organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(1H-Tetra­zol-5-yl)-1H-indole monohydrate

aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China, and bJiangsu University Environment Engineering, Inc., Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: cxwchem@yahoo.com.cn

(Received 5 April 2011; accepted 16 May 2011; online 28 May 2011)

In the title compound, C9H7N5·H2O, the inter­planar angles between the benzene and tetra­zole rings and between the benzene and imidazole rings are 8.71 (3) and 1.32 (2)°, respectively. In the crystal, strong N—H⋯N hydrogen bonds link the organic 5-(1H-tetra­zol-5-yl)-1H-indole mol­ecules into chains extended along the b axis. The chains are further inter­connected into layers parallel to (100) via strong O—H⋯N and N—H⋯O hydrogen bonds. Furthermore, the layers are inter­connected via strong O—H⋯N hydrogen bonds. Moreover, cohesion between the layers is provided by the ππ inter­actions between the imidazole, tetra­zole and benzene rings with centroid–centroid distances of 3.766 (2), 3.832 (2) and 3.733 (2) Å.

Related literature

For applications of tetra­zole derivatives, see: Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For their use in the synthesis of metal-organic frameworks, see: Brewis et al. (2003[Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863-3872.]). For related structures, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For the classification of hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N5·H2O

  • Mr = 203.21

  • Orthorhombic, P 21 21 21

  • a = 6.8978 (14) Å

  • b = 9.953 (2) Å

  • c = 13.713 (3) Å

  • V = 941.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.89, Tmax = 0.95

  • 9741 measured reflections

  • 1258 independent reflections

  • 971 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 1.06

  • 1258 reflections

  • 148 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.87 (3) 2.18 (3) 3.042 (3) 171 (3)
O1W—H1WA⋯N2ii 0.80 (2) 2.08 (2) 2.869 (3) 173 (3)
O1W—H1WB⋯N4iii 0.79 (2) 2.33 (2) 3.098 (3) 164 (3)
N5—H5⋯O1W 0.91 (3) 1.85 (3) 2.757 (3) 173 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tetrazole functional derivatives have found a wide range of applications in coordination chemistry as ligands (Fu et al., 2009), in medicinal chemistry as metabolically stable surrogates for the carboxylic acid group (Fu et al., 2009) and in materials science as highly energetical materials for production of tetrazole explosives (Jin et al., 1994). For the varying ability of the tetrazoles to coordinate metal ions, a large number of novel metal-organic frameworks have been synthesized (Brewis et al., 2003). As extension of these works, we report here the crystal structure of the title compound, 5-(1H-tetrazol-5-yl)-1H-indole hydrate.

The interplanar angles between the benzene and the tetrazole and the benzene and imidazole rings equal to 8.71 (3)° and 1.32 (2)°, respectively. The geometric parameters of the tetrazole ring are comparable to those in the related molecules (Zhao et al., 2008; Fu et al., 2009).

The molecular packing is stabilized by strong intermolecular N—H···O, N—H···N and O—H···N hydrogen bonds (the classification of the hydrogen bonds is according to Desiraju & Steiner, 1999). The H-bonds link the molecules into a three-dimensional network (Fig. 2 and Tab. 1). In a more detail, N1-H1···N3 connects the molecules into chains extended along the b-axis. These chains are interconnected by the hydrogen bonds O1W—H1WA···N2 and N5—H5···O1W, forming thus layers parallel to (1 0 0) - see Fig. 2 and Tab. 1. The hydrogen bond O1W—H1WB···N4 interconnects the layers.

The layers are also connected by the π-electron ring··· π-electron ring interactions. The centroid—centroid distances are Cg1—Cg2 (1 + x, y, z) = 3.766 (2) Å; Cg1—Cg2 (1/2 + x, 3/2 - y, 1 - z) = 3.832 (2)Å and Cg3—Cg3 (1/2 + x, 3/2 - y or -1/2 + x, 3/2 - y, 1 - z) = 3.733 (2) Å , where Cg1, Cg2 and Cg3 are the centroids referring to the imidazole, tetrazole and the benzene rings, respectively.

Related literature top

For applications of tetrazole derivatives, see: Jin et al. (1994; Fu et al. (2009)). For their use in the synthesis of metal-organic frameworks, see: Brewis et al. (2003). For related structures, see: Zhao et al. (2008); Fu et al. (2009). For the classification of hydrogen bonds, see: Desiraju & Steiner (1999).

Experimental top

5-(1H-tetrazol-5-yl)-1H-indole was obtained commercially from Alfa Aesar. Colourless block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/water (2:1 v/v) solution.

Refinement top

All the H atoms were discernible in the difference electron density maps. All the H atoms attached to the C atoms were situated into the idealized positions and treated as riding with C–H = 0.93 Å with Uiso(H)=1.2Ueq(C). The positional parameters of the H atoms involved in the hydrogen bonds were refined either freely (N1, N5) or as restrained (Ow). The restraints regarded the distances between the water oxygens and the water hydrogens (0.82 (2)Å) while the H1WA—O1w—H1WB angle was set to 105(1.5)°. The constraints regarding the displacement parameters of the amine and water hydrogens: Uiso(H)=1.2Ueq(N); Uiso(H)=1.5Ueq(Ow). Since there has been no significant anomalous scatterer in the structure, 889 Friedel pairs have been merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title molecules with the atomic numbering scheme. The displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. One layer with the atoms with the fractional coordinates of the constituting atoms x < 0.5. The H atoms not involved in the hydrogen bonding (dashed lines) have been omitted for clarity.
5-(1H-Tetrazol-5-yl)-1H-indole monohydrate top
Crystal data top
C9H7N5·H2OF(000) = 424
Mr = 203.21Dx = 1.434 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1258 reflections
a = 6.8978 (14) Åθ = 3.3–27.5°
b = 9.953 (2) ŵ = 0.10 mm1
c = 13.713 (3) ÅT = 298 K
V = 941.4 (3) Å3Block, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1258 independent reflections
Radiation source: fine-focus sealed tube971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.89, Tmax = 0.95l = 1717
9741 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.0295P]
where P = (Fo2 + 2Fc2)/3
1258 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = 0.15 e Å3
24 constraints
Crystal data top
C9H7N5·H2OV = 941.4 (3) Å3
Mr = 203.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.8978 (14) ŵ = 0.10 mm1
b = 9.953 (2) ÅT = 298 K
c = 13.713 (3) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
1258 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
971 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.069
9741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
1258 reflectionsΔρmin = 0.15 e Å3
148 parameters
Special details top

Experimental. The distance between the sample and the detector is 55 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1423 (4)1.0672 (2)0.40317 (17)0.0433 (6)
H10.144 (5)1.145 (3)0.433 (2)0.052*
N50.1331 (4)0.4891 (2)0.61965 (15)0.0371 (5)
H50.120 (4)0.532 (3)0.6781 (19)0.045*
C20.1601 (4)0.6777 (2)0.49991 (17)0.0296 (6)
C30.1565 (4)0.7101 (2)0.40154 (17)0.0339 (6)
H30.15780.64280.35450.041*
C70.1607 (4)0.7798 (3)0.57174 (18)0.0357 (6)
H70.16370.75610.63730.043*
N40.1313 (4)0.3538 (2)0.61809 (16)0.0456 (6)
C50.1512 (4)0.9450 (2)0.44822 (18)0.0339 (6)
N30.1556 (4)0.3203 (2)0.52735 (17)0.0471 (6)
C80.1406 (5)0.9156 (3)0.28329 (19)0.0441 (7)
H80.13750.87700.22150.053*
C10.1569 (4)0.5364 (2)0.52883 (18)0.0308 (6)
C40.1510 (4)0.8459 (2)0.37392 (18)0.0334 (6)
C60.1569 (4)0.9126 (2)0.54653 (18)0.0362 (6)
H60.15820.97940.59400.043*
C90.1359 (5)1.0484 (3)0.3040 (2)0.0471 (7)
H90.12941.11690.25790.056*
N20.1706 (4)0.4307 (2)0.47002 (16)0.0421 (6)
O1W0.1242 (4)0.6288 (2)0.79322 (13)0.0541 (6)
H1WA0.183 (4)0.606 (3)0.8404 (19)0.081*
H1WB0.045 (4)0.683 (3)0.806 (2)0.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0523 (14)0.0299 (11)0.0477 (14)0.0015 (15)0.0014 (13)0.0001 (10)
N50.0484 (14)0.0301 (11)0.0328 (12)0.0004 (11)0.0015 (13)0.0005 (10)
C20.0271 (13)0.0275 (12)0.0344 (13)0.0007 (13)0.0031 (13)0.0015 (9)
C30.0377 (14)0.0327 (13)0.0312 (13)0.0018 (14)0.0009 (13)0.0034 (11)
C70.0409 (15)0.0368 (14)0.0292 (12)0.0006 (15)0.0005 (13)0.0012 (11)
N40.0628 (15)0.0275 (12)0.0466 (14)0.0006 (13)0.0021 (15)0.0031 (10)
C50.0290 (12)0.0279 (12)0.0447 (15)0.0000 (14)0.0015 (12)0.0013 (11)
N30.0662 (16)0.0301 (12)0.0450 (14)0.0044 (14)0.0075 (15)0.0014 (10)
C80.0552 (18)0.0421 (17)0.0349 (15)0.0046 (16)0.0009 (15)0.0029 (12)
C10.0299 (13)0.0295 (13)0.0331 (13)0.0031 (13)0.0006 (13)0.0035 (11)
C40.0289 (12)0.0355 (14)0.0359 (14)0.0013 (13)0.0009 (14)0.0039 (11)
C60.0449 (15)0.0298 (14)0.0338 (14)0.0019 (14)0.0015 (14)0.0079 (10)
C90.0540 (18)0.0397 (15)0.0475 (17)0.0002 (18)0.0029 (16)0.0124 (13)
N20.0601 (16)0.0291 (11)0.0370 (12)0.0023 (13)0.0048 (12)0.0025 (10)
O1W0.0737 (17)0.0559 (14)0.0327 (10)0.0169 (13)0.0053 (11)0.0024 (10)
Geometric parameters (Å, º) top
N1—C51.366 (3)N4—N31.299 (3)
N1—C91.373 (3)C5—C61.387 (4)
N1—H10.87 (3)C5—C41.418 (3)
N5—C11.341 (3)N3—N21.354 (3)
N5—N41.347 (3)C8—C91.353 (4)
N5—H50.91 (3)C8—C41.425 (4)
C2—C31.387 (3)C8—H80.9300
C2—C71.415 (3)C1—N21.329 (3)
C2—C11.462 (3)C6—H60.9300
C3—C41.403 (3)C9—H90.9300
C3—H30.9300O1W—H1WA0.797 (17)
C7—C61.367 (3)O1W—H1WB0.792 (17)
C7—H70.9300
C5—N1—C9109.1 (2)N4—N3—N2111.0 (2)
C5—N1—H1125.4 (19)C9—C8—C4107.1 (2)
C9—N1—H1125.5 (19)C9—C8—H8126.5
C1—N5—N4109.7 (2)C4—C8—H8126.5
C1—N5—H5131.5 (18)N2—C1—N5107.1 (2)
N4—N5—H5118.9 (18)N2—C1—C2126.6 (2)
C3—C2—C7120.7 (2)N5—C1—C2126.2 (2)
C3—C2—C1119.2 (2)C3—C4—C5118.4 (2)
C7—C2—C1120.1 (2)C3—C4—C8134.8 (2)
C2—C3—C4119.1 (2)C5—C4—C8106.7 (2)
C2—C3—H3120.4C7—C6—C5118.1 (2)
C4—C3—H3120.4C7—C6—H6120.9
C6—C7—C2121.2 (2)C5—C6—H6120.9
C6—C7—H7119.4C8—C9—N1109.9 (2)
C2—C7—H7119.4C8—C9—H9125.1
N3—N4—N5105.7 (2)N1—C9—H9125.1
N1—C5—C6130.4 (2)C1—N2—N3106.5 (2)
N1—C5—C4107.1 (2)H1WA—O1W—H1WB111 (2)
C6—C5—C4122.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.87 (3)2.18 (3)3.042 (3)171 (3)
O1W—H1WA···N2ii0.80 (2)2.08 (2)2.869 (3)173 (3)
O1W—H1WB···N4iii0.79 (2)2.33 (2)3.098 (3)164 (3)
N5—H5···O1W0.91 (3)1.85 (3)2.757 (3)173 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1, z+1/2; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H7N5·H2O
Mr203.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.8978 (14), 9.953 (2), 13.713 (3)
V3)941.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.89, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
9741, 1258, 971
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.06
No. of reflections1258
No. of parameters148
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.87 (3)2.18 (3)3.042 (3)171 (3)
O1W—H1WA···N2ii0.797 (17)2.076 (19)2.869 (3)173 (3)
O1W—H1WB···N4iii0.792 (17)2.33 (2)3.098 (3)164 (3)
N5—H5···O1W0.91 (3)1.85 (3)2.757 (3)173 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1, z+1/2; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

References

First citationBrewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds