organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2;5,6-Di-O-iso­propyl­­idene-3-C-nitro­methyl-α-D-allo­furan­ose

aNew Drug Reseach & Development Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zqr409@126.com

(Received 4 May 2011; accepted 7 May 2011; online 14 May 2011)

The mol­ecule of the title compound, C13H21NO8, consists of two methyl­enedi­oxy rings and one tetra­hydro­furan ring. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into helical chains running along the 61 screw axis. Weak inter­molecular C—H⋯O hydrogen bonds help to stabilize the crystal packing. Voids of 245 Å3 per unit cell occur.

Related literature

For details of the synthesis, see: Saito et al. (2002[Saito, Y., Zevaco, T. A. & Agrofoglio, L. A. (2002). Tetrahedron, 58, 9593-9603.]). For recent studies of the biological activity of aza­sugars, see: Loiseleur et al. (2007[Loiseleur, O., Ritson, D., Mafalda, N., Crowley, P., Wagner, T. & Hanessian, S. (2007). J. Org. Chem. 72, 6353-6363.]); Rahman et al. (2008[Rahman, S. M. A., Seki, S., Obika, S., Yoshikawa, H., Miyashita, K. & Imanishi, T. (2008). J. Am. Chem. Soc. 130, 4886-4896.]).

[Scheme 1]

Experimental

Crystal data
  • C13H21NO8

  • Mr = 319.31

  • Hexagonal, P 61

  • a = 13.2581 (19) Å

  • c = 16.462 (3) Å

  • V = 2506.0 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS-IV diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.979

  • 8380 measured reflections

  • 1612 independent reflections

  • 1534 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.164

  • S = 1.08

  • 1612 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3E⋯O6i 0.90 (8) 1.95 (8) 2.814 (5) 161 (7)
C1—H1A⋯O3ii 0.98 2.37 3.258 (4) 151
C5—H5A⋯O1iii 0.98 2.50 3.320 (4) 141
Symmetry codes: (i) [x-y, x, z+{\script{1\over 6}}]; (ii) [x-y+1, x+1, z+{\script{1\over 6}}]; (iii) [-x+y, -x+1, z-{\script{1\over 3}}].

Data collection: R-AXIS-IV Software (Rigaku, 1997[Rigaku (1997). R-AXIS IV Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: R-AXIS-IV Software; data reduction: R-AXIS-IV Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: TEXSAN (Molecular Structure Corporation, 1992[Molecular Structure Corporation (1992). TEXSAN. MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: TEXSAN.

Supporting information


Comment top

Azasugars were recently used as novel glycosyls to synthesize novel N-nucleosides (Loiseleur et al., 2007; Rahman et al., 2008). Herewith we report the synthesis and crystal structure of the title compound (I) prepared in enantiomerically pure form from 1,2;5,6-di-O-isopropylidene-3-carbonyl-α-D-glucofuranose (Saito et al., 2002) at room tempeature, whose raw material was D-glucose.

The molecule of (I) consists of two methylenedioxy rings and one tetrahydrofuran ring (Fig. 1). In (I), the tetrahydrofuran ring fuses with one methylenedioxy ring, having the cis arrangement at the ring junctions and giving a V-shaped molecule. The angles O1—C8—O2, O5—C11—O6, C9—C8—C10 and C12—C11—C13 around the two isopropylidenes are 104.1 (4), 105.5 (4), 113.9 (5) and 114.2 (6)°, respectively.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into helical chains running along screw axis 61, and weak intermolecular C—H···O hydrogen bonds (Table 1) help to stabilize the crystal packing.

Related literature top

For details of the synthesis, see: Saito et al. (2002). For recent studies of the biological activity of azasugars, see: Loiseleur et al. (2007); Rahman et al. (2008).

Experimental top

All reagents and solvents were used as obtained without further purification. 1,2;5,6-di-O-isopropylidene-3-C-(nitromethyl)- α-D-allofuranose was synthesized from 1,2;5,6-di-O-isopropylidene-3-carbonyl-α-D-glucofuranose as described previously by Saito et al. (2002), whose starting material was D-glucose. To a solution of 1,2;5,6-di-O-isopropylidene-3-carbonyl -α-D-Glucofuranose (7.0 g, 27 mmol) in tetrahydrofuran (50 ml) was added CH3NO2 (10.5 ml) and potassium fluoride (3.0 g).The mixture was stirred at room temperature for 6 h. The reaction mixture was then concentrated in vacuo and extracted with water and EtOAc, dried (Na2SO4), and evaporated. The residue was recrystalied in CH3OH to yield the title compound. Crystals suitable for X-ray analysis were grown by slow evaporation from methanol at room temperature for two weeks. Rf = 0.7 (CHCl3/EtOAc, 7:3); mp: 110–111°C, [α]20D = +96° (c, 1.0, CH3OH); 1H NMR (400 MHz, CDCl3) σ: 5.85(1H, d, J = 3.6 Hz), 4.97 (1H, d, J = 12 Hz), 4.89 (1H, d, J = 3.6 Hz), 4.49 (1H, d, J = 12 Hz), 4.13 (1H, m), 4.01(1H,m), 3.95 (1H, m), 3.89 (1H, d, J = 8.8), 3.27 (1H, s), 1.61 (3H, s), 1.47 (3H, s), 1.39 (3H, s), 1.36 (3H, s); 13C NMR (100 MHz, CDCl3) σ: 113.3, 110.4, 103.7, 81.7, 79.8, 78.5, 77.6, 72.9, 67.9, 26.6, 26.5, 26.5, 25.0.

Refinement top

Atom H3E was located on a difference map and isotropically refined. C-bound H atoms were placed geometrically and treated as riding on their parent atoms with C—H are 0.96 Å (methylene) or 0.93 Å (aromatic), and Uiso(H) =1.2Ueq(C). In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 1468 sets of Friedel equivalents led to an inconclusive value of 10 (10). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound. The porous crystal packing exhibits voids of 245 Å3.

Computing details top

Data collection: R-AXIS-IV Software (Rigaku, 1997); cell refinement: R-AXIS-IV Software (Rigaku, 1997); data reduction: R-AXIS-IV Software (Rigaku, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: TEXSAN (Molecular Structure Corporation, 1992); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1992).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. H atoms omitted for clarity.
[Figure 2] Fig. 2. Packing diagram.
1,2;5,6-Di-O-isopropylidene-3-C-nitromethyl-α-D-allofuranose top
Crystal data top
C13H21NO8Dx = 1.270 Mg m3
Mr = 319.31Melting point = 383–384 K
Hexagonal, P61Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 61Cell parameters from 398 reflections
a = 13.2581 (19) Åθ = 2–25.1°
c = 16.462 (3) ŵ = 0.11 mm1
V = 2506.0 (7) Å3T = 291 K
Z = 6Prismatic, colourless
F(000) = 10200.24 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS-IV
diffractometer
1612 independent reflections
Radiation source: fine-focus sealed tube1534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 1.8°
Oscillation frames scansh = 1316
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 160
Tmin = 0.975, Tmax = 0.979l = 1919
8380 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0962P)2 + 1.0744P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1612 reflectionsΔρmax = 0.43 e Å3
205 parametersΔρmin = 0.26 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C13H21NO8Z = 6
Mr = 319.31Mo Kα radiation
Hexagonal, P61µ = 0.11 mm1
a = 13.2581 (19) ÅT = 291 K
c = 16.462 (3) Å0.24 × 0.20 × 0.20 mm
V = 2506.0 (7) Å3
Data collection top
Rigaku R-AXIS-IV
diffractometer
1612 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1534 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.047
8380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
1612 reflectionsΔρmin = 0.26 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2338 (3)0.7097 (4)0.2334 (2)0.0565 (10)
O20.0552 (3)0.6458 (3)0.1793 (2)0.0427 (8)
O30.0092 (2)0.5408 (3)0.0319 (2)0.0405 (7)
O40.3029 (3)0.6935 (3)0.1082 (2)0.0490 (9)
O50.1802 (3)0.4394 (3)0.0205 (3)0.0597 (11)
O60.3601 (3)0.4537 (4)0.0197 (3)0.0557 (9)
O70.0437 (7)0.7865 (7)0.0252 (4)0.127 (3)
O80.0234 (7)0.6912 (7)0.1261 (4)0.131 (3)
N10.0764 (5)0.7349 (5)0.0646 (3)0.0639 (13)
C10.2559 (4)0.7508 (4)0.1523 (3)0.0472 (12)
H1A0.30680.83550.15020.057*
C20.1347 (4)0.7135 (4)0.1170 (3)0.0417 (10)
H2A0.12630.78000.10050.050*
C30.1227 (4)0.6337 (4)0.0451 (3)0.0358 (9)
C40.2095 (3)0.5932 (4)0.0705 (3)0.0362 (10)
H4A0.17210.53170.11140.043*
C50.2641 (4)0.5535 (5)0.0066 (3)0.0445 (11)
H5A0.29180.60810.03920.053*
C60.3605 (5)0.5349 (5)0.0379 (3)0.0514 (12)
H6A0.43470.60700.03810.062*
H6B0.34380.50250.09230.062*
C70.1610 (4)0.7012 (5)0.0346 (3)0.0496 (12)
H7A0.23600.77090.02680.059*
H7B0.17030.65370.07540.059*
C80.1192 (4)0.6842 (5)0.2544 (3)0.0463 (12)
C90.0671 (6)0.5833 (6)0.3133 (4)0.0650 (15)
H9A0.06720.51740.28920.097*
H9B0.01140.56350.32580.097*
H9C0.11250.60500.36230.097*
C100.1218 (6)0.7930 (6)0.2860 (4)0.0693 (17)
H10A0.15420.85280.24530.104*
H10B0.16890.81960.33410.104*
H10C0.04400.77550.29860.104*
C110.2428 (4)0.3839 (5)0.0501 (4)0.0552 (13)
C120.1872 (7)0.2647 (6)0.0156 (6)0.093 (2)
H12A0.18860.26900.04260.139*
H12B0.22910.22690.03320.139*
H12C0.10800.22100.03400.139*
C130.2482 (6)0.3881 (7)0.1415 (4)0.0729 (19)
H13A0.28600.46770.15920.109*
H13B0.17070.34690.16320.109*
H13C0.29150.35230.16020.109*
H3E0.017 (6)0.497 (6)0.077 (5)0.067 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0408 (19)0.077 (3)0.0453 (19)0.0249 (17)0.0092 (15)0.0111 (18)
O20.0312 (16)0.0491 (19)0.0426 (17)0.0161 (15)0.0026 (13)0.0029 (14)
O30.0244 (15)0.0419 (17)0.0460 (17)0.0098 (14)0.0045 (13)0.0004 (15)
O40.0269 (16)0.057 (2)0.054 (2)0.0135 (14)0.0040 (14)0.0109 (16)
O50.0323 (17)0.066 (2)0.075 (2)0.0197 (16)0.0017 (17)0.028 (2)
O60.045 (2)0.071 (2)0.059 (2)0.0357 (19)0.0046 (17)0.0059 (19)
O70.193 (8)0.185 (7)0.089 (4)0.159 (7)0.029 (4)0.013 (5)
O80.173 (6)0.184 (7)0.094 (4)0.132 (6)0.057 (5)0.031 (5)
N10.095 (4)0.069 (3)0.044 (3)0.053 (3)0.006 (3)0.003 (2)
C10.033 (2)0.041 (3)0.056 (3)0.010 (2)0.005 (2)0.010 (2)
C20.037 (2)0.037 (2)0.047 (3)0.016 (2)0.003 (2)0.002 (2)
C30.029 (2)0.034 (2)0.040 (2)0.0126 (18)0.0018 (17)0.0001 (18)
C40.026 (2)0.040 (2)0.035 (2)0.0113 (18)0.0010 (17)0.0023 (18)
C50.034 (2)0.054 (3)0.043 (2)0.020 (2)0.0006 (19)0.002 (2)
C60.044 (3)0.067 (3)0.047 (3)0.031 (3)0.000 (2)0.008 (3)
C70.041 (3)0.058 (3)0.046 (3)0.022 (2)0.003 (2)0.011 (2)
C80.035 (2)0.055 (3)0.043 (3)0.018 (2)0.0061 (19)0.011 (2)
C90.063 (4)0.077 (4)0.050 (3)0.031 (3)0.006 (3)0.003 (3)
C100.067 (4)0.070 (4)0.067 (4)0.031 (3)0.004 (3)0.019 (3)
C110.044 (3)0.064 (3)0.059 (3)0.027 (3)0.012 (2)0.010 (3)
C120.093 (5)0.065 (4)0.106 (6)0.028 (4)0.033 (5)0.000 (4)
C130.060 (3)0.105 (5)0.061 (3)0.047 (4)0.005 (3)0.023 (4)
Geometric parameters (Å, º) top
O1—C11.415 (7)C5—C61.509 (7)
O1—C81.424 (6)C5—H5A0.9800
O2—C21.421 (6)C6—H6A0.9700
O2—C81.441 (6)C6—H6B0.9700
O3—C31.405 (5)C7—H7A0.9700
O3—H3E0.90 (8)C7—H7B0.9700
O4—C11.402 (6)C8—C91.510 (8)
O4—C41.428 (5)C8—C101.517 (8)
O5—C51.429 (6)C9—H9A0.9600
O5—C111.441 (6)C9—H9B0.9600
O6—C61.432 (6)C9—H9C0.9600
O6—C111.445 (7)C10—H10A0.9600
O7—N11.171 (8)C10—H10B0.9600
O8—N11.204 (8)C10—H10C0.9600
N1—C71.484 (7)C11—C121.483 (10)
C1—C21.540 (7)C11—C131.506 (9)
C1—H1A0.9800C12—H12A0.9600
C2—C31.542 (7)C12—H12B0.9600
C2—H2A0.9800C12—H12C0.9600
C3—C71.525 (7)C13—H13A0.9600
C3—C41.551 (6)C13—H13B0.9600
C4—C51.513 (6)C13—H13C0.9600
C4—H4A0.9800
C1—O1—C8108.2 (4)H6A—C6—H6B109.2
C2—O2—C8106.1 (3)N1—C7—C3112.5 (4)
C3—O3—H3E110 (4)N1—C7—H7A109.1
C1—O4—C4108.4 (3)C3—C7—H7A109.1
C5—O5—C11107.7 (4)N1—C7—H7B109.1
C6—O6—C11108.0 (4)C3—C7—H7B109.1
O7—N1—O8116.7 (7)H7A—C7—H7B107.8
O7—N1—C7123.3 (5)O1—C8—O2104.1 (4)
O8—N1—C7118.8 (6)O1—C8—C9109.1 (4)
O4—C1—O1110.1 (4)O2—C8—C9108.1 (4)
O4—C1—C2107.8 (4)O1—C8—C10110.0 (4)
O1—C1—C2104.5 (4)O2—C8—C10111.1 (5)
O4—C1—H1A111.4C9—C8—C10113.9 (5)
O1—C1—H1A111.4C8—C9—H9A109.5
C2—C1—H1A111.4C8—C9—H9B109.5
O2—C2—C1104.8 (4)H9A—C9—H9B109.5
O2—C2—C3109.3 (4)C8—C9—H9C109.5
C1—C2—C3104.0 (4)H9A—C9—H9C109.5
O2—C2—H2A112.7H9B—C9—H9C109.5
C1—C2—H2A112.7C8—C10—H10A109.5
C3—C2—H2A112.7C8—C10—H10B109.5
O3—C3—C7106.1 (4)H10A—C10—H10B109.5
O3—C3—C2114.6 (4)C8—C10—H10C109.5
C7—C3—C2111.6 (4)H10A—C10—H10C109.5
O3—C3—C4113.2 (3)H10B—C10—H10C109.5
C7—C3—C4110.4 (4)O5—C11—O6105.5 (4)
C2—C3—C4101.0 (3)O5—C11—C12108.0 (5)
O4—C4—C5106.5 (3)O6—C11—C12110.6 (6)
O4—C4—C3104.1 (3)O5—C11—C13110.4 (6)
C5—C4—C3119.9 (4)O6—C11—C13107.8 (5)
O4—C4—H4A108.6C12—C11—C13114.2 (6)
C5—C4—H4A108.6C11—C12—H12A109.5
C3—C4—H4A108.6C11—C12—H12B109.5
O5—C5—C6102.0 (4)H12A—C12—H12B109.5
O5—C5—C4109.4 (4)C11—C12—H12C109.5
C6—C5—C4114.2 (4)H12A—C12—H12C109.5
O5—C5—H5A110.3H12B—C12—H12C109.5
C6—C5—H5A110.3C11—C13—H13A109.5
C4—C5—H5A110.3C11—C13—H13B109.5
O6—C6—C5102.2 (4)H13A—C13—H13B109.5
O6—C6—H6A111.3C11—C13—H13C109.5
C5—C6—H6A111.3H13A—C13—H13C109.5
O6—C6—H6B111.3H13B—C13—H13C109.5
C5—C6—H6B111.3
C4—O4—C1—O191.7 (4)C11—O5—C5—C4154.2 (4)
C4—O4—C1—C221.7 (5)O4—C4—C5—O5166.8 (4)
C8—O1—C1—O4132.3 (4)C3—C4—C5—O575.7 (5)
C8—O1—C1—C216.8 (5)O4—C4—C5—C653.2 (5)
C8—O2—C2—C124.8 (5)C3—C4—C5—C6170.8 (4)
C8—O2—C2—C3135.8 (4)C11—O6—C6—C529.7 (6)
O4—C1—C2—O2111.9 (4)O5—C5—C6—O637.9 (5)
O1—C1—C2—O25.2 (5)C4—C5—C6—O6155.7 (4)
O4—C1—C2—C32.9 (5)O7—N1—C7—C353.9 (9)
O1—C1—C2—C3119.9 (4)O8—N1—C7—C3112.8 (7)
O2—C2—C3—O334.0 (5)O3—C3—C7—N153.1 (6)
C1—C2—C3—O3145.5 (4)C2—C3—C7—N172.5 (5)
O2—C2—C3—C7154.7 (4)C4—C3—C7—N1176.1 (4)
C1—C2—C3—C793.8 (5)C1—O1—C8—O232.4 (5)
O2—C2—C3—C488.0 (4)C1—O1—C8—C9147.7 (4)
C1—C2—C3—C423.5 (4)C1—O1—C8—C1086.7 (5)
C1—O4—C4—C5164.9 (4)C2—O2—C8—O135.5 (5)
C1—O4—C4—C337.3 (5)C2—O2—C8—C9151.4 (4)
O3—C3—C4—O4159.9 (4)C2—O2—C8—C1082.9 (5)
C7—C3—C4—O481.3 (4)C5—O5—C11—O615.2 (6)
C2—C3—C4—O436.8 (4)C5—O5—C11—C12133.6 (6)
O3—C3—C4—C581.4 (5)C5—O5—C11—C13100.9 (5)
C7—C3—C4—C537.4 (5)C6—O6—C11—O510.1 (6)
C2—C3—C4—C5155.6 (4)C6—O6—C11—C12106.5 (6)
C11—O5—C5—C632.9 (5)C6—O6—C11—C13128.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3E···O6i0.90 (8)1.95 (8)2.814 (5)161 (7)
C1—H1A···O3ii0.982.373.258 (4)151
C5—H5A···O1iii0.982.503.320 (4)141
Symmetry codes: (i) xy, x, z+1/6; (ii) xy+1, x+1, z+1/6; (iii) x+y, x+1, z1/3.

Experimental details

Crystal data
Chemical formulaC13H21NO8
Mr319.31
Crystal system, space groupHexagonal, P61
Temperature (K)291
a, c (Å)13.2581 (19), 16.462 (3)
V3)2506.0 (7)
Z6
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS-IV
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8380, 1612, 1534
Rint0.047
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.08
No. of reflections1612
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.26

Computer programs: R-AXIS-IV Software (Rigaku, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 1992).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3E···O6i0.90 (8)1.95 (8)2.814 (5)161 (7)
C1—H1A···O3ii0.982.373.258 (4)150.9
C5—H5A···O1iii0.982.503.320 (4)140.9
Symmetry codes: (i) xy, x, z+1/6; (ii) xy+1, x+1, z+1/6; (iii) x+y, x+1, z1/3.
 

Acknowledgements

We gratefully acknowledge financial support by the National Natural Science Foundation of China (grant No. 20572103).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLoiseleur, O., Ritson, D., Mafalda, N., Crowley, P., Wagner, T. & Hanessian, S. (2007). J. Org. Chem. 72, 6353–6363.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation (1992). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRahman, S. M. A., Seki, S., Obika, S., Yoshikawa, H., Miyashita, K. & Imanishi, T. (2008). J. Am. Chem. Soc. 130, 4886-4896.  Web of Science PubMed CAS Google Scholar
First citationRigaku (1997). R-AXIS IV Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaito, Y., Zevaco, T. A. & Agrofoglio, L. A. (2002). Tetrahedron, 58, 9593–9603.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds