organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(7-Eth­­oxy-1H-indazol-4-yl)-4-methyl­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: elmostapha1@ymail.com

(Received 25 April 2011; accepted 2 May 2011; online 7 May 2011)

The mol­ecule of the title heterocyclic compound, C16H17N3O3S, is bent at the S atom with an C—SO2—NH—C torsion angle of 80.17 (8)°. The phenyl substituent at the S atom is rotated out of the plane of the 1H-indazole ring [inter­planar angle = 46.24 (8)°]. In the crystal, inter­molecular N—H⋯N and N—H⋯O hydrogen bonds build up a ribbon developing parallel to the b-axis direction. C—H⋯O hydrogen bonds link these ribbons, forming a layer parallel to the bc plane.

Related literature

For related structures, see: Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o104.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o142.]); Khan et al. (2010[Khan, I. U., Ahmad, W., Arshad, M. N., Sharif, S. & Ahmed, J. (2010). Acta Cryst. E66, o2507.]); Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1702.]). For the biological activity of similar sulfonamides, see: Soledade et al. (2006[Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958-4979.]); Lee & Lee, (2002[Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167-169.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O3S

  • Mr = 331.39

  • Monoclinic, P 21 /c

  • a = 16.2579 (4) Å

  • b = 5.0291 (1) Å

  • c = 20.4551 (5) Å

  • β = 97.269 (1)°

  • V = 1659.02 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.14 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 31243 measured reflections

  • 6745 independent reflections

  • 5062 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.158

  • S = 1.07

  • 6745 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O1i 0.97 2.54 3.373 (3) 144
N1—H14⋯O2ii 0.85 2.07 2.9159 (15) 172
N2—H2A⋯N3iii 0.86 2.21 2.8974 (15) 136
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y+3, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Similar sulfonamides have been studied in various previously works [Shakuntala et al. 2011a and 2011b; Khan et al. 2010; Gowda et al. 2010] and have proved important functionalities for biological and anti-hypertensive activities [Soledade et al., 2006; Lee & Lee, 2002].

In the title compound, C16H17N3O3S, the molecule is bent at the S atom with an C—SO2—NH—C torsion angle of 80.17 (8)° (Fig. 1). In the crystal structure, intermolecular N—H···N and N—H···O hydrogen bonds build up a ribbon developping parallel to the b direction and the C—H···O link these reibons to form a two D layer parallel to the bc plane (Fig. 2, Table 1).

The S atom has a distorted tetrahedral geometry [maximum deviation: O—S—O = 119.87 (9)°]. The phenyl substituent at S1 atom is rotated out of the plane of the 1H-indazol ring (the interplanar angles is 46.24 (8)°).

Related literature top

For related structures, see: Shakuntala et al. (2011a,b); Khan et al. (2010); Gowda et al. (2010). For the biological activity of similar sulfonamides, see: Soledade et al. (2006); Lee & Lee, (2002).

Experimental top

A mixture of 4-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was heated at 60 °C for 2 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-methylbenzenesulfonyl chloride (0.26 g, 1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 1:9).

Yield: 45%; mp: 443–445 °K; IR (KBr, cm-1): 3340, 3235 (NH), 1595 (CN), 1335, 1160 (SO2); 1H NMR (DMSO-d6): 2.27 (s, 3H, CH3), 6.92 (dd, 1H, J=2.1 Hz and 6.1 Hz), 7.16 (d, 2H, J=6.2 Hz), 7.28 (d, 2H, J=8.3 Hz), 7.68 (d, 2H, J=8.3 Hz), 8.22 (s, 1H),10.51 (s, 1H, NH), 13.05 (s, 1H, NH); 13C NMR (DMSO-d6): 21.3 (CH3), 106.7,111.0, 126.9, 127.2, 130.1, 132.4 (6 CH), 117.3, 130.5, 137.3, 141.4, 143.7 (5 C); MS m/z=288 [M+1].

Refinement top

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups and 0.96Å for CH2 with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C). The N2—H20 H atoms were treated as riding with Uiso(H) = 1.2 Ueq(N), and the N1—H10 H atoms were refined with restraints (dN–H = 0.88 (2) Å) and then were treated as riding in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by C—H···O, N—H···O and N—H···N hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity.
N-(7-Ethoxy-1H-indazol-4-yl)-4-methylbenzenesulfonamide top
Crystal data top
C16H17N3O3SF(000) = 696
Mr = 331.39Dx = 1.327 Mg m3
Monoclinic, P21/cMelting point: 445 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.2579 (4) ÅCell parameters from 347 reflections
b = 5.0291 (1) Åθ = 2.7–27.2°
c = 20.4551 (5) ŵ = 0.21 mm1
β = 97.269 (1)°T = 296 K
V = 1659.02 (7) Å3Prism, yellow
Z = 40.23 × 0.20 × 0.14 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
5062 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 34.0°, θmin = 1.3°
ω and ϕ scansh = 2525
31243 measured reflectionsk = 77
6745 independent reflectionsl = 3231
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.3561P]
where P = (Fo2 + 2Fc2)/3
6745 reflections(Δ/σ)max = 0.011
210 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H17N3O3SV = 1659.02 (7) Å3
Mr = 331.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2579 (4) ŵ = 0.21 mm1
b = 5.0291 (1) ÅT = 296 K
c = 20.4551 (5) Å0.23 × 0.20 × 0.14 mm
β = 97.269 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
5062 reflections with I > 2σ(I)
31243 measured reflectionsRint = 0.025
6745 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
6745 reflectionsΔρmin = 0.25 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.202461 (19)0.91282 (6)0.304901 (17)0.03746 (10)
N10.27119 (7)0.7334 (2)0.35009 (6)0.0391 (2)
H140.26350.56960.34120.047*
N20.43721 (7)1.2628 (2)0.50079 (6)0.0384 (2)
H2A0.46161.33430.53620.046*
N30.45193 (7)1.3298 (3)0.43916 (6)0.0416 (3)
O10.19501 (7)0.8007 (3)0.24030 (5)0.0519 (3)
O20.22674 (7)1.1855 (2)0.31483 (6)0.0524 (3)
O30.37858 (8)1.0205 (3)0.61280 (6)0.0578 (3)
C10.08572 (13)1.0406 (4)0.38431 (11)0.0631 (5)
H10.12211.17250.40180.076*
C20.00971 (15)1.0085 (5)0.40702 (13)0.0794 (7)
H20.00481.12120.43980.095*
C30.04508 (12)0.8132 (5)0.38215 (12)0.0712 (6)
C40.02207 (11)0.6462 (5)0.33422 (11)0.0651 (5)
H40.05810.51210.31740.078*
C50.05334 (10)0.6742 (4)0.31072 (9)0.0515 (4)
H50.06810.55930.27850.062*
C60.10683 (8)0.8748 (3)0.33547 (7)0.0385 (3)
C70.29527 (7)0.8035 (2)0.41776 (7)0.0346 (2)
C80.26575 (9)0.6722 (3)0.46859 (8)0.0451 (3)
H80.22690.53760.45900.054*
C90.29232 (10)0.7346 (3)0.53502 (8)0.0501 (4)
H90.27160.63850.56820.060*
C100.34852 (9)0.9356 (3)0.55166 (7)0.0415 (3)
C110.37907 (7)1.0689 (2)0.49948 (6)0.0338 (2)
C120.35467 (7)1.0062 (2)0.43349 (6)0.0323 (2)
C130.40308 (8)1.1763 (3)0.39843 (7)0.0381 (3)
H130.40081.17970.35280.046*
C140.36325 (16)0.8578 (6)0.66736 (10)0.0814 (7)
H14A0.38580.68110.66300.098*
H14B0.30410.84220.66910.098*
C150.4038 (2)0.9868 (8)0.72770 (11)0.1024 (9)
H15A0.46101.02020.72320.154*
H15B0.40050.87220.76480.154*
H15C0.37651.15200.73440.154*
C160.12866 (17)0.7785 (10)0.40632 (19)0.1314 (14)
H16A0.12310.66240.44390.197*
H16B0.16710.70260.37180.197*
H16C0.14890.94840.41860.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03566 (15)0.03045 (15)0.04463 (19)0.00315 (11)0.00135 (12)0.00309 (12)
N10.0377 (5)0.0267 (4)0.0501 (6)0.0007 (4)0.0058 (4)0.0085 (4)
N20.0355 (5)0.0403 (5)0.0385 (5)0.0137 (4)0.0015 (4)0.0025 (4)
N30.0373 (5)0.0444 (6)0.0427 (6)0.0155 (5)0.0038 (4)0.0018 (5)
O10.0506 (6)0.0608 (7)0.0429 (6)0.0006 (5)0.0011 (4)0.0066 (5)
O20.0501 (6)0.0289 (5)0.0755 (8)0.0068 (4)0.0021 (5)0.0035 (5)
O30.0651 (7)0.0711 (8)0.0380 (5)0.0210 (6)0.0100 (5)0.0019 (5)
C10.0635 (10)0.0507 (9)0.0779 (13)0.0091 (8)0.0196 (9)0.0217 (9)
C20.0760 (14)0.0735 (13)0.0963 (17)0.0007 (12)0.0407 (13)0.0193 (13)
C30.0481 (9)0.0836 (14)0.0844 (14)0.0007 (9)0.0185 (9)0.0131 (12)
C40.0438 (8)0.0742 (12)0.0748 (12)0.0200 (8)0.0020 (8)0.0052 (10)
C50.0452 (7)0.0516 (8)0.0561 (9)0.0130 (6)0.0006 (6)0.0089 (7)
C60.0352 (5)0.0330 (6)0.0457 (7)0.0009 (4)0.0012 (5)0.0021 (5)
C70.0296 (5)0.0273 (5)0.0457 (7)0.0034 (4)0.0001 (4)0.0027 (5)
C80.0384 (6)0.0372 (6)0.0587 (9)0.0146 (5)0.0027 (6)0.0028 (6)
C90.0454 (7)0.0533 (8)0.0528 (8)0.0178 (6)0.0110 (6)0.0081 (7)
C100.0382 (6)0.0464 (7)0.0404 (6)0.0082 (5)0.0076 (5)0.0017 (5)
C110.0288 (5)0.0326 (5)0.0400 (6)0.0053 (4)0.0041 (4)0.0007 (5)
C120.0278 (4)0.0299 (5)0.0387 (6)0.0046 (4)0.0019 (4)0.0013 (4)
C130.0360 (5)0.0406 (6)0.0375 (6)0.0094 (5)0.0040 (4)0.0004 (5)
C140.0892 (15)0.1092 (19)0.0474 (10)0.0299 (14)0.0152 (10)0.0098 (11)
C150.118 (2)0.146 (3)0.0443 (11)0.024 (2)0.0118 (12)0.0018 (14)
C160.0683 (16)0.171 (4)0.165 (3)0.012 (2)0.058 (2)0.001 (3)
Geometric parameters (Å, º) top
S1—O11.4277 (11)C5—C61.3854 (19)
S1—O21.4345 (11)C5—H50.9300
S1—N11.6296 (11)C7—C81.369 (2)
S1—C61.7581 (14)C7—C121.4133 (16)
N1—C71.4340 (17)C8—C91.408 (2)
N1—H140.8492C8—H80.9300
N2—N31.3550 (16)C9—C101.376 (2)
N2—C111.3561 (15)C9—H90.9300
N2—H2A0.8600C10—C111.4032 (18)
N3—C131.3241 (17)C11—C121.3939 (17)
O3—C101.3529 (18)C12—C131.4170 (17)
O3—C141.431 (2)C13—H130.9300
C1—C61.378 (2)C14—C151.474 (3)
C1—C21.384 (3)C14—H14A0.9700
C1—H10.9300C14—H14B0.9700
C2—C31.379 (3)C15—H15A0.9600
C2—H20.9300C15—H15B0.9600
C3—C41.378 (3)C15—H15C0.9600
C3—C161.514 (3)C16—H16A0.9600
C4—C51.379 (2)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
O1—S1—O2119.88 (8)C7—C8—H8118.9
O1—S1—N1106.15 (7)C9—C8—H8118.9
O2—S1—N1107.00 (6)C10—C9—C8121.01 (13)
O1—S1—C6108.12 (7)C10—C9—H9119.5
O2—S1—C6107.07 (7)C8—C9—H9119.5
N1—S1—C6108.17 (7)O3—C10—C9127.66 (14)
C7—N1—S1119.69 (9)O3—C10—C11115.56 (12)
C7—N1—H14117.4C9—C10—C11116.78 (13)
S1—N1—H14110.1N2—C11—C12107.09 (11)
N3—N2—C11111.41 (10)N2—C11—C10129.89 (12)
N3—N2—H2A124.3C12—C11—C10122.95 (11)
C11—N2—H2A124.3C11—C12—C7119.09 (11)
C13—N3—N2106.15 (10)C11—C12—C13104.21 (10)
C10—O3—C14117.55 (15)C7—C12—C13136.68 (12)
C6—C1—C2119.19 (18)N3—C13—C12111.14 (12)
C6—C1—H1120.4N3—C13—H13124.4
C2—C1—H1120.4C12—C13—H13124.4
C3—C2—C1121.5 (2)O3—C14—C15107.3 (2)
C3—C2—H2119.3O3—C14—H14A110.3
C1—C2—H2119.3C15—C14—H14A110.3
C4—C3—C2118.40 (17)O3—C14—H14B110.3
C4—C3—C16119.9 (2)C15—C14—H14B110.3
C2—C3—C16121.7 (3)H14A—C14—H14B108.5
C3—C4—C5121.26 (18)C14—C15—H15A109.5
C3—C4—H4119.4C14—C15—H15B109.5
C5—C4—H4119.4H15A—C15—H15B109.5
C4—C5—C6119.43 (17)C14—C15—H15C109.5
C4—C5—H5120.3H15A—C15—H15C109.5
C6—C5—H5120.3H15B—C15—H15C109.5
C1—C6—C5120.23 (15)C3—C16—H16A109.5
C1—C6—S1120.31 (12)C3—C16—H16B109.5
C5—C6—S1119.45 (12)H16A—C16—H16B109.5
C8—C7—C12118.04 (12)C3—C16—H16C109.5
C8—C7—N1122.39 (11)H16A—C16—H16C109.5
C12—C7—N1119.49 (11)H16B—C16—H16C109.5
C7—C8—C9122.11 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.543.373 (3)144
N1—H14···O2ii0.852.072.9159 (15)172
N2—H2A···N3iii0.862.212.8974 (15)136
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O3S
Mr331.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.2579 (4), 5.0291 (1), 20.4551 (5)
β (°) 97.269 (1)
V3)1659.02 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.23 × 0.20 × 0.14
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
31243, 6745, 5062
Rint0.025
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.07
No. of reflections6745
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.543.373 (3)144
N1—H14···O2ii0.852.072.9159 (15)172
N2—H2A···N3iii0.862.212.8974 (15)136
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+3, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Ahmad, W., Arshad, M. N., Sharif, S. & Ahmed, J. (2010). Acta Cryst. E66, o2507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc. 23, 167–169.  Web of Science CrossRef CAS Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o104.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o142.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem. 14, 4958–4979.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds