organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­kis(2-hy­dr­oxy-5-methyl­benz­yl)ethane-1,2-di­amine di­methyl­formamide disolvate

aShandong Provincial Key Laboratory of Fine Chemicals, Shandong Polytechnic University, Jinan 250353, People's Republic of China, and bSchool of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: litianduo@163.com

(Received 8 May 2011; accepted 12 May 2011; online 20 May 2011)

The title compound, C34H40N2O4·2C3H7NO, was synthesized by the Mannich condensation of ethane­diamine, formaldehyde and p-cresol. In the crystal, the tetra­phenol mol­ecule is arranged around an inversion center. The mol­ecule and the dimethyl­formamide solvate are linked through an O—H⋯O hydrogen bond. An intra­molecular O—H⋯N hydrogen bond occurs in the tetra­phenol mol­ecule, which may influence the mol­ecular confomation. Futhermore, C—H⋯O and ππ stacking inter­actions [centroid–centroid distance = 3.7081 (14) Å] stabilize the crystal packing, building a three-dimensional network.

Related literature

For applications of the title compound, see: Liu et al. (2007[Liu, X. L., Shang, X. M., Tang, T. & Cui, D. M. (2007). Organometallics, 26, 2747-2757.]); Tshuva et al. (2000[Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2000). Inorg. Chem. Commun. 3, 611-614.]); For related structures, see: Hou et al. (2010[Hou, G.-G., Ma, J.-P., Wang, L., Wang, P., Dong, Y.-B. & Huang, R.-Q. (2010). CrystEngComm, 12, 4287-4303.]); Higham et al. (2006[Higham, C. S., Dowling, D. P., Shaw, J. L. & Farrell, J. R. (2006). Tetrahedron Lett. 47, 4419-4423]); Farrell et al. (2007[Farrell, J. R., Niconchuk, J., Higham, C. S. & Bergeron, B. W. (2007). Tetrahedron Lett. 48, 8034-8036.]).

[Scheme 1]

Experimental

Crystal data
  • C34H40N2O4·2C3H7NO

  • Mr = 686.87

  • Monoclinic, P 21 /c

  • a = 11.574 (2) Å

  • b = 6.3557 (12) Å

  • c = 26.343 (5) Å

  • β = 94.939 (3)°

  • V = 1930.7 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.50 × 0.32 × 0.27 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 9607 measured reflections

  • 3569 independent reflections

  • 2667 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.154

  • S = 1.07

  • 3569 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.98 2.705 (2) 147
O2—H2⋯O3 0.82 1.87 2.690 (2) 177
C18—H18⋯O3i 0.93 2.56 3.368 (3) 145
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Multidentate aminophenol are of interest as metallochelators and as ligands for bioinorganic modeling, catalysis, and medical imaging.(Higham et al., 2006; Farrell et al., 2007). Some of them in combination with metals are used as active catalysts for alkenes polymerization (Tshuva et al., 2000) and initiators in the ring-openingpolymerization of lactones (Liu et al., 2007). Herein, we report the crystal structure of the title compound, 'C34H40N2O4.(C3H7NO)2'.

The N, N'-Tetrakis(2-hydroxy-5-methylbenzyl)-1, 2-ethanediamine molecule is arranged around inversion center located in the middle of the CH2-CH2 bond. The DMF solvate is linked to this molecule through O-H···O hydrogen bonds (Fig. 1). There is also a weak intramolecular O-H···N interactions which might influence the conformation of the molecule (Table 1) (Hou et al., 2010).

The occurence of weak C-H···O interactions (Table 1) and π-π stacking between the symmetry related C1—C6 phenyl rings (Centroid to centroid distance of 3.7081 (14)Å, interplanar distance of 3.6891 (8)° and slippage of 0.375Å) result in the formation of a three dimensional network (Fig. 2)

Related literature top

For applications of the title compound, see: Liu et al. (2007); Tshuva et al. (2000); For related structures, see: Hou et al. (2010); Higham et al. (2006); Farrell et al. (2007).

Experimental top

The title compound was prepared by mixing ethylenediamine (1.0 mmol), paraformaldehyde (4.0 mmol) and p-cresol (10 mmol) were heated to 90°C and stirred for 18 h. This reaction requires no solvent nor inert atmosphere. At the end of the reaction, 10ml of ethanol was added to the mixtures to remove the unreacted p-cresol, then sonicated 10 minutes. Finally a white precipitate product was collected by filtration in 56% yield.

Refinement top

All H atoms were placed in idealized positions and treated as riding, with C—H = 0.93 Å (CH), 0.97 Å (CH2), 0.96 Å (CH3), O—H = 0.82 Å and and Uiso(H) = 1.2 Ueq(CH and CH2), Uiso(H) = 1.5 Ueq(CH3 and OH).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. Molecular packing of the title compound viewing along the crystallographic b-axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-{[(2-{bis[(2-hydroxy-5-methylphenyl)methyl]amino}ethyl)[(2-hydroxy-5- methylphenyl)methyl]amino]methyl}-4-methylphenol dimethylformamide disolvate top
Crystal data top
C34H40N2O4·2C3H7NOF(000) = 740
Mr = 686.87Dx = 1.182 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2283 reflections
a = 11.574 (2) Åθ = 2.3–22.4°
b = 6.3557 (12) ŵ = 0.08 mm1
c = 26.343 (5) ÅT = 298 K
β = 94.939 (3)°Block, colourless
V = 1930.7 (6) Å30.50 × 0.32 × 0.27 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2667 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.5°, θmin = 1.6°
ϕ and ω scansh = 1313
9607 measured reflectionsk = 07
3569 independent reflectionsl = 031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.2941P]
where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.003
232 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C34H40N2O4·2C3H7NOV = 1930.7 (6) Å3
Mr = 686.87Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.574 (2) ŵ = 0.08 mm1
b = 6.3557 (12) ÅT = 298 K
c = 26.343 (5) Å0.50 × 0.32 × 0.27 mm
β = 94.939 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2667 reflections with I > 2σ(I)
9607 measured reflectionsRint = 0.029
3569 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3569 reflectionsΔρmin = 0.15 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81761 (16)0.6724 (3)0.50272 (8)0.0459 (5)
C20.80450 (15)0.4662 (3)0.48545 (7)0.0399 (5)
C30.86027 (16)0.4078 (3)0.44304 (7)0.0472 (5)
H30.85080.27090.43090.057*
C40.92929 (17)0.5440 (4)0.41797 (8)0.0546 (6)
C50.94148 (18)0.7469 (4)0.43666 (9)0.0602 (6)
H50.98800.84170.42090.072*
C60.88609 (17)0.8110 (4)0.47813 (9)0.0567 (6)
H60.89480.94870.48970.068*
C70.9908 (2)0.4688 (5)0.37314 (10)0.0846 (9)
H7A1.06490.41110.38510.127*
H7B1.00180.58490.35080.127*
H7C0.94500.36240.35510.127*
C80.74176 (15)0.3055 (3)0.51447 (7)0.0434 (5)
H8A0.72130.18690.49230.052*
H8B0.79330.25460.54280.052*
C90.59865 (17)0.2520 (3)0.57452 (7)0.0465 (5)
H9A0.60640.10640.56420.056*
H9B0.51740.27780.57870.056*
C100.66842 (16)0.2860 (3)0.62476 (7)0.0444 (5)
C110.74762 (17)0.1400 (4)0.64530 (8)0.0503 (5)
H110.75930.01760.62710.060*
C120.81018 (19)0.1691 (4)0.69194 (8)0.0571 (6)
C130.7899 (2)0.3509 (5)0.71814 (8)0.0648 (7)
H130.82990.37310.74980.078*
C140.71194 (19)0.5012 (4)0.69888 (8)0.0615 (6)
H140.70010.62290.71740.074*
C150.65167 (18)0.4696 (4)0.65193 (8)0.0521 (6)
C160.8989 (2)0.0118 (5)0.71276 (11)0.0892 (9)
H16A0.97250.04390.70040.134*
H16B0.87510.12690.70190.134*
H16C0.90570.01810.74930.134*
C170.54400 (16)0.4187 (3)0.49300 (7)0.0463 (5)
H17A0.50510.28560.48580.056*
H17B0.57820.46360.46240.056*
N10.63564 (12)0.3898 (3)0.53418 (5)0.0406 (4)
O10.76581 (13)0.7432 (3)0.54411 (6)0.0640 (5)
H10.71790.65670.55200.096*
O20.57293 (15)0.6113 (3)0.63071 (6)0.0721 (5)
H20.55630.69570.65250.108*
C180.4736 (2)1.0737 (4)0.69918 (8)0.0546 (6)
H180.50891.17100.72190.066*
C190.3253 (3)0.9941 (6)0.63369 (15)0.1233 (13)
H19A0.37850.88640.62520.185*
H19B0.29821.06950.60340.185*
H19C0.26060.93070.64840.185*
C200.3383 (3)1.3486 (5)0.67385 (12)0.0963 (10)
H20A0.38601.42600.69900.144*
H20B0.26041.34220.68370.144*
H20C0.33851.41760.64140.144*
N20.38342 (17)1.1383 (3)0.67004 (7)0.0636 (5)
O30.51586 (16)0.8979 (3)0.69941 (6)0.0731 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (10)0.0481 (13)0.0502 (12)0.0064 (9)0.0022 (9)0.0022 (10)
C20.0319 (9)0.0477 (12)0.0389 (10)0.0071 (8)0.0024 (8)0.0010 (9)
C30.0417 (11)0.0552 (13)0.0442 (11)0.0071 (9)0.0001 (9)0.0009 (10)
C40.0419 (11)0.0752 (17)0.0469 (12)0.0068 (11)0.0041 (9)0.0115 (11)
C50.0422 (12)0.0656 (17)0.0723 (15)0.0005 (11)0.0026 (11)0.0213 (13)
C60.0442 (12)0.0465 (13)0.0783 (16)0.0004 (10)0.0007 (11)0.0036 (11)
C70.0739 (17)0.120 (3)0.0630 (15)0.0014 (17)0.0253 (14)0.0050 (16)
C80.0400 (10)0.0458 (12)0.0440 (11)0.0088 (9)0.0025 (8)0.0009 (9)
C90.0428 (11)0.0514 (13)0.0455 (11)0.0021 (9)0.0049 (9)0.0026 (9)
C100.0452 (11)0.0516 (13)0.0377 (10)0.0029 (9)0.0106 (8)0.0003 (9)
C110.0540 (12)0.0500 (13)0.0477 (11)0.0015 (10)0.0098 (10)0.0024 (10)
C120.0546 (13)0.0705 (16)0.0458 (12)0.0007 (11)0.0019 (10)0.0075 (11)
C130.0586 (14)0.093 (2)0.0422 (12)0.0093 (13)0.0011 (11)0.0027 (13)
C140.0633 (14)0.0755 (17)0.0469 (12)0.0021 (12)0.0109 (11)0.0160 (11)
C150.0515 (12)0.0600 (15)0.0458 (12)0.0057 (10)0.0107 (10)0.0030 (10)
C160.0865 (19)0.100 (2)0.0772 (18)0.0155 (17)0.0128 (16)0.0156 (16)
C170.0416 (10)0.0563 (13)0.0402 (10)0.0066 (9)0.0011 (8)0.0110 (9)
N10.0364 (8)0.0495 (10)0.0361 (8)0.0050 (7)0.0033 (7)0.0033 (7)
O10.0680 (11)0.0568 (11)0.0690 (10)0.0011 (8)0.0163 (8)0.0191 (8)
O20.0804 (12)0.0741 (13)0.0611 (10)0.0264 (9)0.0021 (9)0.0153 (9)
C180.0682 (14)0.0544 (15)0.0419 (11)0.0012 (12)0.0088 (11)0.0042 (10)
C190.123 (3)0.123 (3)0.114 (3)0.020 (2)0.048 (2)0.016 (2)
C200.096 (2)0.089 (2)0.103 (2)0.0314 (18)0.0033 (18)0.0172 (18)
N20.0689 (12)0.0650 (14)0.0549 (11)0.0008 (10)0.0066 (10)0.0031 (10)
O30.0999 (13)0.0595 (11)0.0612 (10)0.0219 (10)0.0149 (9)0.0026 (8)
Geometric parameters (Å, º) top
C1—O11.365 (2)C12—C161.502 (4)
C1—C61.383 (3)C13—C141.380 (3)
C1—C21.391 (3)C13—H130.9300
C2—C31.388 (3)C14—C151.381 (3)
C2—C81.500 (3)C14—H140.9300
C3—C41.384 (3)C15—O21.366 (3)
C3—H30.9300C16—H16A0.9600
C4—C51.383 (3)C16—H16B0.9600
C4—C71.508 (3)C16—H16C0.9600
C5—C61.375 (3)C17—N11.462 (2)
C5—H50.9300C17—C17i1.518 (4)
C6—H60.9300C17—H17A0.9700
C7—H7A0.9600C17—H17B0.9700
C7—H7B0.9600O1—H10.8200
C7—H7C0.9600O2—H20.8200
C8—N11.475 (2)C18—O31.219 (3)
C8—H8A0.9700C18—N21.307 (3)
C8—H8B0.9700C18—H180.9300
C9—N11.469 (2)C19—N21.449 (4)
C9—C101.506 (3)C19—H19A0.9600
C9—H9A0.9700C19—H19B0.9600
C9—H9B0.9700C19—H19C0.9600
C10—C111.381 (3)C20—N21.442 (3)
C10—C151.391 (3)C20—H20A0.9600
C11—C121.384 (3)C20—H20B0.9600
C11—H110.9300C20—H20C0.9600
C12—C131.376 (4)
O1—C1—C6118.2 (2)C12—C13—C14122.1 (2)
O1—C1—C2121.92 (18)C12—C13—H13119.0
C6—C1—C2119.9 (2)C14—C13—H13119.0
C3—C2—C1118.04 (19)C13—C14—C15119.5 (2)
C3—C2—C8120.45 (18)C13—C14—H14120.3
C1—C2—C8121.25 (17)C15—C14—H14120.3
C4—C3—C2123.0 (2)O2—C15—C14122.6 (2)
C4—C3—H3118.5O2—C15—C10117.40 (18)
C2—C3—H3118.5C14—C15—C10120.0 (2)
C5—C4—C3117.3 (2)C12—C16—H16A109.5
C5—C4—C7122.3 (2)C12—C16—H16B109.5
C3—C4—C7120.4 (2)H16A—C16—H16B109.5
C6—C5—C4121.3 (2)C12—C16—H16C109.5
C6—C5—H5119.4H16A—C16—H16C109.5
C4—C5—H5119.4H16B—C16—H16C109.5
C5—C6—C1120.6 (2)N1—C17—C17i111.36 (19)
C5—C6—H6119.7N1—C17—H17A109.4
C1—C6—H6119.7C17i—C17—H17A109.4
C4—C7—H7A109.5N1—C17—H17B109.4
C4—C7—H7B109.5C17i—C17—H17B109.4
H7A—C7—H7B109.5H17A—C17—H17B108.0
C4—C7—H7C109.5C17—N1—C9111.94 (15)
H7A—C7—H7C109.5C17—N1—C8110.94 (14)
H7B—C7—H7C109.5C9—N1—C8109.95 (15)
N1—C8—C2112.72 (16)C1—O1—H1109.5
N1—C8—H8A109.0C15—O2—H2109.5
C2—C8—H8A109.0O3—C18—N2126.2 (2)
N1—C8—H8B109.0O3—C18—H18116.9
C2—C8—H8B109.0N2—C18—H18116.9
H8A—C8—H8B107.8N2—C19—H19A109.5
N1—C9—C10112.49 (16)N2—C19—H19B109.5
N1—C9—H9A109.1H19A—C19—H19B109.5
C10—C9—H9A109.1N2—C19—H19C109.5
N1—C9—H9B109.1H19A—C19—H19C109.5
C10—C9—H9B109.1H19B—C19—H19C109.5
H9A—C9—H9B107.8N2—C20—H20A109.5
C11—C10—C15118.63 (19)N2—C20—H20B109.5
C11—C10—C9122.36 (19)H20A—C20—H20B109.5
C15—C10—C9119.00 (18)N2—C20—H20C109.5
C10—C11—C12122.5 (2)H20A—C20—H20C109.5
C10—C11—H11118.8H20B—C20—H20C109.5
C12—C11—H11118.8C18—N2—C20121.7 (2)
C13—C12—C11117.3 (2)C18—N2—C19119.4 (3)
C13—C12—C16121.1 (2)C20—N2—C19118.8 (3)
C11—C12—C16121.6 (2)
O1—C1—C2—C3179.97 (17)C10—C11—C12—C130.7 (3)
C6—C1—C2—C30.9 (3)C10—C11—C12—C16177.9 (2)
O1—C1—C2—C85.9 (3)C11—C12—C13—C141.0 (3)
C6—C1—C2—C8173.23 (18)C16—C12—C13—C14177.5 (2)
C1—C2—C3—C41.1 (3)C12—C13—C14—C150.2 (4)
C8—C2—C3—C4173.15 (18)C13—C14—C15—O2179.7 (2)
C2—C3—C4—C50.2 (3)C13—C14—C15—C100.9 (3)
C2—C3—C4—C7177.9 (2)C11—C10—C15—O2179.93 (18)
C3—C4—C5—C60.7 (3)C9—C10—C15—O20.9 (3)
C7—C4—C5—C6178.9 (2)C11—C10—C15—C141.2 (3)
C4—C5—C6—C10.9 (3)C9—C10—C15—C14177.91 (19)
O1—C1—C6—C5179.13 (19)C17i—C17—N1—C980.0 (3)
C2—C1—C6—C50.0 (3)C17i—C17—N1—C8156.7 (2)
C3—C2—C8—N1144.07 (17)C10—C9—N1—C17157.41 (16)
C1—C2—C8—N141.9 (2)C10—C9—N1—C878.8 (2)
N1—C9—C10—C11109.0 (2)C2—C8—N1—C1773.2 (2)
N1—C9—C10—C1571.9 (2)C2—C8—N1—C9162.47 (15)
C15—C10—C11—C120.4 (3)O3—C18—N2—C20178.2 (2)
C9—C10—C11—C12178.70 (19)O3—C18—N2—C190.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.705 (2)147
O2—H2···O30.821.872.690 (2)177
C18—H18···O3ii0.932.563.368 (3)145
Symmetry code: (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC34H40N2O4·2C3H7NO
Mr686.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.574 (2), 6.3557 (12), 26.343 (5)
β (°) 94.939 (3)
V3)1930.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.32 × 0.27
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9607, 3569, 2667
Rint0.029
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 1.07
No. of reflections3569
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.982.705 (2)147
O2—H2···O30.821.872.690 (2)177
C18—H18···O3i0.932.563.368 (3)145
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the Shandong Province Higher Educational Science and Technology Program for financial support (J09LB03).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrell, J. R., Niconchuk, J., Higham, C. S. & Bergeron, B. W. (2007). Tetrahedron Lett. 48, 8034–8036.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigham, C. S., Dowling, D. P., Shaw, J. L. & Farrell, J. R. (2006). Tetrahedron Lett. 47, 4419–4423  CrossRef CAS Google Scholar
First citationHou, G.-G., Ma, J.-P., Wang, L., Wang, P., Dong, Y.-B. & Huang, R.-Q. (2010). CrystEngComm, 12, 4287–4303.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X. L., Shang, X. M., Tang, T. & Cui, D. M. (2007). Organometallics, 26, 2747–2757.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2000). Inorg. Chem. Commun. 3, 611–614.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds