metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis(2,6-dihydroxybenzoato- κO^1)(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^{1'}$)-gadolinium(III) dihydrate

Juangang Wang,* Jun Zhang and Tiedan Chen

College of Chemistry and Material Science, Huaibei Normal University, Xiangshan, Huaibei 235000, People's Republic of China Correspondence e-mail: 363019204@qq.com

Received 30 March 2011; accepted 28 April 2011

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.022; *wR* factor = 0.052; data-to-parameter ratio = 11.3.

In the title compound, $[Gd(C_7H_5O_4)_3(H_2O)_4]\cdot 2H_2O$, the Gd^{III} ion shows a distorted square antiprismatic coordination formed by four aqua ligands and four O atoms from the three 2,6-dihydroxybenzoate (*L*) ligands. Two *L* ligands coordinate the Gd^{III} ion in a monodentate mode, while the third coordinates it in a bidentate–chelating coordination mode. An extensive three-dimensional O–H···O hydrogenbonding network consolidates the crystal packing.

Related literature

The crystal structures of related complexes with Ho and Tb were reported by Glowiak *et al.* (1999).

Experimental

Crystal data	
$[Gd(C_7H_5O_4)_3(H_2O)_4] \cdot 2H_2O$	$\alpha = 82.270 \ (1)^{\circ}$
$M_r = 724.68$	$\beta = 73.066 \ (1)^{\circ}$
Triclinic, P1	$\gamma = 68.178 \ (1)^{\circ}$
a = 10.7666 (4) Å	V = 1350.65 (8) Å ³
b = 11.3289 (4) Å	Z = 2
c = 12.4741 (4) Å	Mo Ka radiation

 $0.24 \times 0.20 \times 0.18 \; \rm mm$

6854 measured reflections

 $R_{\rm int} = 0.014$

refinement $\Delta \rho_{\text{max}} = 0.48 \text{ e } \text{\AA}^{-3}$

4691 independent reflections

4301 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 2.54 \text{ mm}^{-1}$ T = 294 K

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.581, T_{max} = 0.658$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.052$ S = 1.044691 reflections 415 parameters

 $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.88 (5)	2 697 (5)	
$\begin{array}{cccc} 014-H14A\cdots 017^{i} & 0.77 & (5) & 1\\ 015-H15A\cdots 04^{ii} & 0.83 & (5) & 1\\ 016-H16A\cdots 011 & 0.72 & (4) & 2\\ 016-H16A\cdots 012^{iii} & 0.72 & (4) & 2\\ 017-H17A\cdots 018 & 0.86 & (5) & 1\\ 018-H18A\cdots 05^{ii} & 0.91 & (7) & 1\\ 013-H13B\cdots 01^{iv} & 0.88 & (5) & 1\\ 014-H14B\cdots 09^{v} & 0.84 & (5) & 1\\ \end{array}$		2.071 (3)	161 (4)
$\begin{array}{cccc} 015-H15A\cdots O4^{ii} & 0.83 \ (5) & 1\\ 016-H16A\cdots O11 & 0.72 \ (4) & 2\\ 017-H17A\cdots O18 & 0.86 \ (5) & 1\\ 018-H18A\cdots O5^{ii} & 0.91 \ (7) & 1\\ 013-H13B\cdots O1^{iv} & 0.88 \ (5) & 1\\ 014-H14B\cdots O9^{v} & 0.84 \ (5) & 1\\ \end{array}$	1.99 (7)	2.766 (5)	172 (4)
$\begin{array}{cccccc} 016-H16A\cdots O11 & 0.72\ (4) & 2\\ 016-H16A\cdots O12^{iii} & 0.72\ (4) & 2\\ 017-H17A\cdots O18 & 0.86\ (5) & 1\\ 018-H18A\cdots O5^{ii} & 0.91\ (7) & 1\\ 013-H13B\cdots O1^{iiv} & 0.88\ (5) & 1\\ 014-H14B\cdots O9^v & 0.84\ (5) & 1\\ \end{array}$	1.90 (8)	2.739 (5)	176 (5)
$\begin{array}{cccc} 016-H16A\cdots 012^{iii} & 0.72 \ (4) & 2\\ 017-H17A\cdots 018 & 0.86 \ (5) & 1\\ 018-H18A\cdots 05^{ii} & 0.91 \ (7) & 1\\ 013-H13B\cdots 01^{iv} & 0.88 \ (5) & 1\\ 014-H14B\cdots 09^v & 0.84 \ (5) & 1\\ \end{array}$	2.09 (5)	2.735 (5)	151 (2)
$\begin{array}{cccc} 017{-}H17A{\cdots}018 & 0.86\ (5) & 1\\ 018{-}H18A{\cdots}05^{ii} & 0.91\ (7) & 1\\ 013{-}H13B{\cdots}01^{iv} & 0.88\ (5) & 1\\ 014{-}H14B{\cdots}09^{v} & 0.84\ (5) & 1\\ \end{array}$	2.50 (5)	2.865 (5)	113 (7)
$\begin{array}{cccc} O18-H18A\cdots O5^{ii} & 0.91\ (7) & 1\\ O13-H13B\cdots O1^{iv} & 0.88\ (5) & 1\\ O14-H14B\cdots O9^v & 0.84\ (5) & 1\\ \end{array}$	1.81 (5)	2.668 (5)	175 (5)
$\begin{array}{ccc} O13 - H13B \cdots O1^{iv} & 0.88 \ (5) \\ O14 - H14B \cdots O9^{v} & 0.84 \ (5) \end{array}$	1.88 (5)	2.752 (5)	161 (4)
$O14 - H14B \cdots O9^{v}$ 0.84 (5)	1.94 (5)	2.808 (5)	172 (5)
	1.90 (5)	2.739 (5)	174 (5)
O15−H15B···O18 0.70 (4) 2	2.22 (5)	2.917 (5)	176 (6)
O16−H16B···O2 0.88 (6) 1	1.89 (5)	2.672 (5)	147 (5)
$O17 - H17B \cdots O8^{vi}$ 0.82 (5)	2.03 (5)	2.713 (5)	140 (5)
O18-H18B···O12 ⁱⁱⁱ 0.83 (5)	2.08 (5)	2.898 (5)	172 (3)
O1−H1···O2 0.82	1.78	2.515 (5)	148
O4−H4···O3 0.82	1.82	2.549 (5)	147
O5−H5···O6 0.82 1	1.83	2.566 (5)	148
O8−H8···O7 0.82	1.83	2.546 (5)	145
O9−H9···O10 0.82	1.82	2.551 (5)	147
O12-H12···O11 0.82	1.78	2.512 (5)	148

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 1, -y + 2, -z + 2; (v) -x + 2, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2010).

Financial support from Huaibei Normal University is gratefully acknowledged

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5069).

References

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Glowiak, T., Brzyska, W., Kula, A. & Rzaczynska, Z. (1999). J. Coord. Chem. 48, 477–486.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, m698 [doi:10.1107/S1600536811016163]

Tetraaquabis(2,6-dihydroxybenzoato- κO^1)(2,6-dihydroxybenzoato- $\kappa^2 O^1, O^1$)gadolinium(III) dihydrate

Juangang Wang, Jun Zhang and Tiedan Chen

S1. Comment

The title compound is isomorphous with the related Ho and Tb complexes (Glowiak *et al.*, 1999). The coordinating Gd— O bond lengths are in the range 2.344 (2)–2.512 (2) Å. Intermolecular O—H…O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network, which consolidate the crystal packing.

S2. Experimental

The title complex was synthesized by dissolving 2,6-dihydroxybenzoic acid (10 mmol, 1.54 g) in 25 ml of ethanol. This was followed by the addition of Gadolinium nitrate (3 mmol,1.35 g), dissolved in 20 ml of distilled water. The mixture was stirred at room temperature for 5 h and the resulting white precipitate was filtered, dried and recrystallized from water.

S3. Refinement

C-bound H atoms were geometrically positioned and refined as riding, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms attached to O atoms were found in a difference Fourier map and isotropically refined.

Figure 1

The molecular structure of the title compound, drawn with 50% probability displacement ellipsoids. H atoms omitted for clarity.

Tetraaquabis(2,6-dihydroxybenzoato- κO^1)(2,6-dihydroxybenzoato- $\kappa^2 O^1$, O^1)gadolinium(III) dihydrate

V = 1350.65 (8) Å³

 $D_{\rm x} = 1.782 \text{ Mg m}^{-3}$

Melting point: 476 K

 $0.24 \times 0.20 \times 0.18 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

F(000) = 722

 $\mu = 2.54 \text{ mm}^{-1}$

Block, white

T = 294 K

Z = 2

Crystal data

 $[Gd(C_7H_5O_4)_3(H_2O)_4] \cdot 2H_2O$ $M_r = 724.68$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.7666 (4) Å b = 11.3289 (4) Å c = 12.4741 (4) Å a = 82.270 (1)° $\beta = 73.066$ (1)° $\gamma = 68.178$ (1)°

Data collection

Bruker APEXII area-detector	6854 measured reflections
diffractometer	4691 independent reflections
Radiation source: fine-focus sealed tube	4301 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.014$
ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.9^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2007)	$k = -10 \rightarrow 13$
$T_{\min} = 0.581, \ T_{\max} = 0.658$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.022$	Hydrogen site location: inferred from
$wR(F^2) = 0.052$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
4691 reflections	and constrained refinement
415 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0247P)^2 + 0.6501P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.48 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5308 (3)	1.0415 (3)	0.7814 (2)	0.0340 (7)	
C2	0.4935 (3)	1.1804 (3)	0.7630 (2)	0.0332 (7)	
C3	0.5284 (3)	1.2357 (3)	0.6563 (3)	0.0377 (8)	

C4	0.4932 (4)	1.3661 (3)	0.6407 (3)	0.0508 (9)
H4A	0.5164	1.4018	0.5695	0.061*
C5	0.4231 (4)	1.4428 (3)	0.7326 (3)	0.0542 (10)
H5A	0.4005	1.5304	0.7225	0.065*
C6	0.3861 (4)	1.3924 (3)	0.8387 (3)	0.0477 (9)
H6	0.3384	1.4454	0.8995	0.057*
C7	0.4203 (3)	1.2626 (3)	0.8539 (3)	0.0365 (7)
C8	0.7815 (4)	0.7434 (3)	0.4254 (2)	0.0365 (7)
C9	0.8391 (3)	0.7349 (3)	0.3029 (3)	0.0370 (7)
C10	0.9056 (4)	0.6168 (3)	0.2523 (3)	0.0452 (9)
C11	0.9649 (4)	0.6091 (4)	0.1376 (3)	0.0570 (10)
H11	1.0097	0.5304	0.1042	0.068*
C12	0.9566 (5)	0.7183 (5)	0.0745 (3)	0.0635 (12)
H12A	0.9973	0.7125	-0.0022	0.076*
C13	0.8907 (4)	0.8359 (4)	0.1199 (3)	0.0597 (11)
H13	0.8856	0.9089	0.0746	0.072*
C14	0.8314 (4)	0.8445 (3)	0.2349 (3)	0.0455 (9)
C15	0.7184 (3)	0.4653 (3)	0.7986 (2)	0.0350 (7)
C16	0.7694 (3)	0.3260 (3)	0.7872 (3)	0.0332 (7)
C17	0.8403 (4)	0.2674 (3)	0.6841 (3)	0.0403 (8)
C18	0.8838 (4)	0.1373 (3)	0.6746 (3)	0.0540 (10)
H18	0.9310	0.0998	0.6055	0.065*
C19	0.8556 (4)	0.0642 (4)	0.7698 (4)	0.0604 (11)
H19	0.8838	-0.0234	0.7640	0.072*
C20	0.7869 (4)	0.1174 (4)	0.8733 (4)	0.0564 (10)
H20	0.7691	0.0661	0.9364	0.068*
C21	0.7448 (4)	0.2473 (3)	0.8828 (3)	0.0404 (8)
Gd1	0.702869 (16)	0.750791 (13)	0.665777 (11)	0.02894 (6)
H13A	0.877 (5)	0.730 (4)	0.821 (4)	0.069 (15)*
H14A	0.971 (5)	0.755 (5)	0.642 (4)	0.079 (18)*
H15A	0.467 (4)	0.786 (4)	0.568 (4)	0.062 (13)*
H16A	0.535 (4)	0.704 (4)	0.867 (3)	0.046 (14)*
H17A	0.122 (5)	0.744 (4)	0.776 (4)	0.085 (17)*
H18A	0.228 (7)	0.883 (7)	0.793 (6)	0.15 (3)*
H13B	0.745 (5)	0.750 (4)	0.894 (4)	0.087 (16)*
H14B	0.991 (5)	0.729 (4)	0.543 (4)	0.087 (17)*
H15B	0.437 (5)	0.772 (4)	0.668 (4)	0.059 (16)*
H16B	0.494 (6)	0.831 (5)	0.872 (5)	0.11 (2)*
H17B	0.108 (5)	0.637 (5)	0.750 (4)	0.081 (17)*
H18B	0.265 (5)	0.779 (4)	0.868 (4)	0.081 (17)*
01	0.3847 (3)	1.2146 (2)	0.95957 (18)	0.0484 (6)
H1	0.4128	1.1367	0.9584	0.073*
02	0.4931 (3)	0.9972 (2)	0.87718 (18)	0.0518 (7)
O3	0.6016 (2)	0.96988 (19)	0.69634 (16)	0.0388 (5)
04	0.5976(3)	1.1625 (2)	0.56387 (17)	0.0483 (6)
H4	0.6186	1.0871	0.5833	0.072*
05	0.7661 (3)	0.9615 (2)	0.2789 (2)	0.0672 (8)
Н5	0.7339	0.9546	0.3466	0.101*
		-		

O6	0.7188 (3)	0.8501 (2)	0.47171 (18)	0.0468 (6)	
07	0.7986 (3)	0.6422 (2)	0.48681 (17)	0.0439 (6)	
08	0.9160 (3)	0.5071 (2)	0.3133 (2)	0.0652 (8)	
H8	0.8706	0.5233	0.3783	0.098*	
09	0.8689 (3)	0.3387 (2)	0.58862 (18)	0.0538 (7)	
H9	0.8325	0.4144	0.6029	0.081*	
O10	0.7447 (2)	0.53404 (19)	0.71024 (16)	0.0380 (5)	
011	0.6501 (3)	0.5131 (2)	0.89201 (18)	0.0520 (7)	
012	0.6791 (3)	0.2971 (2)	0.98503 (19)	0.0577 (7)	
H12	0.6592	0.3746	0.9799	0.087*	
013	0.7942 (3)	0.7430 (2)	0.8236 (2)	0.0445 (6)	
014	0.9283 (3)	0.7671 (3)	0.5988 (2)	0.0478 (6)	
015	0.4977 (3)	0.7588 (3)	0.6240 (3)	0.0486 (7)	
016	0.5253 (3)	0.7617 (3)	0.8331 (2)	0.0411 (6)	
017	0.0657 (3)	0.7124 (3)	0.7653 (2)	0.0562 (7)	
018	0.2460 (3)	0.7987 (3)	0.8066 (3)	0.0568 (7)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C1	0.0415 (19)	0.0323 (17)	0.0258 (16)	-0.0083 (14)	-0.0103 (14)	-0.0029 (13)
C2	0.0367 (18)	0.0332 (17)	0.0284 (16)	-0.0069 (14)	-0.0130 (13)	-0.0023 (13)
C3	0.042 (2)	0.0387 (18)	0.0308 (17)	-0.0090 (15)	-0.0138 (14)	0.0003 (14)
C4	0.067 (3)	0.041 (2)	0.042 (2)	-0.0171 (19)	-0.0187 (18)	0.0097 (16)
C5	0.064 (3)	0.0315 (19)	0.063 (3)	-0.0087 (18)	-0.022 (2)	0.0003 (17)
C6	0.052 (2)	0.038 (2)	0.049 (2)	-0.0056 (17)	-0.0154 (18)	-0.0134 (16)
C7	0.042 (2)	0.0345 (18)	0.0318 (17)	-0.0081 (15)	-0.0135 (14)	-0.0057 (13)
C8	0.045 (2)	0.0417 (19)	0.0239 (15)	-0.0192 (16)	-0.0054 (14)	-0.0017 (14)
C9	0.0374 (19)	0.050 (2)	0.0244 (15)	-0.0190 (16)	-0.0058 (13)	0.0009 (14)
C10	0.054 (2)	0.056 (2)	0.0294 (17)	-0.0244 (19)	-0.0073 (16)	-0.0090 (16)
C11	0.068 (3)	0.070 (3)	0.0319 (19)	-0.027 (2)	-0.0029 (18)	-0.0148 (19)
C12	0.065 (3)	0.105 (4)	0.0235 (18)	-0.037 (3)	-0.0052 (18)	-0.005 (2)
C13	0.063 (3)	0.081 (3)	0.0317 (19)	-0.030 (2)	-0.0108 (18)	0.020 (2)
C14	0.052 (2)	0.050 (2)	0.0336 (18)	-0.0190 (18)	-0.0118 (16)	0.0075 (16)
C15	0.0389 (19)	0.0349 (17)	0.0276 (16)	-0.0133 (14)	-0.0046 (14)	0.0025 (13)
C16	0.0327 (18)	0.0315 (17)	0.0342 (17)	-0.0127 (14)	-0.0059 (14)	0.0010 (13)
C17	0.0373 (19)	0.0349 (18)	0.0434 (19)	-0.0106 (15)	-0.0044 (15)	-0.0038 (15)
C18	0.052 (2)	0.041 (2)	0.059 (2)	-0.0087 (18)	-0.0056 (19)	-0.0128 (18)
C19	0.063 (3)	0.0304 (19)	0.088 (3)	-0.0133 (19)	-0.024 (2)	-0.002 (2)
C20	0.062 (3)	0.042 (2)	0.069 (3)	-0.0244 (19)	-0.026 (2)	0.023 (2)
C21	0.046 (2)	0.042 (2)	0.0365 (18)	-0.0207 (16)	-0.0128 (16)	0.0112 (15)
Gd1	0.03710 (10)	0.02723 (9)	0.01941 (8)	-0.01211 (7)	-0.00154 (6)	-0.00127 (6)
O1	0.0634 (17)	0.0415 (14)	0.0304 (12)	-0.0094 (13)	-0.0058 (11)	-0.0097 (10)
O2	0.083 (2)	0.0354 (13)	0.0248 (12)	-0.0148 (13)	-0.0049 (12)	-0.0002 (10)
O3	0.0524 (15)	0.0315 (12)	0.0253 (11)	-0.0092 (10)	-0.0056 (10)	-0.0034 (9)
O4	0.0705 (18)	0.0412 (14)	0.0250 (11)	-0.0128 (13)	-0.0109 (11)	0.0023 (10)
O5	0.089 (2)	0.0483 (16)	0.0426 (15)	-0.0147 (15)	-0.0049 (15)	0.0146 (12)
O6	0.0646 (17)	0.0373 (13)	0.0286 (12)	-0.0137 (12)	-0.0031 (11)	-0.0006 (10)

O7	0.0685 (17)	0.0356 (13)	0.0244 (11)	-0.0211 (12)	-0.0041 (11)	0.0006 (10)	
08	0.104 (3)	0.0460 (16)	0.0382 (14)	-0.0290 (16)	-0.0009 (15)	-0.0107 (12)	
09	0.0708 (19)	0.0442 (14)	0.0305 (12)	-0.0174 (14)	0.0089 (12)	-0.0068 (11)	
O10	0.0517 (14)	0.0314 (12)	0.0242 (11)	-0.0150 (10)	-0.0007 (10)	0.0020 (9)	
O11	0.0757 (19)	0.0404 (14)	0.0274 (12)	-0.0186 (13)	0.0032 (12)	-0.0027 (10)	
O12	0.078 (2)	0.0539 (16)	0.0328 (13)	-0.0260 (15)	-0.0044 (13)	0.0136 (11)	
O13	0.0400 (15)	0.0621 (17)	0.0298 (13)	-0.0185 (13)	-0.0047 (11)	-0.0047 (11)	
O14	0.0431 (16)	0.0630 (18)	0.0321 (14)	-0.0193 (13)	0.0007 (13)	-0.0057 (13)	
O15	0.0488 (18)	0.0697 (19)	0.0293 (14)	-0.0218 (14)	-0.0128 (14)	0.0000 (13)	
O16	0.0433 (15)	0.0522 (17)	0.0260 (12)	-0.0206 (13)	-0.0019 (10)	0.0002 (13)	
O17	0.0467 (17)	0.0580 (19)	0.0679 (19)	-0.0180 (15)	-0.0125 (14)	-0.0215 (15)	
O18	0.0658 (19)	0.0581 (19)	0.0603 (19)	-0.0311 (15)	-0.0308 (15)	0.0126 (15)	

Geometric parameters (Å, °)

C1—02	1.245 (4)	C17—C18	1.381 (5)
C103	1.290 (3)	C18—C19	1.378 (5)
C1—C2	1.475 (4)	C18—H18	0.9300
C2—C3	1.402 (4)	C19—C20	1.378 (6)
C2—C7	1.412 (4)	C19—H19	0.9300
C3—O4	1.367 (4)	C20—C21	1.380 (5)
C3—C4	1.383 (4)	C20—H20	0.9300
C4—C5	1.384 (5)	C21—O12	1.348 (4)
C4—H4A	0.9300	Gd1—O3	2.344 (2)
C5—C6	1.377 (5)	Gd1010	2.345 (2)
C5—H5A	0.9300	Gd1—O16	2.366 (2)
С6—С7	1.377 (4)	Gd1—O15	2.380 (3)
С6—Н6	0.9300	Gd1014	2.394 (3)
C7—O1	1.360 (4)	Gd1—O13	2.422 (2)
C8—O6	1.267 (4)	Gd1—O7	2.453 (2)
C8—O7	1.275 (4)	Gd1—O6	2.515 (2)
C8—C9	1.474 (4)	O1—H1	0.8200
C9—C14	1.396 (5)	O4—H4	0.8200
C9—C10	1.398 (5)	O5—H5	0.8200
C10—O8	1.351 (4)	O8—H8	0.8200
C10-C11	1.386 (5)	O9—H9	0.8200
C11—C12	1.362 (6)	O12—H12	0.8200
C11—H11	0.9300	O13—H13A	0.84 (5)
C12—C13	1.365 (6)	O13—H13B	0.88 (5)
C12—H12A	0.9300	O14—H14A	0.77 (5)
C13—C14	1.390 (5)	O14—H14B	0.84 (5)
С13—Н13	0.9300	O15—H15A	0.83 (5)
C14—O5	1.353 (4)	O15—H15B	0.70 (4)
C15—O11	1.251 (4)	O16—H16A	0.72 (4)
C15—O10	1.286 (3)	O16—H16B	0.88 (6)
C15—C16	1.478 (4)	O17—H17A	0.86 (5)
C16—C17	1.399 (4)	O17—H17B	0.82 (5)
C16—C21	1.411 (4)	O18—H18A	0.91 (7)

С17—О9	1.370 (4)	O18—H18B	0.83 (5)
O2—C1—O3	122.3 (3)	C19—C20—H20	120.2
O2—C1—C2	119.6 (3)	С21—С20—Н20	120.2
O3—C1—C2	118.1 (3)	O12—C21—C20	118.5 (3)
C3—C2—C7	117.6 (3)	O12—C21—C16	120.9 (3)
C3—C2—C1	122.1 (3)	C20—C21—C16	120.6 (3)
C7—C2—C1	120.4 (3)	O3—Gd1—O10	156.25 (7)
Q4—C3—C4	117.8 (3)	O3—Gd1—O16	77.50 (10)
O4—C3—C2	121.0 (3)	010—Gd1—016	79.15 (10)
C4—C3—C2	121.2 (3)	O3—Gd1—O15	88.85 (9)
C3—C4—C5	119.1 (3)	O10—Gd1—O15	87.16 (9)
C3—C4—H4A	120.4	O16—Gd1—O15	69.80 (10)
C5—C4—H4A	120.4	03—Gd1—014	90.77 (9)
C6—C5—C4	121.5 (3)	O10—Gd1—O14	104.82 (9)
С6—С5—Н5А	119.2	O16—Gd1—O14	141.00 (10)
C4—C5—H5A	119.2	015—Gd1—014	147.97 (11)
C5—C6—C7	119.3 (3)	O3—Gd1—O13	84.56 (8)
С5—С6—Н6	120.4	O10—Gd1—O13	83.92 (8)
С7—С6—Н6	120.4	O16—Gd1—O13	71.30 (9)
O1—C7—C6	118.4 (3)	O15—Gd1—O13	141.05 (10)
O1—C7—C2	120.3 (3)	O14—Gd1—O13	70.64 (10)
C6—C7—C2	121.3 (3)	O3—Gd1—O7	128.31 (7)
O6—C8—O7	118.9 (3)	O10—Gd1—O7	73.64 (7)
O6—C8—C9	121.2 (3)	O16—Gd1—O7	138.91 (9)
O7—C8—C9	119.8 (3)	O15—Gd1—O7	78.57 (10)
C14—C9—C10	118.4 (3)	O14—Gd1—O7	76.67 (9)
C14—C9—C8	120.8 (3)	O13—Gd1—O7	133.70 (9)
C10—C9—C8	120.8 (3)	O3—Gd1—O6	76.04 (7)
O8—C10—C11	118.1 (3)	O10—Gd1—O6	125.25 (7)
O8—C10—C9	121.4 (3)	O16—Gd1—O6	136.37 (9)
C11—C10—C9	120.5 (3)	O15—Gd1—O6	75.59 (10)
C12—C11—C10	119.2 (4)	O14—Gd1—O6	73.26 (9)
C12—C11—H11	120.4	O13—Gd1—O6	138.47 (9)
C10-C11-H11	120.4	O7—Gd1—O6	52.28 (7)
C11—C12—C13	122.4 (3)	C7—O1—H1	109.5
C11—C12—H12A	118.8	C1—O3—Gd1	136.40 (19)
C13—C12—H12A	118.8	С3—О4—Н4	109.5
C12—C13—C14	118.8 (4)	С14—О5—Н5	109.5
С12—С13—Н13	120.6	C8—O6—Gd1	92.90 (18)
C14—C13—H13	120.6	C8—O7—Gd1	95.61 (18)
O5—C14—C13	118.3 (3)	С10—О8—Н8	109.5
O5—C14—C9	121.0 (3)	С17—О9—Н9	109.5
C13—C14—C9	120.6 (4)	C15—O10—Gd1	136.89 (19)
O11—C15—O10	122.0 (3)	C21—O12—H12	109.5
O11—C15—C16	120.0 (3)	Gd1-013-H13A	126 (3)
O10-C15-C16	118.0 (3)	Gd1-013-H13B	124 (3)
C17—C16—C21	117.8 (3)	H13A—O13—H13B	110 (4)

C17—C16—C15	122.6 (3)	Gd1—O14—H14A	118 (4)
C21—C16—C15	119.6 (3)	Gd1-014-H14B	126 (3)
O9—C17—C18	117.8 (3)	H14A—O14—H14B	100 (5)
O9—C17—C16	120.4 (3)	Gd1	132 (3)
C18—C17—C16	121.8 (3)	Gd1-015-H15B	118 (4)
C19—C18—C17	118.6 (4)	H15A—O15—H15B	102 (5)
C19—C18—H18	120.7	Gd1	102(0) 115(3)
C17—C18—H18	120.7	Gd1	117 (4)
C18 - C19 - C20	121.8 (3)	$H_{16A} - O_{16} - H_{16B}$	117(1)
C18 - C19 - H19	119.1	H17A-017-H17B	109(5)
C_{20} C_{19} H_{19}	119.1	H18A = 018 = H18B	109(5)
C_{19} C_{20} C_{21} C_{21}	119.5 (3)		10) (0)
010-020-021	117.5 (5)		
O2—C1—C2—C3	-177.4 (3)	C16—C17—C18—C19	0.1 (6)
O3—C1—C2—C3	2.3 (5)	C17—C18—C19—C20	-0.6 (6)
O2—C1—C2—C7	2.5 (5)	C18—C19—C20—C21	0.0 (6)
O3—C1—C2—C7	-177.8(3)	C19—C20—C21—O12	-179.3 (4)
C7—C2—C3—O4	-179.1 (3)	C19—C20—C21—C16	1.1 (6)
C1—C2—C3—O4	0.8 (5)	C17—C16—C21—O12	178.9 (3)
C7—C2—C3—C4	0.5 (5)	C15—C16—C21—O12	-2.1(5)
C1—C2—C3—C4	-179.6 (3)	C17—C16—C21—C20	-1.5(5)
O4—C3—C4—C5	-180.0(3)	C15—C16—C21—C20	177.6 (3)
C2-C3-C4-C5	0.4 (5)	O2—C1—O3—Gd1	-4.0(5)
C3-C4-C5-C6	-0.9 (6)	C2-C1-O3-Gd1	176.3 (2)
C4—C5—C6—C7	0.4 (6)	010-Gd1-03-C1	13.5 (4)
C5—C6—C7—O1	179.0 (3)	O16—Gd1—O3—C1	24.3 (3)
C5—C6—C7—C2	0.5 (5)	O15—Gd1—O3—C1	93.8 (3)
C3-C2-C7-O1	-179.4(3)	014-Gd1-03-C1	-118.2(3)
C1—C2—C7—O1	0.7 (5)	013—Gd1—O3—C1	-47.8(3)
C3—C2—C7—C6	-0.9(5)	O7—Gd1—O3—C1	168.2 (3)
C1—C2—C7—C6	179.2 (3)	O6—Gd1—O3—C1	169.2 (3)
O6—C8—C9—C14	2.9 (5)	O7—C8—O6—Gd1	5.2 (3)
O7—C8—C9—C14	-174.8 (3)	C9—C8—O6—Gd1	-172.5 (3)
O6—C8—C9—C10	-178.7(3)	O3—Gd1—O6—C8	178.0 (2)
O7—C8—C9—C10	3.7 (5)	O10—Gd1—O6—C8	-13.7(2)
C14—C9—C10—O8	-179.8 (3)	O16—Gd1—O6—C8	-127.7(2)
C8—C9—C10—O8	1.8 (5)	O15—Gd1—O6—C8	-89.5 (2)
C14—C9—C10—C11	1.3 (5)	O14—Gd1—O6—C8	82.9 (2)
C8—C9—C10—C11	-177.1 (3)	O13—Gd1—O6—C8	113.4 (2)
O8—C10—C11—C12	-179.5 (4)	O7—Gd1—O6—C8	-2.98(18)
C9—C10—C11—C12	-0.5 (6)	O6—C8—O7—Gd1	-5.3 (3)
C10-C11-C12-C13	-0.6 (6)	C9—C8—O7—Gd1	172.4 (3)
C11—C12—C13—C14	0.9 (7)	O3—Gd1—O7—C8	4.2 (2)
C12—C13—C14—O5	-179.9 (4)	O10—Gd1—O7—C8	173.9 (2)
C12—C13—C14—C9	0.0 (6)	O16—Gd1—O7—C8	123.3 (2)
C10—C9—C14—O5	178.8 (3)	O15—Gd1—O7—C8	83.5 (2)
C8—C9—C14—O5	-2.8 (5)	O14—Gd1—O7—C8	-76.0 (2)
C10-C9-C14-C13	-1.1 (5)	O13—Gd1—O7—C8	-121.8 (2)

C8—C9—C14—C13	177.4 (3)	O6—Gd1—O7—C8	2.98 (19)
O11—C15—C16—C17	176.8 (3)	O11-C15-O10-Gd1	2.3 (5)
O10-C15-C16-C17	-2.2 (5)	C16-C15-O10-Gd1	-178.7 (2)
O11-C15-C16-C21	-2.3 (5)	O3—Gd1—O10—C15	-12.1 (4)
O10-C15-C16-C21	178.8 (3)	O16—Gd1—O10—C15	-22.7 (3)
C21—C16—C17—O9	-179.1 (3)	O15—Gd1—O10—C15	-92.7 (3)
C15—C16—C17—O9	1.8 (5)	O14—Gd1—O10—C15	117.4 (3)
C21—C16—C17—C18	0.9 (5)	O13—Gd1—O10—C15	49.3 (3)
C15-C16-C17-C18	-178.2 (3)	O7—Gd1—O10—C15	-171.6 (3)
O9—C17—C18—C19	-179.9 (4)	O6—Gd1—O10—C15	-162.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
013—H13A…O17 ⁱ	0.84 (5)	1.88 (5)	2.697 (5)	161 (4)
O14—H14A…O17 ⁱ	0.77 (5)	1.99 (7)	2.766 (5)	172 (4)
O15—H15A···O4 ⁱⁱ	0.83 (5)	1.90 (8)	2.739 (5)	176 (5)
O16—H16A…O11	0.72 (4)	2.09 (5)	2.735 (5)	151 (2)
O16—H16A···O12 ⁱⁱⁱ	0.72 (4)	2.50 (5)	2.865 (5)	113 (7)
O17—H17A···O18	0.86 (5)	1.81 (5)	2.668 (5)	175 (5)
O18—H18A····O5 ⁱⁱ	0.91 (7)	1.88 (5)	2.752 (5)	161 (4)
O13—H13 <i>B</i> ···O1 ^{iv}	0.88 (5)	1.94 (5)	2.808 (5)	172 (5)
O14—H14 <i>B</i> ····O9 ^v	0.84 (5)	1.90 (5)	2.739 (5)	174 (5)
O15—H15B…O18	0.70 (4)	2.22 (5)	2.917 (5)	176 (6)
O16—H16B····O2	0.88 (6)	1.89 (5)	2.672 (5)	147 (5)
O17—H17 <i>B</i> ···O8 ^{vi}	0.82 (5)	2.03 (5)	2.713 (5)	140 (5)
O18—H18B····O12 ⁱⁱⁱ	0.83 (5)	2.08 (5)	2.898 (5)	172 (3)
O1—H1…O2	0.82	1.78	2.515 (5)	148
O4—H4…O3	0.82	1.82	2.549 (5)	147
O5—H5…O6	0.82	1.83	2.566 (5)	148
O8—H8…O7	0.82	1.83	2.546 (5)	145
O9—H9…O10	0.82	1.82	2.551 (5)	147
O12—H12…O11	0.82	1.78	2.512 (5)	148

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+2, -z+2; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.