

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{2-[4-(methylsulfanyl)phenyl]-1*H*benzimidazol-3-ium} tetrabromidocadmate(II) ethanol monosolvate

M. N. Manjunatha, Mohamed Ziaulla, Noor Shahina Begum^{*} and K. R. Nagasundara

Department of Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India

Correspondence e-mail: noorsb@rediffmail.com

Received 12 February 2011; accepted 12 May 2011

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.034; wR factor = 0.079; data-to-parameter ratio = 18.3.

In the anion of the title compound, $(C_{14}H_{13}N_2S)_2[CdBr_4]$.- C_2H_5OH , the Cd^{II} atom is in a distorted tetrahedral environment and one of the Br atoms is disordered over three sites with site-occupancy factors of 0.828 (5), 0.106 (3) and 0.068 (4). In the crystal, intermolecular N-H···O, C-H···O and N-H···Br interactions result in a two-dimensional polymeric network extending parallel to (010).

Related literature

For general background to benzimidazole derivatives, see: Huang & Scarborough (1999); Preston (1974); Zarrinmayeh *et al.* (1998); Zhu *et al.* (2000). For related structures, see: Ziaulla *et al.* (2011). For hydrogen bonding, see: Bernstein *et al.* (1995); Nardelli (1983).

Experimental

Crystal data $(C_{14}H_{13}N_2S)_2[CdBr_4]\cdot C_2H_6O$ $M_r = 960.76$ Orthorhombic, *Pbca* a = 22.1321 (15) Å b = 13.8746 (10) Å c = 22.2594 (16) Å

 $V = 6835.3 \text{ (8) } \text{Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 5.47 \text{ mm}^{-1}$ T = 123 K $0.20 \times 0.18 \times 0.18 \text{ mm}$ $R_{\rm int} = 0.084$

93968 measured reflections

7467 independent reflections

5951 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART APEX CCD
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.408, T_{max} = 0.439
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.079$	independent and constrained
S = 0.79	refinement
7467 reflections	$\Delta \rho_{\rm max} = 0.87 \text{ e } \text{\AA}^{-3}$
407 parameters	$\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots Br3$ $N2-H2N\cdots Br2^{i}$ $N4-H4N\cdots O1^{ii}$ $C4-H4\cdots O1^{ii}$	0.79 (7) 0.81 (7) 0.83 (7) 0.95	2.51 (7) 2.50 (7) 1.88 (7) 2.55	3.272 (5) 3.267 (4) 2.679 (6) 3.464 (8)	164 (5) 160 (5) 161 (6) 160

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2093).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
- Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665-2668.

- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Preston, P. N. (1974). Chem. Rev. 74, 279-314.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.
- Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.
- Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.
- Ziaulla, M., Manjunatha, M. N., Sankolli, R., Nagasundara, K. R. & Begum, N. S. (2011). Acta Cryst. E67, 0341–0342.

supporting information

Acta Cryst. (2011). E67, m771 [doi:10.1107/S1600536811018058]

Bis{2-[4-(methylsulfanyl)phenyl]-1*H*-benzimidazol-3-ium} tetrabromidocadmate(II) ethanol monosolvate

M. N. Manjunatha, Mohamed Ziaulla, Noor Shahina Begum and K. R. Nagasundara

S1. Comment

Benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998). In addition, benzimidazole derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic and antipyretic. The described methods for the synthesis of benzimidazoles make use of solid-phase synthesis via o-nitroanilines (Preston et al., 1974; Huang et al., 1999) or the condensation of o-phenylenediamines with carboxylic acid derivatives, aldehydes and aryl halides. The benzimidazole derivative has been used as a ligand for complexation with cadmium metal to give the above metal complex. In the title compound, as shown in Fig. 1, there are two cation, one tetrabormocadmate(II) anion and an ethanol molecule in the asymmetric unit. One of the coordinated bromine atom Br4 of the anion is disordered over three sites (Br4A/Br4B/Br4C) with site occupancy factors 0.83, 0,11 and 0.06 resulting in one major and two minor components. The Cd^{II} atom has a distorted tetrahedral geometry, coordinating with four terminal bromine atoms with the bond lengths in the range 2.5616 (7)Å to 2.6177 (6) Å. The Br-Cd-Br bond angles are between 111.37 (3)° and 107.14 (2)°. The benzimidazole and thiomethyl phenyl rings are virtually planar and inclined at an dihedral angle 5.19 (2)°. The molecular structure is primarly stablised by intramolecular N—H…Br interactions. The bond lengths and angles for the benzimidazole moiety of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Ziaulla et al., 2011). Further, the crystal structure is stabilized by intermolecular N-H--O, C-H--O and N-H--Br hydrogen bonds.

S2. Experimental

An ethanolic solution (15 ml) of the 2-(4-Methyl sulfanyl phenyl)-1*H*- benzimidazole) (0.960 mg, 2 mmol) was added to a solution of cadmium(II) bromide (0.272 mg, 1 mmol) in ethanol (25 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br₂ (2–3 ml). The mixture was refluxed for nearly six hours during which yellow crystals suitable for X-ray analysis were obtained. The crystals were washed with cold ethanol and dried in vacuum over P_2O_5 . (yield 1.23 mg, 85%).

S3. Refinement

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.83 and C—H = 0.95 Å, and $U_{iso}(H) = 1.2U_{eq}(N/C)$.

Figure 1

ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.

Figure 2

A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.

Bis{2-[4-(methylsulfanyl)phenyl]-1H-benzimidazol-3-ium} tetrabromidocadmate(II) ethanol monosolvate

Crystal data	
$(C_{14}H_{13}N_2S)_2[CdBr_4]\cdot C_2H_6O$	F(000) = 3744
$M_r = 960.76$	$D_{\rm x} = 1.867 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 7467 reflections
a = 22.1321 (15) Å	$\theta = 1.8 - 27.0^{\circ}$
b = 13.8746 (10) Å	$\mu = 5.47 \text{ mm}^{-1}$
c = 22.2594 (16) Å	T = 123 K
$V = 6835.3 (8) Å^3$	Block, yellow
Z = 8	$0.20 \times 0.18 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART APEX CCD detector diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)
Radiation source: Enhance (Mo) X-ray Source	$T_{\rm min} = 0.408, \ T_{\rm max} = 0.439$
Graphite monochromator	93968 measured reflections
ω scans	7467 independent reflections

5951 reflections with $I > 2\sigma(I)$	$h = -28 \rightarrow 28$
$R_{\rm int} = 0.084$	$k = -17 \rightarrow 17$
$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 1.8^\circ$	$l = -28 \rightarrow 28$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.079$	neighbouring sites
S = 0.79	H atoms treated by a mixture of independent
7467 reflections	and constrained refinement
407 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2 + 49.2262P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.87 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cd1	0.348496 (11)	0.21808 (2)	0.361336 (13)	0.02080 (7)	
Br1	0.326079 (18)	0.11642 (3)	0.26634 (2)	0.02983 (11)	
Br2	0.399388 (19)	0.11298 (3)	0.441935 (19)	0.02699 (10)	
Br3	0.425609 (17)	0.35205 (3)	0.330092 (18)	0.02342 (9)	
Br4A	0.25223 (3)	0.29865 (10)	0.40079 (6)	0.0445 (4)	0.828 (5)
Br4B	0.2514 (2)	0.2592 (6)	0.4250 (3)	0.0302 (17)*	0.106 (3)
Br4C	0.2621 (4)	0.3426 (10)	0.3968 (3)	0.028 (3)*	0.068 (4)
S1	0.11862 (4)	0.36770 (8)	0.16669 (5)	0.0261 (2)	
S2	0.64644 (5)	0.09455 (8)	0.43078 (5)	0.0259 (2)	
N1	0.42680 (14)	0.3486 (2)	0.18313 (16)	0.0184 (7)	
H1N	0.4190 (18)	0.346 (3)	0.217 (2)	0.011 (11)*	
N2	0.41912 (14)	0.3569 (2)	0.08615 (16)	0.0172 (7)	
H2N	0.405 (2)	0.362 (3)	0.051 (2)	0.022 (12)*	
N3	0.45281 (14)	0.1032 (2)	0.19059 (16)	0.0186 (7)	
H3N	0.429 (2)	0.100 (4)	0.218 (2)	0.038 (15)*	
N4	0.53761 (15)	0.1058 (2)	0.14156 (16)	0.0208 (7)	
H4N	0.575 (2)	0.103 (3)	0.136 (2)	0.034 (13)*	
01	0.15209 (14)	0.1207 (3)	0.39651 (19)	0.0460 (9)	
H1	0.1697	0.1741	0.3994	0.069*	
C1	0.72537 (18)	0.1017 (3)	0.4124 (2)	0.0306 (10)	
H1A	0.7375	0.0434	0.3907	0.046*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H1B	0.7491	0.1073	0.4494	0.046*
H1C	0.7326	0.1583	0.3871	0.046*
C2	0.61084 (17)	0.0962 (3)	0.36033 (19)	0.0194 (8)
C3	0.64147 (17)	0.0996 (3)	0.3056 (2)	0.0229 (9)
Н3	0.6844	0.1015	0.3049	0.027*
C4	0.60955 (16)	0.1002 (3)	0.25272 (19)	0.0214 (8)
H4	0.6307	0.1015	0.2156	0.026*
C5	0.54640 (17)	0.0990 (3)	0.25268 (18)	0.0184 (8)
C6	0.51621 (16)	0.0957 (3)	0.30770 (18)	0.0196 (8)
H6	0.4733	0.0944	0.3084	0.024*
C7	0.54755 (17)	0.0943 (3)	0.36072 (19)	0.0212 (8)
H7	0.5264	0.0920	0.3978	0.025*
C8	0 51336 (16)	0.1021 (3)	0 19612 (18)	0.0181 (8)
C9	0.49220(16)	0.1021(3) 0.1105(3)	0.09894(18)	0.0205(8)
C10	0.43776(17)	0.1091 (3)	0.13000(18)	0.0186(8)
C11	0.38240(17)	0.1051(3) 0.1154(3)	0.1008(2)	0.0130(0)
H11	0.3452	0.1145	0.1000 (2)	0.0234 ())
C12	0.38445 (18)	0.1143 0.1230 (3)	0.0395 (2)	0.023
H12	0.3476	0.1230 (3)	0.0179	0.0202 ())
C13	0.3470	0.1233 (3)	0.0172	0.030
U13	0.43955 (19)	0.1233 (3)	-0.0354	0.0279(9)
C14	0.4300 0.40412(10)	0.1230 0.1170(3)	0.0354	0.034
U14	0.49412 (19)	0.1170 (3)	0.0154	0.0271(9)
C15	0.3313 0.08626 (17)	0.1170 0.2561 (2)	0.0134	0.033°
U15 A	0.08030 (17)	0.3301 (3)	0.0930 (2)	0.0203 (9)
HIJA	0.1001	0.4090	0.0077	0.039
ПІЗБ	0.0422	0.5575	0.0939	0.039*
HISC CIC	0.0992	0.2949	0.0751	0.039*
C10	0.19001(10)	0.3023(3)	0.15589(19)	0.0209 (8)
C1/	0.22338 (16)	0.3494 (3)	0.09802 (19)	0.0203 (8)
HI/	0.1987	0.3427	0.0633	0.024*
	0.28564 (16)	0.3464 (3)	0.09239 (18)	0.0197 (8)
HI8	0.3034	0.3379	0.0539	0.024*
C19	0.32244 (16)	0.3556 (3)	0.14304 (18)	0.0182 (8)
C20	0.29562 (17)	0.3688 (3)	0.19946 (19)	0.0233 (8)
H20	0.3202	0.3754	0.2342	0.028*
C21	0.23346 (18)	0.3722 (3)	0.2046 (2)	0.0253 (9)
H21	0.2155	0.3813	0.2430	0.030*
C22	0.38773 (16)	0.3542 (3)	0.13739 (17)	0.0172 (7)
C23	0.48535 (16)	0.3490 (3)	0.16087 (18)	0.0180 (8)
C24	0.54085 (17)	0.3457 (3)	0.1900 (2)	0.0253 (9)
H24	0.5440	0.3420	0.2325	0.030*
C25	0.59109 (18)	0.3483 (3)	0.1532 (2)	0.0301 (10)
H25	0.6301	0.3463	0.1710	0.036*
C26	0.58653 (17)	0.3537 (3)	0.0909 (2)	0.0273 (9)
H26	0.6225	0.3555	0.0676	0.033*
C27	0.53125 (17)	0.3566 (3)	0.0619 (2)	0.0235 (9)
H27	0.5280	0.3602	0.0194	0.028*
C28	0.48085 (16)	0.3539 (3)	0.09907 (18)	0.0174 (7)

C29	0.22850 (16)	0.0414 (3)	0.45435 (18)	0.0460 (13)
H29A	0.2535	0.0992	0.4589	0.069*
H29B	0.2542	-0.0160	0.4559	0.069*
H29C	0.1988	0.0388	0.4869	0.069*
C30	0.19621 (16)	0.0449 (3)	0.39490 (18)	0.0428 (12)
H30A	0.2256	0.0570	0.3622	0.051*
H30B	0.1761	-0.0176	0.3871	0.051*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cd1	0.01375 (12)	0.02995 (15)	0.01871 (15)	0.00150 (11)	-0.00061 (11)	-0.00047 (12)
Br1	0.01902 (18)	0.0486 (3)	0.0218 (2)	-0.00511 (18)	0.00033 (16)	-0.00842 (19)
Br2	0.0268 (2)	0.0371 (2)	0.0170 (2)	0.00091 (17)	-0.00239 (16)	0.00446 (17)
Br3	0.02397 (19)	0.0292 (2)	0.0171 (2)	-0.00377 (16)	-0.00242 (16)	0.00177 (16)
Br4A	0.0152 (3)	0.0288 (7)	0.0897 (8)	0.0002 (3)	0.0138 (3)	-0.0106 (5)
S 1	0.0164 (4)	0.0349 (6)	0.0269 (6)	0.0037 (4)	0.0056 (4)	0.0071 (5)
S2	0.0231 (5)	0.0303 (5)	0.0241 (6)	0.0015 (4)	-0.0071 (4)	-0.0005 (4)
N1	0.0197 (16)	0.0236 (17)	0.0121 (18)	0.0033 (13)	-0.0002 (13)	0.0013 (14)
N2	0.0143 (14)	0.0235 (16)	0.0137 (18)	-0.0019 (12)	-0.0029 (13)	-0.0010 (13)
N3	0.0138 (15)	0.0223 (17)	0.0196 (19)	-0.0024 (12)	0.0015 (13)	0.0029 (14)
N4	0.0147 (15)	0.0261 (17)	0.0218 (19)	0.0031 (13)	0.0018 (13)	0.0018 (14)
01	0.0256 (16)	0.052 (2)	0.060 (3)	0.0025 (15)	-0.0133 (17)	-0.010 (2)
C1	0.0209 (19)	0.031 (2)	0.040 (3)	0.0003 (17)	-0.0128 (19)	0.002 (2)
C2	0.0216 (18)	0.0139 (17)	0.023 (2)	0.0013 (14)	-0.0059 (16)	0.0002 (15)
C3	0.0143 (17)	0.024 (2)	0.030 (2)	0.0039 (15)	0.0001 (16)	0.0005 (17)
C4	0.0147 (17)	0.027 (2)	0.023 (2)	0.0007 (15)	0.0014 (15)	-0.0019 (17)
C5	0.0180 (17)	0.0178 (18)	0.019 (2)	0.0018 (14)	0.0005 (15)	0.0007 (15)
C6	0.0149 (17)	0.0217 (19)	0.022 (2)	0.0015 (14)	0.0024 (15)	-0.0014 (16)
C7	0.0180 (17)	0.0232 (19)	0.022 (2)	0.0003 (15)	0.0050 (16)	-0.0001 (16)
C8	0.0168 (17)	0.0167 (18)	0.021 (2)	-0.0006 (14)	0.0010 (15)	0.0025 (16)
C9	0.0180 (18)	0.0240 (19)	0.020 (2)	0.0044 (15)	-0.0004 (15)	-0.0003 (16)
C10	0.0219 (18)	0.0176 (18)	0.016 (2)	-0.0021 (14)	0.0003 (15)	0.0011 (15)
C11	0.0181 (18)	0.0229 (19)	0.029 (2)	-0.0014 (15)	-0.0034 (16)	-0.0016 (17)
C12	0.026 (2)	0.024 (2)	0.026 (2)	0.0024 (16)	-0.0112 (17)	-0.0067 (17)
C13	0.035 (2)	0.033 (2)	0.015 (2)	0.0056 (18)	-0.0035 (17)	-0.0049 (18)
C14	0.027 (2)	0.031 (2)	0.023 (2)	0.0022 (17)	0.0060 (17)	-0.0015 (18)
C15	0.0160 (18)	0.034 (2)	0.029 (2)	0.0018 (16)	0.0002 (16)	0.0008 (19)
C16	0.0153 (17)	0.0181 (18)	0.029 (2)	0.0021 (14)	0.0042 (16)	0.0044 (16)
C17	0.0163 (17)	0.0217 (19)	0.023 (2)	-0.0010 (14)	-0.0014 (16)	-0.0011 (16)
C18	0.0169 (17)	0.0224 (19)	0.020 (2)	-0.0003 (14)	0.0039 (15)	0.0006 (16)
C19	0.0182 (17)	0.0171 (17)	0.019 (2)	0.0020 (14)	0.0016 (15)	0.0000 (15)
C20	0.0213 (19)	0.028 (2)	0.021 (2)	0.0022 (16)	0.0011 (16)	0.0035 (17)
C21	0.0239 (19)	0.032 (2)	0.020 (2)	0.0040 (16)	0.0048 (17)	0.0045 (18)
C22	0.0224 (18)	0.0138 (17)	0.015 (2)	-0.0001 (14)	0.0015 (15)	-0.0008 (15)
C23	0.0163 (17)	0.0182 (18)	0.019 (2)	-0.0007 (14)	-0.0027 (15)	-0.0016 (16)
C24	0.0214 (19)	0.031 (2)	0.024 (2)	0.0006 (16)	-0.0071 (17)	0.0011 (18)
C25	0.0187 (19)	0.035 (2)	0.036 (3)	-0.0032 (17)	-0.0103 (18)	0.000 (2)

supporting information

C26	0.0157 (18)	0.038 (2)	0.028 (2)	0.0009 (16)	0.0009 (16)	0.0081 (19)
C27	0.0196 (18)	0.027 (2)	0.025 (2)	0.0007 (15)	0.0017 (16)	0.0024 (17)
C28	0.0163 (17)	0.0173 (17)	0.019 (2)	-0.0005 (14)	-0.0048 (15)	-0.0011 (15)
C29	0.048 (3)	0.054 (3)	0.036 (3)	-0.005 (3)	-0.006 (2)	-0.003 (3)
C30	0.031 (2)	0.049 (3)	0.049 (3)	0.007 (2)	-0.007(2)	-0.009(3)

Geometric parameters (Å, °)

Cd1—Br4A	2.5612 (6)	C9—C14	1.390 (6)
Cd1—Br2	2.5717 (5)	C9—C10	1.389 (5)
Cd1—Br1	2.5898 (5)	C10—C11	1.390 (5)
Cd1—Br3	2.6175 (5)	C11—C12	1.370 (6)
Cd1—Br4B	2.636 (5)	C11—H11	0.9500
Cd1—Br4C	2.695 (8)	C12—C13	1.413 (6)
Br4A—Br4C	0.654 (14)	C12—H12	0.9500
Br4A—Br4B	0.768 (8)	C13—C14	1.382 (6)
Br4B—Br4C	1.338 (16)	C13—H13	0.9500
S1—C16	1.751 (4)	C14—H14	0.9500
S1—C15	1.797 (4)	C15—H15A	0.9800
S2—C2	1.755 (4)	C15—H15B	0.9800
S2—C1	1.797 (4)	C15—H15C	0.9800
N1-C22	1.338 (5)	C16—C17	1.389 (6)
N1-C23	1.387 (5)	C16—C21	1.400 (6)
N1—H1N	0.77 (4)	C17—C18	1.384 (5)
N2-C22	1.336 (5)	C17—H17	0.9500
N2-C28	1.397 (4)	C18—C19	1.397 (5)
N2—H2N	0.84 (5)	C18—H18	0.9500
N3—C8	1.346 (5)	C19—C20	1.401 (6)
N3—C10	1.392 (5)	C19—C22	1.451 (5)
N3—H3N	0.81 (5)	C20—C21	1.381 (5)
N4—C8	1.329 (5)	C20—H20	0.9500
N4—C9	1.384 (5)	C21—H21	0.9500
N4—H4N	0.84 (5)	C23—C28	1.381 (5)
O1—C30	1.435 (5)	C23—C24	1.390 (5)
01—H1	0.8400	C24—C25	1.382 (6)
C1—H1A	0.9800	C24—H24	0.9500
C1—H1B	0.9800	C25—C26	1.392 (6)
C1—H1C	0.9800	C25—H25	0.9500
C2—C3	1.395 (6)	C26—C27	1.384 (5)
C2—C7	1.401 (5)	C26—H26	0.9500
C3—C4	1.373 (6)	C27—C28	1.390 (5)
С3—Н3	0.9500	C27—H27	0.9500
C4—C5	1.398 (5)	C29—C30	1.5047
C4—H4	0.9500	C29—H29A	0.9800
С5—С6	1.396 (5)	C29—H29B	0.9800
С5—С8	1.457 (5)	C29—H29C	0.9800
С6—С7	1.369 (6)	C30—H30A	0.9900
С6—Н6	0.9500	C30—H30B	0.9900

С7—Н7	0.9500		
Br4A—Cd1—Br2	111.87 (4)	C11—C10—N3	131.9 (4)
Br4A—Cd1—Br1	111.00 (2)	C12—C11—C10	116.2 (4)
Br2—Cd1—Br1	110.162 (19)	C12—C11—H11	121.9
Br4A—Cd1—Br3	108.88 (4)	C10—C11—H11	121.9
Br2—Cd1—Br3	107.605 (16)	C11—C12—C13	122.5 (4)
Br1—Cd1—Br3	107.142 (17)	C11—C12—H12	118.8
Br4A—Cd1—Br4B	16.92 (16)	C13—C12—H12	118.8
Br2—Cd1—Br4B	96.01 (16)	C14—C13—C12	120.8 (4)
Br1—Cd1—Br4B	113.60 (11)	C14—C13—H13	119.6
Br3—Cd1—Br4B	121.39 (17)	C12—C13—H13	119.6
Br4A—Cd1—Br4C	14.0 (3)	C13—C14—C9	116.8 (4)
Br2—Cd1—Br4C	118.01 (18)	C13—C14—H14	121.6
Br1—Cd1—Br4C	116.9 (2)	C9—C14—H14	121.6
Br3—Cd1—Br4C	94.9 (3)	S1—C15—H15A	109.5
Br4B—Cd1—Br4C	29.0 (3)	S1—C15—H15B	109.5
Br4C—Br4A—Br4B	140.2 (8)	H15A—C15—H15B	109.5
Br4C—Br4A—Cd1	94.7 (6)	S1—C15—H15C	109.5
Br4B—Br4A—Cd1	87.1 (4)	H15A—C15—H15C	109.5
Br4A—Br4B—Br4C	18.3 (5)	H15B—C15—H15C	109.5
Br4A—Br4B—Cd1	76.0 (4)	C17—C16—C21	119.1 (3)
Br4C—Br4B—Cd1	77.9 (4)	C17—C16—S1	124.9 (3)
Br4A—Br4C—Br4B	21.6 (5)	C21—C16—S1	116.0 (3)
Br4A—Br4C—Cd1	71.3 (6)	C18—C17—C16	120.6 (4)
Br4B—Br4C—Cd1	73.0 (5)	C18—C17—H17	119.7
C16—S1—C15	103.9 (2)	C16—C17—H17	119.7
C2—S2—C1	103.4 (2)	C17—C18—C19	120.3 (4)
C22—N1—C23	109.4 (3)	C17—C18—H18	119.9
C22—N1—H1N	127 (3)	C19—C18—H18	119.9
C23—N1—H1N	124 (3)	C18—C19—C20	119.2 (3)
C22—N2—C28	109.4 (3)	C18—C19—C22	120.6 (4)
C22—N2—H2N	127 (3)	C20—C19—C22	120.1 (4)
C28—N2—H2N	124 (3)	C21—C20—C19	120.1 (4)
C8—N3—C10	109.1 (3)	C21—C20—H20	120.0
C8—N3—H3N	126 (4)	C19—C20—H20	120.0
C10—N3—H3N	125 (4)	C20—C21—C16	120.6 (4)
C8—N4—C9	109.6 (3)	C_{20} C_{21} H_{21}	119.7
C8 - N4 - H4N	122 (3)	C16-C21-H21	119.7
C9-N4-H4N	122(3) 128(3)	N2-C22-N1	108.4 (3)
C30-01-H1	109 5	N_{2} C_{22} C_{19}	126 3 (4)
S2-C1-H1A	109.5	N1 - C22 - C19	125.3(1) 125.3(4)
S2—C1—H1B	109.5	$C_{28} = C_{23} = N_1$	125.5(1) 106.8(3)
$H_{1}A = C_{1} = H_{1}B$	109.5	$C_{28} = C_{23} = C_{24}$	100.0(5) 1220(4)
S2—C1—H1C	109.5	$N1 - C^{23} - C^{24}$	122.0(4) 131 2 (4)
H1A - C1 - H1C	109.5	$C_{25} - C_{24} - C_{23}$	1157(4)
H1B-C1-H1C	109.5	$C_{25} = C_{24} = C_{25}$	122.1
$C_{3}-C_{2}-C_{7}$	119 5 (4)	C_{23} C_{24} H_{24}	122.1
	***** (1)		1 1

C3—C2—S2	124.2 (3)	C24—C25—C26	122.3 (4)
C7—C2—S2	116.3 (3)	C24—C25—H25	118.9
C4—C3—C2	119.9 (3)	С26—С25—Н25	118.9
С4—С3—Н3	120.0	C27—C26—C25	122.0 (4)
С2—С3—Н3	120.0	С27—С26—Н26	119.0
C3—C4—C5	121.0 (4)	C25—C26—H26	119.0
C3—C4—H4	119.5	C28—C27—C26	115.5 (4)
C5—C4—H4	119.5	С28—С27—Н27	122.2
C6—C5—C4	118.6 (4)	С26—С27—Н27	122.2
C6—C5—C8	121.3 (3)	C23—C28—C27	122.5 (3)
C4—C5—C8	120.1 (4)	C23—C28—N2	106.1 (3)
C7—C6—C5	120.9 (3)	C27—C28—N2	131.4 (4)
C7—C6—H6	119.5	C30—C29—H29A	109.5
C5—C6—H6	119.5	C30-C29-H29B	109.5
C6-C7-C2	1201(4)	H29A—C29—H29B	109.5
C6-C7-H7	120.0	C_{30} C_{29} H_{29C}	109.5
$C_2 - C_7 - H_7$	120.0	$H_{29A} - C_{29} - H_{29C}$	109.5
N_{4} C_{8} N_{3}	108 6 (3)	$H_{29B} = C_{29} = H_{29C}$	109.5
N4 C8 C5	106.0(3)	01 C30 C29	109.5 108.9(2)
$N_{1} = C_{0} = C_{1}$	120.0(3) 125.4(4)	$01 - C_{30} + B_{30}$	100.9 (2)
$N_3 = C_3 = C_3$	123.4(4) 131.7(4)	C_{20} C_{30} H_{30A}	109.9
N4 = C9 = C14	106.7(2)	$C_{29} = C_{30} = H_{30R}$	109.9
14 - 0 - 010	100.7(3)	C_{20} C_{20} H_{20D}	109.9
C14 - C9 - C10	121.0(4)	Ц204 С20 Ц20Р	109.9
$C_{2} = C_{10} = C_{11}$	122.1(4)	H30A-C30-H30B	108.5
C9—C10—N3	106.0 (3)		
	110.0 (7)		170.0 (4)
Br2—Cd1—Br4A—Br4C	118.8 (/)	C8 - N4 - C9 - C14	1/8.9 (4)
Br1—Cd1—Br4A—Br4C	-117.7(7)	C8—N4—C9—C10	-0.2 (4)
Br3—Cd1—Br4A—Br4C	0.0 (7)	N4—C9—C10—C11	178.3 (3)
Br4B—Cd1—Br4A—Br4C	140.1 (8)	C14—C9—C10—C11	-1.0 (6)
Br2—Cd1—Br4A—Br4B	-21.3 (4)	N4—C9—C10—N3	-0.2 (4)
Br1—Cd1—Br4A—Br4B	102.2 (4)	C14—C9—C10—N3	-179.4 (4)
Br3—Cd1—Br4A—Br4B	-140.1 (4)	C8—N3—C10—C9	0.6 (4)
Br4C—Cd1—Br4A—Br4B	-140.1 (8)	C8—N3—C10—C11	-177.7 (4)
Cd1—Br4A—Br4B—Br4C	93.9 (10)	C9—C10—C11—C12	0.1 (6)
Br4C—Br4A—Br4B—Cd1	-93.9 (10)	N3—C10—C11—C12	178.1 (4)
Br2—Cd1—Br4B—Br4A	160.2 (4)	C10-C11-C12-C13	0.8 (6)
Br1—Cd1—Br4B—Br4A	-84.7 (4)	C11—C12—C13—C14	-0.8 (6)
Br3—Cd1—Br4B—Br4A	45.3 (4)	C12—C13—C14—C9	-0.1 (6)
Br4C—Cd1—Br4B—Br4A	18.6 (5)	N4—C9—C14—C13	-178.1 (4)
Br4A—Cd1—Br4B—Br4C	-18.6 (5)	C10—C9—C14—C13	0.9 (6)
Br2—Cd1—Br4B—Br4C	141.6 (4)	C15—S1—C16—C17	-1.4 (4)
Br1—Cd1—Br4B—Br4C	-103.3 (4)	C15—S1—C16—C21	178.5 (3)
Br3—Cd1—Br4B—Br4C	26.7 (5)	C21—C16—C17—C18	0.0 (6)
Cd1—Br4A—Br4C—Br4B	-91.1 (9)	S1—C16—C17—C18	179.9 (3)
Br4B—Br4A—Br4C—Cd1	91.1 (9)	C16—C17—C18—C19	0.4 (6)
Cd1—Br4B—Br4C—Br4A	81.9 (10)	C17—C18—C19—C20	-0.6 (6)
Br4A—Br4B—Br4C—Cd1	-81.9 (10)	C17—C18—C19—C22	-178.8 (3)
	× /		× /

Br2—Cd1—Br4C—Br4A	-67.1 (7)	C18—C19—C20—C21	0.3 (6)
Br1—Cd1—Br4C—Br4A	68.0 (7)	C22-C19-C20-C21	178.6 (4)
Br3—Cd1—Br4C—Br4A	-180.0 (7)	C19—C20—C21—C16	0.1 (6)
Br4B—Cd1—Br4C—Br4A	-22.6 (5)	C17—C16—C21—C20	-0.3 (6)
Br4A—Cd1—Br4C—Br4B	22.6 (5)	S1—C16—C21—C20	179.8 (3)
Br2—Cd1—Br4C—Br4B	-44.5 (5)	C28—N2—C22—N1	-0.6 (4)
Br1—Cd1—Br4C—Br4B	90.6 (4)	C28—N2—C22—C19	-179.7 (3)
Br3—Cd1—Br4C—Br4B	-157.4 (4)	C23—N1—C22—N2	0.8 (4)
C1—S2—C2—C3	1.6 (4)	C23—N1—C22—C19	179.9 (3)
C1—S2—C2—C7	-178.1 (3)	C18—C19—C22—N2	9.0 (6)
C7—C2—C3—C4	-0.6 (6)	C20-C19-C22-N2	-169.2 (4)
S2—C2—C3—C4	179.7 (3)	C18—C19—C22—N1	-169.9 (4)
C2—C3—C4—C5	1.0 (6)	C20-C19-C22-N1	11.8 (6)
C3—C4—C5—C6	-0.9 (6)	C22—N1—C23—C28	-0.7 (4)
C3—C4—C5—C8	178.5 (3)	C22—N1—C23—C24	179.1 (4)
C4—C5—C6—C7	0.4 (6)	C28—C23—C24—C25	0.4 (6)
C8—C5—C6—C7	-179.0 (4)	N1-C23-C24-C25	-179.4 (4)
C5—C6—C7—C2	0.0 (6)	C23—C24—C25—C26	-0.1 (6)
C3—C2—C7—C6	0.1 (6)	C24—C25—C26—C27	-0.2 (7)
S2—C2—C7—C6	179.8 (3)	C25—C26—C27—C28	0.1 (6)
C9—N4—C8—N3	0.6 (4)	N1-C23-C28-C27	179.3 (3)
C9—N4—C8—C5	-178.4 (4)	C24—C23—C28—C27	-0.5 (6)
C10—N3—C8—N4	-0.8 (4)	N1-C23-C28-N2	0.3 (4)
C10—N3—C8—C5	178.3 (3)	C24—C23—C28—N2	-179.5 (4)
C6—C5—C8—N4	179.6 (4)	C26—C27—C28—C23	0.2 (6)
C4—C5—C8—N4	0.2 (6)	C26—C27—C28—N2	178.9 (4)
C6—C5—C8—N3	0.8 (6)	C22—N2—C28—C23	0.2 (4)
C4—C5—C8—N3	-178.6 (4)	C22—N2—C28—C27	-178.7 (4)

Hydrogen-bond geometry (Å, °)

		TT 4	D (
D - H - A	<i>D</i> —H	H…A	$D^{\dots}A$	D—H···A
N1—H1 <i>N</i> ···Br3	0.79 (7)	2.51 (7)	3.272 (5)	164 (5)
N2— $H2N$ ···Br2 ⁱ	0.81 (7)	2.50 (7)	3.267 (4)	160 (5)
N4—H4N····O1 ⁱⁱ	0.83 (7)	1.88 (7)	2.679 (6)	161 (6)
C4—H4…O1 ⁱⁱ	0.95	2.55	3.464 (8)	160

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*+1/2, *y*, -*z*+1/2.