organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1372-o1373

(2E)-3-(3-Benzyl­oxyphen­yl)-1-(2-hy­droxy-5-methyl­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 28 April 2011; accepted 5 May 2011; online 11 May 2011)

In the mol­ecule of the title compound, C23H20O3, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. The central benzene ring makes dihedral angles of 80.17 (8) and 16.99 (7)°, respectively, with the benz­yloxy and hy­droxy­methyl phenyl rings. In the crystal, mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds to form dimers. The dimers are connected by C—H⋯O hydrogen bonds and C—H⋯π inter­actions to form columns down the b axis.

Related literature

For general background and applications of chalcones, see: Awad et al. (1960[Awad, W., El-Neweihy, M. & Selim, F. (1960). J. Org. Chem. 25, 1333-1336.]); Coudert et al. (1988[Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799-802.]); Insuasty et al. (1992[Insuasty, B., Abonia, R. & Quiroga, J. (1992). An. Quim. 88, 718-720.], 1997[Insuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83-89.]); Kolos et al. (1996[Kolos, N., Orlov, V., Arisa, D., Shishkin, O., Struchkov, T. & Vorobiova, N. (1996). Khim. Geterotsikl. Soedin. pp. 87-95; Chem. Abstr. (1996), 125, 195600.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]); Shettigar et al. (2010[Shettigar, S., Poornesh, P., Umesh, G., Sarojini, B. K., Narayana, B. & Prakash Kamath, K. (2010). Opt. Laser Technol. 42, 1162-1166.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]). For related structures, see: Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.]); Ravishankar et al. (2003[Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143-o1145.], 2005[Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405-o407.]); Narayana et al. (2007[Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Private communication.]); Sarojini, Narayana et al. (2007[Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4447.]); Sarojini, Yathirajan et al. (2007[Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007). Acta Cryst. E63, o4448.]); Sharma et al. (1997[Sharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438-1440.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o813.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20O3

  • Mr = 344.39

  • Triclinic, [P \overline 1]

  • a = 8.7308 (5) Å

  • b = 9.5721 (5) Å

  • c = 11.5286 (6) Å

  • α = 106.547 (1)°

  • β = 94.572 (1)°

  • γ = 101.671 (1)°

  • V = 894.74 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.42 × 0.37 × 0.28 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.977

  • 18270 measured reflections

  • 5238 independent reflections

  • 3853 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.163

  • S = 1.03

  • 5238 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O3 0.93 (2) 1.65 (3) 2.521 (2) 155 (3)
C16—H16B⋯O3i 0.97 2.60 3.445 (2) 146
C22—H22A⋯O2ii 0.93 2.56 3.435 (2) 158
C11—H11ACg1iii 0.93 2.80 3.660 (2) 153
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones (1,3-diarylpropenones) have been widely used as starting materials in numerous synthetic reactions (Awad et al., 1960; Coudert et al., 1988) including the preparation of fused-ring heterocyclic compounds (Insuasty et al., 1992, 1997; Kolos et al., 1996; Samshuddin et al., 2010; Fun et al., 2010). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006; Shettigar et al., 2010). The crystal structures of some of the related chalcones viz 1-(3,4-dimethoxyphenyl)-3-(3-methylphenyl)prop-2-en-1-one (Sharma et al., 1997), 3-(3,4-dimethoxyphenyl)-1-(4-hydroxy-phenyl)prop-2-en-1-one (Ravishankar et al., 2003), 1-(4-chlorophenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (Ravishankar et al., 2005), 3-(3,4-dimethoxyphenyl)-1- (4-fluorophenyl)prop-2-en-1-one (Butcher et al., 2006), 3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Narayana et al., 2007), (2E)-1-(2-hydroxyphenyl)-3-(4-methoxy-phenyl)prop-2-en-1-one, (2E)-1-(2-hydroxyphenyl)-3-[4-(methyl-sulfanyl)phenyl]prop-2-en-1-one (Sarojini, Narayana et al., 2007; Sarojini, Yathirajan et al., 2007) and (2E)-3- (3,4-dimethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Jasinski et al., 2011) have been reported. In continuation to our studies on structures of chalcones, we report here the crystal structure of a new chalcone, the title compound.

In the molecular structure (Fig. 1), an intramolecular O2—H1O2···O3 hydrogen bond (Table 1) forming an S(6) ring motif (Bernstein et al., 1995) is observed. The C1–C6 and C10–C15 benzene rings form a dihedral angle of 16.99 (7)° between them. In addition, they also make dihedral angles of 69.01 (7) and 80.17 (8)°, respectively, with the terminal phenyl ring (C17–C22). Bond lengths (Allen et al., 1987) and angles are within normal range.

The crystal packing is shown in Fig. 2. The molecules are linked by intermolecular C22—H22A···O2 hydrogen bonds (Table 1) to form dimers. Furthermore, these dimers are connected by intermolecular C16—H16B···O3 hydrogen bonds (Table 1) to form columns down the b axis. The C—H···π interactions (Table 1) which involve C11 and the C17–C22 phenyl ring further stabilize the crystal structure.

Related literature top

For general background and applications of chalcones, see: Awad et al. (1960); Coudert et al. (1988); Insuasty et al. (1992, 1997); Kolos et al. (1996); Sarojini et al. (2006); Shettigar et al. (2010); Samshuddin et al. (2010); Fun et al. (2010). For related structures, see: Butcher et al. (2006); Ravishankar et al. (2003, 2005); Narayana et al. (2007); Sarojini, Narayana et al. (2007); Sarojini, Yathirajan et al. (2007) ; Sharma et al. (1997); Jasinski et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-5-methoxyacetophenone (1.66 g, 0.01 mol) was mixed with 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) and dissolved in ethanol (30 ml). To this solution, 3 ml of KOH (50%, 10 mL) was added at 5°C. The reaction mixture was stirred for 5 h and poured on to crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by slow evaporation of the solution of the compound in ethyl alcohol-DMF (4:1) mixture (m.p. 393–397 K). Composition: found (calculated) for C23H20O3: C 76.65 (76.63), H 5.59 (5.57).

Refinement top

Atom H1O2 was located in a difference map and refined freely [O–H = 0.93 (3) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent hydrogen bonds.
(2E)-3-(3-Benzyloxyphenyl)-1-(2-hydroxy-5-methylphenyl)prop-2-en-1-one top
Crystal data top
C23H20O3Z = 2
Mr = 344.39F(000) = 364
Triclinic, P1Dx = 1.278 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7308 (5) ÅCell parameters from 5803 reflections
b = 9.5721 (5) Åθ = 2.8–30.0°
c = 11.5286 (6) ŵ = 0.08 mm1
α = 106.547 (1)°T = 296 K
β = 94.572 (1)°Block, orange
γ = 101.671 (1)°0.42 × 0.37 × 0.28 mm
V = 894.74 (8) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5238 independent reflections
Radiation source: fine-focus sealed tube3853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.966, Tmax = 0.977k = 1313
18270 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.1176P]
where P = (Fo2 + 2Fc2)/3
5238 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H20O3γ = 101.671 (1)°
Mr = 344.39V = 894.74 (8) Å3
Triclinic, P1Z = 2
a = 8.7308 (5) ÅMo Kα radiation
b = 9.5721 (5) ŵ = 0.08 mm1
c = 11.5286 (6) ÅT = 296 K
α = 106.547 (1)°0.42 × 0.37 × 0.28 mm
β = 94.572 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5238 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3853 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.020
18270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
5238 reflectionsΔρmin = 0.23 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16772 (13)0.30000 (11)0.13861 (10)0.0679 (3)
O20.43323 (13)0.41373 (11)0.37191 (11)0.0644 (3)
O30.37319 (15)0.32210 (11)0.19276 (10)0.0681 (3)
C10.66751 (15)0.03177 (14)0.42278 (11)0.0459 (3)
H1A0.67950.04390.38610.055*
C20.76064 (15)0.00671 (14)0.53313 (11)0.0485 (3)
C30.73915 (17)0.12245 (17)0.58579 (13)0.0552 (3)
H3A0.80030.10830.65990.066*
C40.63119 (17)0.25623 (16)0.53216 (13)0.0561 (3)
H4A0.61950.33080.57000.067*
C50.53927 (15)0.28026 (14)0.42114 (12)0.0475 (3)
C60.55590 (14)0.16674 (13)0.36425 (10)0.0428 (2)
C70.45402 (16)0.19356 (14)0.24783 (11)0.0475 (3)
C80.44225 (16)0.07006 (14)0.19893 (11)0.0484 (3)
H8A0.50830.02450.23640.058*
C90.33780 (17)0.09225 (15)0.10131 (12)0.0526 (3)
H9A0.28050.19060.06460.063*
C100.30100 (16)0.01655 (14)0.04420 (11)0.0490 (3)
C110.1932 (2)0.03475 (16)0.06343 (15)0.0703 (5)
H11A0.14790.13690.09630.084*
C120.1525 (2)0.06119 (17)0.12187 (15)0.0732 (5)
H12A0.08110.02370.19390.088*
C130.21741 (16)0.21433 (14)0.07401 (12)0.0511 (3)
C140.32657 (17)0.26857 (15)0.03205 (12)0.0536 (3)
H14A0.37200.37080.06440.064*
C150.36739 (17)0.16958 (15)0.08932 (12)0.0537 (3)
H15A0.44130.20660.16000.064*
C160.24447 (19)0.45417 (15)0.10512 (15)0.0644 (4)
H16A0.35650.46570.11010.077*
H16B0.23210.50470.02180.077*
C170.17020 (16)0.52033 (13)0.19193 (13)0.0526 (3)
C180.01997 (18)0.54490 (19)0.18521 (17)0.0677 (4)
H18A0.03640.52000.12590.081*
C190.04746 (19)0.60627 (19)0.26593 (18)0.0711 (4)
H19A0.14850.62250.26040.085*
C200.0337 (2)0.64284 (18)0.35342 (15)0.0685 (4)
H20A0.01190.68370.40770.082*
C210.1825 (2)0.6194 (2)0.36131 (15)0.0724 (4)
H21A0.23800.64460.42090.087*
C220.25088 (19)0.55839 (17)0.28101 (14)0.0615 (4)
H22A0.35210.54290.28710.074*
C230.87881 (19)0.13954 (18)0.59510 (15)0.0658 (4)
H23A0.84200.21940.57590.099*
H23B0.97870.13460.56700.099*
H23C0.89110.15790.68200.099*
H1O20.392 (3)0.406 (3)0.298 (2)0.110 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0792 (7)0.0450 (5)0.0711 (7)0.0010 (5)0.0301 (5)0.0254 (5)
O20.0715 (6)0.0486 (5)0.0734 (7)0.0049 (4)0.0062 (5)0.0304 (5)
O30.0917 (8)0.0466 (5)0.0566 (6)0.0033 (5)0.0159 (5)0.0173 (4)
C10.0530 (6)0.0458 (6)0.0430 (6)0.0145 (5)0.0042 (5)0.0188 (5)
C20.0505 (6)0.0519 (6)0.0451 (6)0.0164 (5)0.0027 (5)0.0162 (5)
C30.0606 (7)0.0635 (8)0.0473 (6)0.0225 (6)0.0012 (5)0.0232 (6)
C40.0668 (8)0.0557 (7)0.0561 (7)0.0199 (6)0.0032 (6)0.0310 (6)
C50.0523 (6)0.0452 (6)0.0514 (6)0.0162 (5)0.0064 (5)0.0217 (5)
C60.0498 (6)0.0437 (6)0.0397 (5)0.0165 (5)0.0050 (4)0.0168 (4)
C70.0571 (7)0.0454 (6)0.0417 (6)0.0137 (5)0.0029 (5)0.0162 (5)
C80.0589 (7)0.0453 (6)0.0431 (6)0.0135 (5)0.0012 (5)0.0177 (5)
C90.0681 (8)0.0453 (6)0.0431 (6)0.0117 (5)0.0031 (5)0.0156 (5)
C100.0585 (7)0.0458 (6)0.0415 (6)0.0108 (5)0.0038 (5)0.0157 (5)
C110.0894 (11)0.0432 (7)0.0645 (9)0.0001 (7)0.0308 (8)0.0175 (6)
C120.0889 (11)0.0487 (7)0.0666 (9)0.0018 (7)0.0384 (8)0.0198 (7)
C130.0563 (7)0.0444 (6)0.0507 (7)0.0082 (5)0.0092 (5)0.0190 (5)
C140.0607 (7)0.0423 (6)0.0500 (7)0.0045 (5)0.0112 (5)0.0128 (5)
C150.0617 (7)0.0495 (6)0.0436 (6)0.0075 (5)0.0129 (5)0.0139 (5)
C160.0729 (9)0.0446 (7)0.0673 (9)0.0019 (6)0.0206 (7)0.0211 (6)
C170.0583 (7)0.0372 (5)0.0567 (7)0.0047 (5)0.0095 (6)0.0153 (5)
C180.0572 (8)0.0691 (9)0.0813 (10)0.0046 (7)0.0034 (7)0.0390 (8)
C190.0524 (7)0.0668 (9)0.0942 (12)0.0110 (7)0.0089 (7)0.0323 (9)
C200.0812 (10)0.0570 (8)0.0655 (9)0.0160 (7)0.0137 (8)0.0229 (7)
C210.0939 (12)0.0728 (10)0.0581 (9)0.0244 (9)0.0113 (8)0.0287 (8)
C220.0650 (8)0.0560 (8)0.0647 (8)0.0207 (6)0.0057 (7)0.0172 (7)
C230.0657 (9)0.0635 (8)0.0607 (8)0.0067 (7)0.0080 (7)0.0178 (7)
Geometric parameters (Å, º) top
O1—C131.3622 (14)C11—H11A0.93
O1—C161.4178 (16)C12—C131.3884 (18)
O2—C51.3551 (16)C12—H12A0.93
O2—H1O20.93 (3)C13—C141.3876 (17)
O3—C71.2439 (16)C14—C151.3843 (18)
C1—C21.3854 (17)C14—H14A0.93
C1—C61.4011 (17)C15—H15A0.93
C1—H1A0.93C16—C171.4990 (19)
C2—C31.3958 (19)C16—H16A0.97
C2—C231.504 (2)C16—H16B0.97
C3—C41.371 (2)C17—C221.381 (2)
C3—H3A0.93C17—C181.383 (2)
C4—C51.3889 (18)C18—C191.386 (2)
C4—H4A0.93C18—H18A0.93
C5—C61.4104 (16)C19—C201.363 (3)
C6—C71.4764 (16)C19—H19A0.93
C7—C81.4647 (17)C20—C211.368 (3)
C8—C91.3286 (17)C20—H20A0.93
C8—H8A0.93C21—C221.384 (2)
C9—C101.4538 (17)C21—H21A0.93
C9—H9A0.93C22—H22A0.93
C10—C151.3880 (18)C23—H23A0.96
C10—C111.3950 (18)C23—H23B0.96
C11—C121.3674 (19)C23—H23C0.96
C13—O1—C16118.66 (10)O1—C13—C12115.52 (11)
C5—O2—H1O2102.3 (15)C14—C13—C12119.36 (12)
C2—C1—C6122.54 (11)C15—C14—C13119.56 (12)
C2—C1—H1A118.7C15—C14—H14A120.2
C6—C1—H1A118.7C13—C14—H14A120.2
C1—C2—C3117.23 (12)C14—C15—C10121.81 (11)
C1—C2—C23121.74 (12)C14—C15—H15A119.1
C3—C2—C23121.03 (12)C10—C15—H15A119.1
C4—C3—C2122.34 (12)O1—C16—C17107.69 (11)
C4—C3—H3A118.8O1—C16—H16A110.2
C2—C3—H3A118.8C17—C16—H16A110.2
C3—C4—C5119.85 (12)O1—C16—H16B110.2
C3—C4—H4A120.1C17—C16—H16B110.2
C5—C4—H4A120.1H16A—C16—H16B108.5
O2—C5—C4117.85 (11)C22—C17—C18118.30 (13)
O2—C5—C6122.05 (11)C22—C17—C16120.52 (14)
C4—C5—C6120.09 (12)C18—C17—C16121.18 (14)
C1—C6—C5117.95 (11)C17—C18—C19120.67 (15)
C1—C6—C7122.97 (10)C17—C18—H18A119.7
C5—C6—C7119.07 (11)C19—C18—H18A119.7
O3—C7—C8119.66 (11)C20—C19—C18120.23 (15)
O3—C7—C6119.36 (11)C20—C19—H19A119.9
C8—C7—C6120.94 (11)C18—C19—H19A119.9
C9—C8—C7120.42 (12)C19—C20—C21119.87 (14)
C9—C8—H8A119.8C19—C20—H20A120.1
C7—C8—H8A119.8C21—C20—H20A120.1
C8—C9—C10128.73 (12)C20—C21—C22120.30 (16)
C8—C9—H9A115.6C20—C21—H21A119.8
C10—C9—H9A115.6C22—C21—H21A119.8
C15—C10—C11117.27 (12)C17—C22—C21120.62 (15)
C15—C10—C9124.19 (11)C17—C22—H22A119.7
C11—C10—C9118.54 (12)C21—C22—H22A119.7
C12—C11—C10121.74 (13)C2—C23—H23A109.5
C12—C11—H11A119.1C2—C23—H23B109.5
C10—C11—H11A119.1H23A—C23—H23B109.5
C11—C12—C13120.24 (12)C2—C23—H23C109.5
C11—C12—H12A119.9H23A—C23—H23C109.5
C13—C12—H12A119.9H23B—C23—H23C109.5
O1—C13—C14125.12 (11)
C6—C1—C2—C30.22 (19)C9—C10—C11—C12179.73 (17)
C6—C1—C2—C23179.44 (13)C10—C11—C12—C130.6 (3)
C1—C2—C3—C40.0 (2)C16—O1—C13—C147.7 (2)
C23—C2—C3—C4179.26 (14)C16—O1—C13—C12171.44 (16)
C2—C3—C4—C50.4 (2)C11—C12—C13—O1179.34 (17)
C3—C4—C5—O2179.51 (12)C11—C12—C13—C141.5 (3)
C3—C4—C5—C60.6 (2)O1—C13—C14—C15179.99 (14)
C2—C1—C6—C50.00 (18)C12—C13—C14—C150.9 (2)
C2—C1—C6—C7178.84 (11)C13—C14—C15—C100.6 (2)
O2—C5—C6—C1179.27 (11)C11—C10—C15—C141.4 (2)
C4—C5—C6—C10.41 (19)C9—C10—C15—C14179.16 (13)
O2—C5—C6—C70.39 (19)C13—O1—C16—C17178.62 (13)
C4—C5—C6—C7178.47 (11)O1—C16—C17—C22107.22 (16)
C1—C6—C7—O3170.34 (13)O1—C16—C17—C1872.78 (18)
C5—C6—C7—O310.84 (19)C22—C17—C18—C190.0 (2)
C1—C6—C7—C812.05 (19)C16—C17—C18—C19179.95 (14)
C5—C6—C7—C8166.77 (11)C17—C18—C19—C200.2 (3)
O3—C7—C8—C94.9 (2)C18—C19—C20—C210.2 (3)
C6—C7—C8—C9172.75 (12)C19—C20—C21—C220.1 (3)
C7—C8—C9—C10175.62 (13)C18—C17—C22—C210.0 (2)
C8—C9—C10—C153.7 (2)C16—C17—C22—C21179.96 (14)
C8—C9—C10—C11175.79 (16)C20—C21—C22—C170.0 (2)
C15—C10—C11—C120.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O30.93 (2)1.65 (3)2.521 (2)155 (3)
C16—H16B···O3i0.972.603.445 (2)146
C22—H22A···O2ii0.932.563.435 (2)158
C11—H11A···Cg1iii0.932.803.660 (2)153
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC23H20O3
Mr344.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.7308 (5), 9.5721 (5), 11.5286 (6)
α, β, γ (°)106.547 (1), 94.572 (1), 101.671 (1)
V3)894.74 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.37 × 0.28
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
18270, 5238, 3853
Rint0.020
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.163, 1.03
No. of reflections5238
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O30.93 (2)1.65 (3)2.521 (2)155 (3)
C16—H16B···O3i0.972.603.445 (2)146
C22—H22A···O2ii0.932.563.435 (2)158
C11—H11A···Cg1iii0.932.803.660 (2)153
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian government and USM for the award of a research scholarship. VMK thanks P. A. College of Engineering for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAwad, W., El-Neweihy, M. & Selim, F. (1960). J. Org. Chem. 25, 1333–1336.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCoudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802.  CrossRef CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInsuasty, B., Abonia, R. & Quiroga, J. (1992). An. Quim. 88, 718–720.  Google Scholar
First citationInsuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83–89.  CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolos, N., Orlov, V., Arisa, D., Shishkin, O., Struchkov, T. & Vorobiova, N. (1996). Khim. Geterotsikl. Soedin. pp. 87–95; Chem. Abstr. (1996), 125, 195600.  Google Scholar
First citationNarayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Private communication.  Google Scholar
First citationRavishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405–o407.  CSD CrossRef IUCr Journals Google Scholar
First citationRavishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007). Acta Cryst. E63, o4448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438–1440.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Poornesh, P., Umesh, G., Sarojini, B. K., Narayana, B. & Prakash Kamath, K. (2010). Opt. Laser Technol. 42, 1162–1166.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1372-o1373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds