 (9)0.0164 (8)0.0020 (7)0.0115 (7)0.0019 (8)
C40.0166 (8)0.0159 (9)0.0146 (8)0.0015 (7)0.0092 (7)0.0008 (8)
C50.0180 (9)0.0212 (10)0.0169 (9)0.0049 (8)0.0102 (8)0.0038 (8)
C60.0127 (8)0.0298 (10)0.0151 (9)0.0001 (8)0.0078 (7)0.0005 (8)
C70.0145 (8)0.0214 (10)0.0172 (9)0.0051 (7)0.0100 (7)0.0058 (8)
Geometric parameters (Å, º) top
Zn1—N1i2.0983 (14)N5—C31.345 (2)
Zn1—N12.0984 (14)C1—C21.501 (2)
Zn1—N52.1714 (15)C2—C31.507 (2)
Zn1—N5i2.1714 (15)C2—H2A0.9900
Zn1—O12.2039 (12)C2—H2B0.9900
Zn1—O1i2.2039 (12)C3—C71.399 (2)
O1—H1A0.8501C4—C51.388 (2)
O1—H1B0.8500C4—H40.9500
N1—C11.324 (2)C5—C61.380 (3)
N1—N21.3572 (19)C5—H50.9500
N2—N31.307 (2)C6—C71.376 (3)
N3—N41.360 (2)C6—H60.9500
N4—C11.335 (2)C7—H70.9500
N5—C41.345 (2)
N1i—Zn1—N1180.00 (7)C3—N5—Zn1125.26 (11)
N1i—Zn1—N593.96 (5)N1—C1—N4111.52 (15)
N1—Zn1—N586.04 (5)N1—C1—C2123.99 (15)
N1i—Zn1—N5i86.04 (5)N4—C1—C2124.45 (15)
N1—Zn1—N5i93.96 (5)C1—C2—C3112.78 (14)
N5—Zn1—N5i180.0C1—C2—H2A109.0
N1i—Zn1—O187.13 (5)C3—C2—H2A109.0
N1—Zn1—O192.87 (5)C1—C2—H2B109.0
N5—Zn1—O190.71 (5)C3—C2—H2B109.0
N5i—Zn1—O189.29 (5)H2A—C2—H2B107.8
N1i—Zn1—O1i92.87 (5)N5—C3—C7121.50 (16)
N1—Zn1—O1i87.13 (5)N5—C3—C2118.36 (15)
N5—Zn1—O1i89.29 (5)C7—C3—C2120.14 (16)
N5i—Zn1—O1i90.71 (5)N5—C4—C5123.28 (17)
O1—Zn1—O1i180.00 (6)N5—C4—H4118.4
Zn1—O1—H1A126.6C5—C4—H4118.4
Zn1—O1—H1B115.2C6—C5—C4118.38 (17)
H1A—O1—H1B117.0C6—C5—H5120.8
C1—N1—N2105.52 (13)C4—C5—H5120.8
C1—N1—Zn1122.75 (11)C7—C6—C5119.06 (17)
N2—N1—Zn1130.38 (11)C7—C6—H6120.5
N3—N2—N1108.81 (13)C5—C6—H6120.5
N2—N3—N4109.47 (13)C6—C7—C3119.69 (17)
C1—N4—N3104.66 (14)C6—C7—H7120.2
C4—N5—C3118.08 (15)C3—C7—H7120.2
C4—N5—Zn1116.42 (11)
N1i—Zn1—N1—C1100 (10)O1i—Zn1—N5—C3116.31 (13)
N5—Zn1—N1—C126.79 (13)N2—N1—C1—N41.07 (19)
N5i—Zn1—N1—C1153.21 (13)Zn1—N1—C1—N4169.09 (11)
O1—Zn1—N1—C163.72 (13)N2—N1—C1—C2176.72 (15)
O1i—Zn1—N1—C1116.28 (13)Zn1—N1—C1—C28.7 (2)
N1i—Zn1—N1—N265 (10)N3—N4—C1—N10.63 (19)
N5—Zn1—N1—N2137.97 (14)N3—N4—C1—C2177.15 (15)
N5i—Zn1—N1—N242.03 (14)N1—C1—C2—C356.5 (2)
O1—Zn1—N1—N2131.52 (14)N4—C1—C2—C3121.02 (18)
O1i—Zn1—N1—N248.48 (14)C4—N5—C3—C71.2 (2)
C1—N1—N2—N31.10 (18)Zn1—N5—C3—C7175.34 (12)
Zn1—N1—N2—N3167.85 (11)C4—N5—C3—C2178.95 (15)
N1—N2—N3—N40.75 (18)Zn1—N5—C3—C24.8 (2)
N2—N3—N4—C10.09 (18)C1—C2—C3—N551.8 (2)
N1i—Zn1—N5—C434.93 (13)C1—C2—C3—C7128.33 (16)
N1—Zn1—N5—C4145.07 (13)C3—N5—C4—C50.3 (2)
N5i—Zn1—N5—C485.1 (7)Zn1—N5—C4—C5174.98 (13)
O1—Zn1—N5—C4122.11 (12)N5—C4—C5—C60.2 (3)
O1i—Zn1—N5—C457.89 (12)C4—C5—C6—C70.2 (3)
N1i—Zn1—N5—C3150.86 (13)C5—C6—C7—C31.0 (3)
N1—Zn1—N5—C329.14 (13)N5—C3—C7—C61.6 (2)
N5i—Zn1—N5—C3100.7 (7)C2—C3—C7—C6178.58 (16)
O1—Zn1—N5—C363.69 (13)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4ii0.852.002.8395 (19)171
O1—H1B···N2iii0.852.162.9386 (18)152
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H6N5)2(H2O)2]
Mr421.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.6695 (4), 13.8949 (8), 10.8718 (5)
β (°) 127.055 (2)
V3)804.05 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.745, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
3929, 1388, 1335
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.05
No. of reflections1388
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.30

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.852.002.8395 (19)171
O1—H1B···N2ii0.852.162.9386 (18)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Normal University.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, Y., Yang, E.-C., Fu, M. & Zhao, X.-J. (2010). Z. Anorg. Allg. Chem. 636, 253–257.  Web of Science CSD CrossRef CAS Google Scholar
First citationPanda, T., Pachfule, P., Chen, Y., Jiang, J. & Banerjee, R. (2011). Chem. Commun. 47, 2011–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. (2008). Acta Cryst. E64, m999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, G.-H., Tian, H., Pan, K.-J. & Ye, Q. (2009). J. Coord. Chem. 62, 2457–2464.  CrossRef CAS Google Scholar
First citationYang, E.-C., Feng, Y., Liu, Z.-Y. & Zhao, X.-J. (2011). CrystEngComm, 13, 230–242.  CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds