

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N^3, N^{3'}$)(pyridine-2,6-dicarboxylato- $\kappa^3 O^2, N, O^6$)zinc tetrahydrate

Yan-Li Wang, Guang-Jun Chang and Bing-Xin Liu*

Department of Chemistry, Shanghai University, People's Republic of China Correspondence e-mail: r5744011@yahoo.com.cn

Received 6 April 2011; accepted 21 April 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.052; wR factor = 0.119; data-to-parameter ratio = 12.4.

The title compound, $[Zn(C_7H_3NO_4)(C_6H_6N_4S_2)(H_2O)]\cdot 4H_2O$, assumes a distorted octahedral coordination geometry around the Zn²⁺ cation, formed by a diaminobithiazole (DABT) molecule, a pyridine-2,6-dicarboxylate anion and a water molecule. The pyridine-2,6-dicarboxylate anion chelates to the Zn^{II} atom with a facial configuration. Within the chelating DABT ligand, the two thiazole rings are twisted by a dihedral angle of 14.52 (8)° with respect to each other. O–H···O and N–H···O hydrogen bonds occur in the crystal structure.

Related literature

For potential applications of transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT), see: Sun *et al.* (1997). For general background to metal complexes with DABT, see: Liu *et al.* (2003). For related structures, see: Liu & Xu (2004, 2005); Liu *et al.* (2005).

 $\beta = 93.960 \ (3)^{\circ}$

Z = 4

V = 1969.2 (7) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.15~\text{mm}$

9851 measured reflections

3471 independent reflections

2238 reflections with $I > 2\sigma(I)$

 $\mu = 1.52 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.074$

Experimental

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_7\text{H}_3\text{NO}_4)(\text{C}_6\text{H}_6\text{N}_4\text{S}_2) - \\ & (\text{H}_2\text{O})]\cdot\text{4}\text{H}_2\text{O} \\ & M_r = 518.82 \\ & \text{Monoclinic, } P2_1/c \\ & a = 10.0529 \ (19) \text{ Å} \\ & b = 7.0833 \ (13) \text{ Å} \\ & c = 27.720 \ (6) \text{ Å} \end{split}$$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.701, T_{\rm max} = 0.796$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	281 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
3471 reflections	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Zn-N21	2.064 (4)	Zn-O1	2.213 (3)
Zn-N11	2.092 (4)	Zn-O23	2.232 (4)
Zn-N13	2.129 (4)	Zn-O21	2.260 (4)
			· · ·

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O22^{i}$	0.97	1.84	2.778 (5)	163
$O1-H1B\cdots O1W$	0.96	1.87	2.827 (6)	174
$O1W-H1WA\cdots O4W^{ii}$	0.91	2.10	2.812 (6)	134
$O1W-H1WB\cdots O2W^{i}$	0.80	2.10	2.775 (6)	142
$O2W-H2WA\cdots O22$	0.82	1.93	2.692 (6)	155
$O2W - H2WB \cdots O4W^{iii}$	0.86	1.97	2.830 (6)	178
O3W−H3WA···O24	0.94	1.94	2.880 (6)	174
O3W−H3WB····O24 ^{iv}	0.96	1.80	2.694 (6)	153
$O4W-H4WA\cdots O2W^{ii}$	0.91	2.02	2.863 (6)	153
$O4W-H4WB\cdots O3W$	0.88	1.92	2.783 (6)	167
$N12-H12A\cdots O1$	0.97	2.00	2.873 (6)	149
$N12-H12B\cdots O21^{v}$	0.83	2.19	2.984 (5)	161
N14 $-$ H14 A ···O3 W^{vi}	0.88	2.44	3.043 (6)	126
N14 $-$ H14 B ···O1 W ^{vii}	0.86	2.19	3.022 (6)	162

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y + 1, z; (iv) -x + 2, -y, -z + 1; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (vi) -x + 2, -y + 1, -z + 1; (vii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the Foundation of Shanghai University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2006).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137-m139.

Liu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, m1978-m1980.

Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m2011-m2013.

Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 71–76.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, W. L., Gao, X. S. & Lu, F. C. (1997). J. Appl. Polym. Sci. 64, 2309-2315.

supporting information

Acta Cryst. (2011). E67, m683-m684 [doi:10.1107/S1600536811015145]

Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N^3$, N^3')(pyridine-2,6-dicarboxylato- $\kappa^3 O^2$,N, O^6)zinc tetrahydrate

Yan-Li Wang, Guang-Jun Chang and Bing-Xin Liu

S1. Comment

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun *et al.*, 1997). As part of serial structural investigation of metal complexes with DABT (Liu *et al.*, 2003), the title Zn^{II} complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The complex has a distorted octahedral coordinatation geometry formed by a DABT ligand, a pyridine-2,6-dicarboxylate anion and a coordinated water molecule.

Thiazole rings of DABT are not coplanar as same as in other complexes we have reported, the dihedral angle between the two thiazole rings is 14.51 (8) °. It is similar to the 17.23 (7) ° found in $[Cr(C_4H_5NO_4)(C_6H_6N_4S_2)(H_2O)]Cl:H_2O$, (Liu & Xu, 2004). The distances of C16—N14 [1.335 (4) Å] and C16—N13[1.324 (4) Å] imply the existence of electron delocalization between thiazole rings and amino groups. This feature of electron delocalization of DABT can be found in some DABT complexes of Mn(II) (Liu & Xu, 2005), Co(II) (Liu *et al.*, 2005), we have reported. The tridentate pyridine-2,6-dicarboxylate anion chelates to the Zn^{II} atom with a facial configuration with the maximum atomic deviation of 0.082 (3) Å (N21) to the main plane defined by C21 C22 C23 C24 C25 C26 C27 N21 O21 O22 O23 O24.

The extensive hydrogen bonding between lattice water molecules, complex and lattice water helps to stabilize the crystal structure as shown in Fig. 2. and Table 1.

S2. Experimental

An aqueous solution (20 ml) containing DABT (1 mmol) and $ZnCl_2$ (1 mmol) was mixed with an aqueous solution (10 ml) of pyridine-2,6-dicarboxylic acid (1 mmol) and NaOH (2 mmol). The mixture was refluxed for 5 h. After cooling to room temperature the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.

S3. Refinement

H atoms on carbon atoms were placed in calculated positions, with C—H distances = 0.93 Å (aromatic), and were included in the final cycles of refinement in riding mode with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms. H atoms of amino group of DABT, coordinated water and lattice water were located in a difference Fourier map and included in the structure factor calculations with fixed positional and isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)$ of the carrier atoms.

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding within the complex.

Figure 2

The hydrogen bonding diagram with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines indicate the hydrogen bonding.

Aqua(2,2'-diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N^3$, N^3)(pyridine- 2,6-dicarboxylato- $\kappa^3 O^2$,N, O^6)zinc tetrahydrate

Crystal data	
$[Zn(C_7H_3NO_4)(C_6H_6N_4S_2)(H_2O)]$ ·4H ₂ O	F(000) = 1064
$M_r = 518.82$	$D_{\rm x} = 1.750 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3380 reflections
a = 10.0529 (19) Å	$\theta = 2.0 - 25.0^{\circ}$
b = 7.0833 (13) Å	$\mu = 1.52 \text{ mm}^{-1}$
c = 27.720 (6) Å	T = 295 K
$\beta = 93.960 \ (3)^{\circ}$	Prism, yellow
V = 1969.2 (7) Å ³	$0.25 \times 0.20 \times 0.15 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEX	9851 measured reflections
diffractometer	3471 independent reflections
Radiation source: fine-focus sealed tube	2238 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{ m int}=0.074$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.4^\circ$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -8 \rightarrow 8$
(SADABS; Sheldrick, 1996)	$l = -22 \rightarrow 32$
$T_{\min} = 0.701, T_{\max} = 0.796$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.03	H-atom parameters constrained
3471 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0374P)^2 + 1.648P]$
281 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.40 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.60 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn	0.79367 (6)	0.53096 (9)	0.32687 (2)	0.0278 (2)
01	0.6001 (3)	0.3881 (5)	0.33361 (13)	0.0323 (9)
H1A	0.6206	0.2602	0.3443	0.031 (15)*
H1B	0.5456	0.4465	0.3567	0.06 (2)*
O21	0.6938 (3)	0.8166 (5)	0.32814 (13)	0.0322 (9)
O22	0.6230 (4)	1.0365 (5)	0.37777 (13)	0.0352 (9)
O23	0.8776 (4)	0.2804 (5)	0.36725 (13)	0.0330 (9)
O24	0.9366 (4)	0.1804 (6)	0.44238 (14)	0.0460 (11)
N11	0.7611 (4)	0.5270 (6)	0.25153 (14)	0.0249 (10)
N12	0.5302 (4)	0.4822 (7)	0.23428 (16)	0.0401 (13)
H12A	0.5190	0.4432	0.2673	0.048*
H12B	0.4789	0.4457	0.2116	0.048*
N13	0.9917 (4)	0.5795 (6)	0.30709 (15)	0.0270 (11)
N14	1.1350 (4)	0.5784 (7)	0.37784 (17)	0.0434 (13)
H14A	1.0773	0.6054	0.3991	0.052*
H14B	1.2189	0.5943	0.3857	0.052*
N21	0.7907 (4)	0.6039 (6)	0.39887 (15)	0.0238 (10)
S11	0.68935 (14)	0.5508 (2)	0.16108 (5)	0.0368 (4)
S12	1.23955 (13)	0.5564 (2)	0.29119 (5)	0.0348 (4)
C11	0.8759 (5)	0.5611 (7)	0.22697 (18)	0.0250 (12)
C12	0.8558 (5)	0.5786 (8)	0.1793 (2)	0.0333 (14)
H12	0.9225	0.6026	0.1585	0.040*
C13	0.6547 (5)	0.5153 (7)	0.22092 (18)	0.0265 (12)
C14	1.0006 (5)	0.5681 (7)	0.25667 (19)	0.0255 (12)
C15	1.1253 (5)	0.5557 (8)	0.2422 (2)	0.0323 (13)

H15	1.1467	0.5478	0.2102	0.039*
C16	1.1095 (5)	0.5723 (8)	0.3291 (2)	0.0306 (13)
C21	0.7370 (5)	0.7687 (7)	0.41205 (18)	0.0243 (12)
C22	0.7300 (6)	0.8163 (8)	0.45964 (19)	0.0348 (14)
H22	0.6938	0.9313	0.4682	0.042*
C23	0.7783 (6)	0.6894 (8)	0.4950 (2)	0.0364 (14)
H23	0.7755	0.7193	0.5276	0.044*
C24	0.8303 (5)	0.5195 (7)	0.4814 (2)	0.0324 (14)
H24	0.8614	0.4324	0.5046	0.039*
C25	0.8355 (5)	0.4801 (7)	0.43272 (19)	0.0270 (12)
C26	0.6810 (5)	0.8848 (8)	0.3697 (2)	0.0287 (13)
C27	0.8889 (5)	0.2973 (7)	0.4127 (2)	0.0298 (13)
O1W	0.4314 (4)	0.5366 (7)	0.40173 (16)	0.0453 (11)
H1WA	0.4454	0.6614	0.4085	0.06 (2)*
H1WB	0.4538	0.4785	0.4256	0.08 (3)*
O2W	0.5018 (4)	1.2043 (6)	0.45001 (16)	0.0533 (12)
H2WA	0.5563	1.1778	0.4303	0.06 (2)*
H2WB	0.5413	1.1846	0.4782	0.05 (2)*
O3W	0.9102 (4)	0.1298 (5)	0.54438 (17)	0.0485 (12)
H3WA	0.9229	0.1380	0.5111	0.11 (3)*
H3WB	0.9730	0.0390	0.5580	0.051 (18)*
O4W	0.6334 (4)	0.1492 (6)	0.54252 (14)	0.0465 (11)
H4WA	0.6074	0.0351	0.5539	0.14 (4)*
H4WB	0.7192	0.1338	0.5388	0.05 (2)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0276 (4)	0.0333 (4)	0.0226 (4)	0.0023 (3)	0.0028 (3)	0.0000 (3)
01	0.034 (2)	0.032 (2)	0.031 (2)	0.0021 (18)	0.0031 (18)	0.0038 (18)
O21	0.034 (2)	0.040 (2)	0.022 (2)	0.0082 (18)	-0.0013 (17)	0.0010 (18)
O22	0.045 (2)	0.024 (2)	0.037 (2)	0.0128 (19)	0.0054 (19)	0.0033 (18)
O23	0.037 (2)	0.028 (2)	0.035 (2)	0.0057 (17)	0.0031 (19)	-0.0012 (18)
O24	0.065 (3)	0.033 (2)	0.040 (3)	0.022 (2)	0.004 (2)	0.005 (2)
N11	0.025 (2)	0.027 (3)	0.022 (2)	0.001 (2)	0.0027 (19)	0.003 (2)
N12	0.030 (3)	0.065 (4)	0.024 (3)	0.000 (3)	-0.003 (2)	0.001 (2)
N13	0.022 (2)	0.031 (3)	0.028 (3)	-0.0009 (19)	0.003 (2)	0.000 (2)
N14	0.023 (3)	0.073 (4)	0.035 (3)	-0.003 (2)	0.004 (2)	-0.002 (3)
N21	0.021 (2)	0.026 (3)	0.024 (3)	0.0024 (19)	0.0020 (19)	0.000 (2)
S11	0.0403 (9)	0.0476 (10)	0.0221 (8)	0.0015 (7)	-0.0013 (6)	0.0025 (7)
S12	0.0238 (7)	0.0401 (9)	0.0412 (9)	0.0012 (6)	0.0064 (7)	0.0010 (7)
C11	0.026 (3)	0.025 (3)	0.024 (3)	0.000 (2)	0.002 (2)	-0.005 (2)
C12	0.036 (3)	0.038 (4)	0.027 (3)	-0.002 (3)	0.008 (3)	0.002 (3)
C13	0.028 (3)	0.029 (3)	0.023 (3)	0.006 (2)	0.002 (2)	-0.007 (2)
C14	0.031 (3)	0.021 (3)	0.025 (3)	0.003 (2)	0.004 (2)	-0.002 (2)
C15	0.036 (3)	0.035 (3)	0.027 (3)	0.000 (3)	0.011 (3)	0.003 (3)
C16	0.030 (3)	0.033 (3)	0.030 (3)	-0.001 (3)	0.004 (3)	0.001 (3)
C21	0.027 (3)	0.024 (3)	0.022 (3)	0.000 (2)	0.002 (2)	-0.001 (2)

supporting information

C22	0.044 (4)	0.031 (3)	0.029 (3)	0.013 (3)	0.004 (3)	-0.003 (3)	
C23	0.046 (4)	0.043 (4)	0.020 (3)	0.006 (3)	0.007 (3)	-0.001 (3)	
C24	0.044 (3)	0.026 (3)	0.027 (3)	0.011 (3)	0.003 (3)	0.006 (3)	
C25	0.027 (3)	0.025 (3)	0.029 (3)	0.000 (2)	0.004 (2)	0.006 (3)	
C26	0.027 (3)	0.027 (3)	0.032 (4)	-0.006 (3)	0.003 (3)	-0.003 (3)	
C27	0.034 (3)	0.019 (3)	0.038 (4)	0.001 (2)	0.006 (3)	0.002 (3)	
O1W	0.045 (3)	0.046 (3)	0.044 (3)	0.007 (2)	0.001 (2)	-0.001 (2)	
O2W	0.059 (3)	0.067 (3)	0.035 (3)	0.023 (2)	0.010 (3)	0.010 (2)	
O3W	0.054 (3)	0.040 (3)	0.052 (3)	0.021 (2)	0.008 (2)	0.006 (2)	
O4W	0.050 (3)	0.050 (3)	0.040 (3)	0.004 (2)	0.006 (2)	-0.002 (2)	

Geometric parameters (Å, °)

Zn—N21	2.064 (4)	S11—C13	1.737 (5)
Zn—N11	2.092 (4)	S12—C15	1.717 (6)
Zn—N13	2.129 (4)	S12—C16	1.736 (5)
Zn—O1	2.213 (3)	C11—C12	1.328 (7)
Zn—O23	2.232 (4)	C11—C14	1.452 (7)
Zn—O21	2.260 (4)	C12—H12	0.9300
O1—H1A	0.9713	C14—C15	1.346 (7)
O1—H1B	0.9633	C15—H15	0.9300
O21—C26	1.264 (6)	C21—C22	1.368 (7)
O22—C26	1.250 (6)	C21—C26	1.510 (7)
O23—C27	1.264 (6)	C22—C23	1.393 (7)
O24—C27	1.239 (6)	С22—Н22	0.9300
N11—C13	1.321 (6)	C23—C24	1.375 (7)
N11—C11	1.401 (6)	С23—Н23	0.9300
N12—C13	1.351 (6)	C24—C25	1.382 (7)
N12—H12A	0.9708	C24—H24	0.9300
N12—H12B	0.8256	C25—C27	1.521 (7)
N13—C16	1.294 (7)	O1W—H1WA	0.9122
N13—C14	1.409 (6)	O1W—H1WB	0.7978
N14—C16	1.359 (7)	O2W—H2WA	0.8216
N14—H14A	0.8749	O2W—H2WB	0.8624
N14—H14B	0.8645	O3W—H3WA	0.9418
N21—C25	1.339 (6)	O3W—H3WB	0.9604
N21—C21	1.347 (6)	O4W—H4WA	0.9116
S11—C12	1.725 (6)	O4W—H4WB	0.8825
N21_7n_N11	163 19 (16)	C11_C12_S11	111 1 (4)
N21 = Zn = N13	106 55 (16)	$C_{11} - C_{12} - H_{12}$	124 5
$N11_7n_N13$	80.18 (16)	S11_C12_H12	124.5
N21-7n-01	87 78 (14)	N11_C13_N12	124.0(5)
N11 - 7n - 01	90.03 (15)	N11_C13_S11	124.0(5) 113.4(4)
N13 Tr O1	150 00 (15)	N12 C13 S11	113.4(4) 122.5(4)
$N21_7n_023$	75 18 (15)	C15 - C13 - S11	122.3 (7)
N11 7n O23	121 17 (15)	$C_{15} = C_{14} = C_{15}$	127.0 (5)
$\frac{1}{2} \frac{1}{2} \frac{1}$	121.17(13) 95.07(15)	13 - 014 - 011	127.7(3)
INI 3-LII-023	03.97 (13)	N15-014-011	117.0 (4)

O1—Zn—O23	84.17 (13)	C14—C15—S12	110.5 (4)
N21—Zn—O21	74.03 (14)	C14—C15—H15	124.7
N11—Zn—O21	89.34 (14)	S12—C15—H15	124.7
N13—Zn—O21	106.47 (15)	N13—C16—N14	124.8 (5)
O1—Zn—O21	90.79 (14)	N13—C16—S12	114.8 (4)
O23—Zn—O21	148.96 (13)	N14—C16—S12	120.4 (4)
Zn—O1—H1A	106.4	N21—C21—C22	121.6 (5)
Zn—O1—H1B	113.8	N21—C21—C26	113.3 (4)
H1A—O1—H1B	108.5	C22—C21—C26	125.0 (5)
C26—O21—Zn	115.4 (3)	C21—C22—C23	118.7 (5)
C27—O23—Zn	115.5 (3)	C21—C22—H22	120.6
C13—N11—C11	110.9 (4)	С23—С22—Н22	120.6
C13—N11—Zn	134.9 (3)	C24—C23—C22	119.5 (5)
C11—N11—Zn	113.9 (3)	С24—С23—Н23	120.3
C13—N12—H12A	118.5	С22—С23—Н23	120.3
C13—N12—H12B	112.8	C23—C24—C25	119.1 (5)
H12A—N12—H12B	121.5	C23—C24—H24	120.5
C16—N13—C14	110.3 (4)	C25—C24—H24	120.5
C16—N13—Zn	135.5 (4)	N21—C25—C24	121.2 (5)
C14—N13—Zn	111.7 (3)	N21—C25—C27	114.3 (5)
C16—N14—H14A	126.0	C24—C25—C27	124.5 (5)
C16—N14—H14B	111.6	O22—C26—O21	124.7 (5)
H14A—N14—H14B	118.9	O22—C26—C21	118.9 (5)
C25—N21—C21	119.9 (4)	O21—C26—C21	116.4 (5)
C25—N21—Zn	119.2 (3)	O24—C27—O23	127.1 (5)
C21—N21—Zn	120.8 (3)	O24—C27—C25	117.2 (5)
C12—S11—C13	89.5 (3)	O23—C27—C25	115.7 (5)
C15—S12—C16	89.3 (3)	H1WA—O1W—H1WB	107.4
C12—C11—N11	115.2 (5)	H2WA—O2W—H2WB	106.1
C12—C11—C14	128.9 (5)	H3WA—O3W—H3WB	107.3
N11-C11-C14	116.0 (4)	H4WA—O4W—H4WB	103.6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01—H1 <i>A</i> ···O22 ⁱ	0.97	1.84	2.778 (5)	163
O1—H1 <i>B</i> …O1 <i>W</i>	0.96	1.87	2.827 (6)	174
O1W— $H1WA$ ··· $O4W$ ⁱⁱ	0.91	2.10	2.812 (6)	134
$O1W - H1WB \cdots O2W^{i}$	0.80	2.10	2.775 (6)	142
O2 <i>W</i> —H2 <i>WA</i> ···O22	0.82	1.93	2.692 (6)	155
$O2W - H2WB \cdots O4W^{iii}$	0.86	1.97	2.830 (6)	178
O3 <i>W</i> —H3 <i>WA</i> ···O24	0.94	1.94	2.880 (6)	174
O3 <i>W</i> —H3 <i>WB</i> ···O24 ^{iv}	0.96	1.80	2.694 (6)	153
O4W— $H4WA$ ··· $O2W$ ⁱⁱ	0.91	2.02	2.863 (6)	153
O4 <i>W</i> —H4 <i>WB</i> ···O3 <i>W</i>	0.88	1.92	2.783 (6)	167
N12—H12A…O1	0.97	2.00	2.873 (6)	149
N12—H12 <i>B</i> ···O21 ^v	0.83	2.19	2.984 (5)	161

supporting information

N14—H14 A ····O3 W ^{vi}	0.88	2.44	3.043 (6)	126	
N14—H14 B ····O1 W ^{vii}	0.86	2.19	3.022 (6)	162	

Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+2, -y, -z+1; (v) -x+1, y-1/2, -z+1/2; (vi) -x+2, -y+1, -z+1; (vii) x+1, y, z.