organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-2-(2-Hydroxy-4-methoxybenzylidene)-1-benzofuran-3(2H)-one

J. Satyanarayana Reddy, N. Ravi Kumar, J. Venkata Prasad, G. Gopikrishna and K. Anand Solomon*

Sankar Foundation Research Institute, Naiduthota, Vepagunta, Visakhapatnam, Andhra Pradesh 530 047, India Correspondence e-mail: anand.dcb@gmail.com

Received 16 April 2011; accepted 28 April 2011

Key indicators: single-crystal X-ray study: T = 293 K: mean $\sigma(C-C) = 0.002$ Å: R factor = 0.052; wR factor = 0.150; data-to-parameter ratio = 25.5.

In the title compound, $C_{16}H_{12}O_4$, the 1-benzofuranone unit is in a planar conformation $[C-C-C-C = 179.69 (12)^{\circ}]$. The conformation around the C=C double bond [1.3370 (17) Å] is Z. In the crystal, the molecules are stabilized by $O-H \cdots O$ (running parallel to the *bc* plane) and $C-H \cdots O$ hydrogen bonds.

Related literature

For the synthesis and biological activity of substituted aurones, see: Varma & Varma (1992); Beney et al. (2001); Sim et al. (2008); Souard et al. (2010); Wang et al. (2007). For aurones as structural scaffolds in natural and synthetic compounds possessing diverse biological properties, see: Villemin et al. (1998). The title compound, which is an analogue of naturally occurring aurones, holds promise as an inhibitor against human melanocytes tyrosinase towards antihyperpigmentation, see: Okombi et al. (2006). For the assignment of conformations and the orientation of the substituents, see: Nardelli (1983, 1995); Klyne & Prelog (1960).

(12) $Å^3$

Experimental

Crystal data C_{16}

$C_{16}H_{12}O_4$	c = 14.4024 (8) Å
$M_r = 268.26$	$\beta = 100.161 \ (2)^{\circ}$
Monoclinic, $P2_1/n$	V = 1280.52 (12)
a = 7.1083 (4) Å	Z = 4
b = 12.7072 (7) Å	Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

19357 measured reflections

 $R_{\rm int} = 0.047$

4765 independent reflections

2533 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.906, \ T_{\max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ H atoms treated by a mixture of $wR(F^2) = 0.150$ independent and constrained S = 1.02refinement $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$ 4765 reflections $\Delta \rho_{\rm min} = -0.19$ e Å⁻³ 187 parameters

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $O3-H3A\cdots O2^{i}$ 0.90 (2) 1.80 (2) 2.6952 (14) 170.0 (19) C16-H16A...O3i 0.96 2 59 3.3328 (14) 135

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge the Head of the SAIF, IIT-Chennai, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2109).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Crvst. 26, 343-350.
- Beney, C., Mariotte, A. M. & Boumendjel, A. (2001). Heterocycles, 55, 967-972.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-568.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Okombi, S., Rival, D., Bonnet, S., Mariotte, A.-M., Perrier, E. & Boumendjel, A. (2006). J. Med. Chem. 49, 329-333.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sim, H. M., Lee, C. Y., Ee, P. L. & Go, M. L. (2008). Eur. J. Pharm. Sci. 35, 293-306
- Souard, F., Okombi, S., Beney, C., Chevalley, S., Valentin, A. & Boumendjel, A. (2010). Bioorg. Med. Chem. 1, 5724-5731.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Varma, R. S. & Varma, M. (1992). Tetrahedron Lett. 33, 5937-40.

Wang, J., Wang, N., Yao, X. & Kitanaka, S. (2007). J. Trad. Med. 2, 23-29.

Villemin, D., Martin, B. & Bar, N. (1998). Molecules, 3, 88-93.

supporting information

Acta Cryst. (2011). E67, o1330 [doi:10.1107/S1600536811016217]

(Z)-2-(2-Hydroxy-4-methoxybenzylidene)-1-benzofuran-3(2H)-one

J. Satyanarayana Reddy, N. Ravi Kumar, J. Venkata Prasad, G. Gopikrishna and K. Anand Solomon

S1. Comment

Aurones are chalcone analogues containing fused benzofuranone ring system. They form essential structural scaffold in several natural and synthetic molecules possessing diverse biological properties (Villemin *et al.* 1998) Several functionalized aurones were reported to exhibit anti-malarial (Souard *et al.* 2010) and anti-histamine (Wang *et al.* 2007) properties. The title compound which is an analogue of naturally occurring aurones holds promise as inhibitors against human melanocytes tyrosinase towards antihyperpigmentation (Okombi *et al.* 2006).

S2. Experimental

3-coumaranone was allowed to react with 2-hydroxy-4-methoxybenzaldehyde (aldol condensation) in alcoholic solution in the presence of potassium hydroxide for 30 minutes to yield the title compound. The pure product was obtained by recrystalizing the crude product in ethanol solvent.

S3. Refinement

Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Figure 1 Reaction scheme.

Figure 2

ORTEP diagram of (*Z*)-2-(2-hydroxy-4-methoxybenzylidene)benzofuran-3(2*H*)-one. (Thermal ellipsoids are at 50% probability level).

Figure 3

Crystal packing diagram of the title compound. Symmetry codes -x + 1/2, y + 1/2, -z - 1/2

(Z)-2-(2-Hydroxy-4-methoxybenzylidene)-1-benzofuran-3(2H)-one

$\beta = 100.161 (2)^{\circ}$
$V = 1280.52 (12) A^3$
Z = 4
F(000) = 560
$D_{\rm x} = 1.391 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3249 reflections

 $\theta = 2.9-25.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.906, T_{\max} = 0.975$

Refinement

Кејтетет	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of independent
$wR(F^2) = 0.150$	and constrained refinement
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0683P)^2 + 0.0121P]$
4765 reflections	where $P = (F_o^2 + 2F_c^2)/3$
187 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0043 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, yellow

 $R_{\rm int} = 0.047$

 $h = -10 \longrightarrow 5$ $k = -17 \longrightarrow 19$

 $l = -21 \rightarrow 21$

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

 $\theta_{\text{max}} = 32.9^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

19357 measured reflections

4765 independent reflections

2533 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.33155 (18)	0.81587 (10)	0.10935 (9)	0.0378 (3)	
C2	0.3577 (2)	0.79394 (12)	0.20448 (10)	0.0498 (4)	
H2	0.3493	0.8460	0.2490	0.060*	
C3	0.3967 (2)	0.69092 (12)	0.22996 (11)	0.0544 (4)	
H3	0.4168	0.6732	0.2936	0.065*	
C4	0.4072 (2)	0.61232 (12)	0.16407 (11)	0.0529 (4)	
H4	0.4321	0.5433	0.1840	0.064*	
C5	0.3811 (2)	0.63594 (11)	0.06989 (11)	0.0487 (4)	
Н5	0.3888	0.5838	0.0254	0.058*	
C6	0.34267 (17)	0.73990 (10)	0.04224 (9)	0.0383 (3)	
C7	0.31090 (19)	0.79320 (10)	-0.04815 (9)	0.0409 (3)	
C8	0.27856 (18)	0.90379 (10)	-0.02558 (9)	0.0380 (3)	

C9	0.24089 (17)	0.98235 (10)	-0.08784 (9)	0.0388 (3)
Н9	0.2352	0.9621	-0.1503	0.047*
C10	0.20767 (16)	1.09256 (10)	-0.07510 (9)	0.0362 (3)
C11	0.2172 (2)	1.14095 (10)	0.01304 (10)	0.0440 (3)
H11	0.2418	1.0999	0.0673	0.053*
C12	0.1913 (2)	1.24709 (11)	0.02151 (10)	0.0492 (4)
H12	0.1987	1.2772	0.0809	0.059*
C13	0.15384 (19)	1.30956 (10)	-0.05866 (10)	0.0412 (3)
C14	0.14158 (17)	1.26536 (10)	-0.14673 (9)	0.0389 (3)
H14	0.1155	1.3072	-0.2004	0.047*
C15	0.16833 (18)	1.15787 (10)	-0.15485 (9)	0.0383 (3)
C16	0.0907 (2)	1.48154 (11)	-0.12239 (11)	0.0557 (4)
H16A	0.1933	1.4791	-0.1577	0.083*
H16B	0.0756	1.5523	-0.1015	0.083*
H16C	-0.0256	1.4589	-0.1617	0.083*
O1	0.29265 (13)	0.91457 (7)	0.07146 (6)	0.0425 (2)
O2	0.30983 (16)	0.75813 (8)	-0.12769 (7)	0.0611 (3)
O3	0.15733 (16)	1.11203 (8)	-0.24045 (7)	0.0558 (3)
O4	0.13342 (16)	1.41402 (8)	-0.04288 (7)	0.0556 (3)
H3A	0.153 (3)	1.1617 (15)	-0.2855 (16)	0.092 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0425 (6)	0.0355 (7)	0.0351 (7)	-0.0041 (5)	0.0061 (5)	0.0037 (6)
C2	0.0625 (9)	0.0539 (9)	0.0334 (7)	-0.0009 (7)	0.0092 (6)	0.0034 (7)
C3	0.0590 (9)	0.0622 (10)	0.0417 (8)	0.0000 (7)	0.0081 (7)	0.0153 (8)
C4	0.0516 (8)	0.0457 (9)	0.0598 (10)	0.0006 (6)	0.0052 (7)	0.0184 (7)
C5	0.0538 (8)	0.0382 (8)	0.0518 (9)	0.0018 (6)	0.0032 (6)	0.0015 (7)
C6	0.0413 (6)	0.0349 (7)	0.0370 (7)	-0.0023(5)	0.0021 (5)	0.0023 (5)
C7	0.0511 (7)	0.0367 (7)	0.0333 (7)	-0.0009 (6)	0.0029 (5)	-0.0028 (6)
C8	0.0476 (7)	0.0364 (7)	0.0299 (6)	-0.0026 (5)	0.0065 (5)	-0.0015 (5)
C9	0.0496 (7)	0.0357 (7)	0.0314 (6)	-0.0021 (5)	0.0079 (5)	-0.0001(5)
C10	0.0419 (6)	0.0339 (7)	0.0339 (7)	-0.0024 (5)	0.0099 (5)	0.0007 (5)
C11	0.0608 (8)	0.0390 (7)	0.0347 (7)	0.0017 (6)	0.0154 (6)	0.0027 (6)
C12	0.0736 (9)	0.0420 (8)	0.0361 (8)	0.0030(7)	0.0212 (7)	-0.0029 (6)
C13	0.0490 (7)	0.0324 (7)	0.0455 (8)	0.0011 (5)	0.0175 (6)	-0.0015 (6)
C14	0.0476 (7)	0.0336 (7)	0.0362 (7)	-0.0005 (5)	0.0096 (5)	0.0043 (5)
C15	0.0463 (7)	0.0354 (7)	0.0337 (7)	-0.0051 (5)	0.0086 (5)	-0.0018 (5)
C16	0.0749 (10)	0.0352 (8)	0.0597 (10)	0.0034 (7)	0.0194 (8)	0.0045 (7)
01	0.0612 (6)	0.0353 (5)	0.0313 (5)	-0.0006 (4)	0.0092 (4)	0.0004 (4)
O2	0.1001 (9)	0.0452 (6)	0.0353 (6)	0.0094 (5)	0.0048 (5)	-0.0087 (5)
O3	0.1003 (8)	0.0346 (6)	0.0317 (5)	-0.0049 (5)	0.0092 (5)	-0.0017 (4)
O4	0.0859 (7)	0.0353 (6)	0.0495 (6)	0.0077 (5)	0.0222 (5)	-0.0011 (5)

Geometric parameters (Å, °)

C1—01	1.3764 (15)	С9—Н9	0.9300
C1—C6	1.3781 (19)	C10—C11	1.4014 (18)
C1—C2	1.3782 (19)	C10—C15	1.4046 (18)
C2—C3	1.374 (2)	C11—C12	1.3696 (18)
C2—H2	0.9300	C11—H11	0.9300
C3—C4	1.389 (2)	C12—C13	1.3876 (19)
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.370(2)	C13—O4	1.3588 (16)
C4—H4	0.9300	C13—C14	1.3758 (18)
С5—С6	1.3927 (18)	C14—C15	1.3868 (18)
С5—Н5	0.9300	C14—H14	0.9300
С6—С7	1.4495 (18)	C15—O3	1.3533 (16)
С7—О2	1.2280 (16)	C16—O4	1.4203 (17)
С7—С8	1.4697 (18)	C16—H16A	0.9600
С8—С9	1.3370 (17)	C16—H16B	0.9600
C8—O1	1.3902 (15)	C16—H16C	0.9600
C9—C10	1.4373 (17)	O3—H3A	0.90 (2)
01—C1—C6	113.12 (11)	C11—C10—C15	116.89 (12)
01—C1—C2	124.11 (12)	C11—C10—C9	124.08 (12)
C6-C1-C2	122.77 (12)	C15—C10—C9	119.01 (11)
C3—C2—C1	116.33 (14)	C12—C11—C10	121.80 (13)
С3—С2—Н2	121.8	C12—C11—H11	119.1
C1—C2—H2	121.8	C10-C11-H11	119.1
C2—C3—C4	122.35 (14)	C11—C12—C13	119.89 (13)
С2—С3—Н3	118.8	C11—C12—H12	120.1
С4—С3—Н3	118.8	C13—C12—H12	120.1
C5—C4—C3	120.32 (14)	O4—C13—C14	124.18 (12)
C5—C4—H4	119.8	O4—C13—C12	115.47 (12)
C3—C4—H4	119.8	C14—C13—C12	120.34 (12)
C4—C5—C6	118.46 (14)	C13—C14—C15	119.51 (12)
С4—С5—Н5	120.8	C13—C14—H14	120.2
С6—С5—Н5	120.8	C15-C14-H14	120.2
C1—C6—C5	119.77 (13)	O3—C15—C14	120.93 (12)
C1—C6—C7	106.47 (11)	O3—C15—C10	117.50 (12)
C5—C6—C7	133.75 (13)	C14C15C10	121.57 (12)
O2—C7—C6	130.00 (13)	O4—C16—H16A	109.5
O2—C7—C8	125.30 (13)	O4—C16—H16B	109.5
C6—C7—C8	104.70 (11)	H16A—C16—H16B	109.5
С9—С8—О1	124.83 (12)	O4—C16—H16C	109.5
С9—С8—С7	125.89 (12)	H16A—C16—H16C	109.5
O1—C8—C7	109.29 (10)	H16B—C16—H16C	109.5
C8—C9—C10	131.29 (12)	C1—O1—C8	106.42 (10)
С8—С9—Н9	114.4	С15—О3—НЗА	110.1 (13)
С10—С9—Н9	114.4	C13—O4—C16	117.98 (11)

$\begin{array}{c} 01 & -C1 & -C2 & -C3 \\ C6 & -C1 & -C2 & -C3 \\ C1 & -C2 & -C3 & -C4 \\ C2 & -C3 & -C4 & -C5 \\ C3 & -C4 & -C5 & -C6 \\ 01 & -C1 & -C6 & -C5 \\ 01 & -C1 & -C6 & -C7 \\ C2 & -C1 & -C6 & -C7 \\ C4 & -C5 & -C6 & -C1 \\ C4 & -C5 & -C6 & -C7 \\ C1 & -C6 & -C7 & -O2 \\ C5 & -C6 & -C7 & -O2 \\ C5 & -C6 & -C7 & -C8 \\ C5 & -C6 & -C7 & -C8 \\ C5 & -C6 & -C7 & -C8 \\ O2 & -C7 & -C8 & -C9 \\ C6 & -C7 & -C8 & -O1 \\ C6 & -C7 & -C8 & -O1 \\ \end{array}$	-179.59 (12) 0.2 (2) -0.8 (2) 0.9 (2) -0.4 (2) -179.94 (11) 0.23 (19) 0.83 (14) -178.99 (12) -0.12 (19) 178.85 (14) 179.03 (14) 0.0 (3) -0.86 (14) -179.93 (14) 0.9 (2) -179.20 (12) -179.27 (13) 0.63 (14)	$\begin{array}{c} C8 & -C9 & -C10 & -C11 \\ C8 & -C9 & -C10 & -C15 \\ C15 & -C10 & -C11 & -C12 \\ C9 & -C10 & -C11 & -C12 \\ C10 & -C11 & -C12 & -C13 \\ C11 & -C12 & -C13 & -O4 \\ C11 & -C12 & -C13 & -O4 \\ C11 & -C12 & -C13 & -C14 \\ O4 & -C13 & -C14 & -C15 \\ C12 & -C13 & -C14 & -C15 \\ C13 & -C14 & -C15 & -O3 \\ C13 & -C14 & -C15 & -C10 \\ C11 & -C10 & -C15 & -C14 \\ C9 & -C10 & -C15 & -C14 \\ C9 & -C10 & -C15 & -C14 \\ C6 & -C1 & -O1 & -C8 \\ C2 & -C1 & -O1 & -C8 \\ C9 & -C8 & -O1 & -C1 \\ C7 & -C8 & -O1 & -C1 \\ \end{array}$	2.7 (2) -179.18 (13) -0.59 (19) 177.54 (13) 0.2 (2) -178.96 (13) 0.4 (2) 178.78 (12) -0.47 (19) -179.95 (11) 0.05 (18) -179.53 (11) 2.24 (17) 0.47 (18) -177.76 (11) -0.43 (14) 179.39 (12) 179.68 (12) -0.15 (13)
C6-C7-C8-O1 O1-C8-C9-C10 C7-C8-C9-C10	-1/9.27 (13) 0.63 (14) 0.5 (2) -179.69 (12)	C7-C8-O1-C1 C14-C13-O4-C16 C12-C13-O4-C16	$\begin{array}{c} -0.15 (12) \\ -0.15 (13) \\ 2.1 (2) \\ -178.64 (13) \end{array}$

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>A</i> ···O2 ⁱ	0.90 (2)	1.80 (2)	2.6952 (14)	170.0 (19)
C16—H16A····O3 ⁱ	0.96	2.59	3.3328 (14)	135

Symmetry code: (i) -x+1/2, y+1/2, -z-1/2.