Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,2-Bis(N'-benzoylthioureido)-4-chlorobenzene

Bohari M. Yamin* and Uwaisulgarni M. Osman

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia Correspondence e-mail: bohari@ukm.my

Received 20 April 2011; accepted 20 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.066; wR factor = 0.173; data-to-parameter ratio = 14.6.

In the title compound, $C_{22}H_{17}ClN_4O_2S_2$, both benzoyl groups are *trans* to the thiono group across their C–N bonds. The two methylene carbamothioyl formamide fragments of the benzoylthiourea side arms make a dihedral angle of 87.00 (10)°. The molecule is stabilized by intramolecular N– H···O, N–H···S and C–H····S hydrogen bonds. In the crystal, molecules are linked by N–H···O and N–H···S intermolecular hydrogen bonds into zigzag chains along the *a* axis.

Related literature

For the structure of related biscarbomothioyl thiourea compounds, see: Thiam *et al.* (2008); Yusof *et al.* (2008); Woei Hung & Kassim (2010). For bond length data, see: Allen (2002).

Experimental

Crystal data C₂₂H₁₇ClN₄O₂S₂

 $M_r = 468.97$

Triclinic, P1	
a = 9.637 (4) Å	
b = 10.820 (4) Å	
c = 11.370 (4) Å	
$\alpha = 84.443 \ (8)^{\circ}$	
$\beta = 68.706 \ (8)^{\circ}$	
$\nu = 86.551 \ (9)^{\circ}$	

Data collection

Bruker SMART APEX CCD area-	12132 measured reflections
detector diffractometer	4083 independent reflections
Absorption correction: multi-scan	3107 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.042$
$T_{\rm min} = 0.928, T_{\rm max} = 0.965$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	280 parameters
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
4083 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

V = 1099.1 (7) Å³

Mo $K\alpha$ radiation

 $0.49 \times 0.16 \times 0.09 \text{ mm}$

 $\mu = 0.39 \text{ mm}^-$ T = 298 K

7 - 2

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots$ S2	0.86	2.86	3.443 (4)	127
$N2-H2A\cdots O1$	0.86	1.91	2.621 (5)	140
$N3-H3A\cdots O2$	0.86	1.96	2.642 (3)	135
C10-H10AS1	0.93	2.61	3.173 (5)	120
$N1 - H1A \cdots O2^{i}$	0.86	2.51	3.328 (5)	159
$N4-H4A\cdots S2^{ii}$	0.86	2.81	3.476 (4)	136

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for financial support (grant No. UKM-GUP-NBT-08–27–110) and research facilities. Study leave granted to UMO from the Universiti Malaysia Terengganu is very much appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2008).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, 0776.
- Woei Hung, W. & Kassim, M. B. (2010). Acta Cryst. E66, o3182.
- Yusof, M. S. M., Ayob, N. A. C., Kadir, M. A. & Yamin, B. M. (2008). Acta Cryst. E64, 0937.

supporting information

Acta Cryst. (2011). E67, o1286 [doi:10.1107/S1600536811014954]

1,2-Bis(N'-benzoylthioureido)-4-chlorobenzene

Bohari M. Yamin and Uwaisulqarni M. Osman

S1. Comment

Bis-carbonoyl thiourea compounds are relatively less reported than their mono-carbonoyl thiourea derivatives. The title compound contains two benzoyl thioureido groups connected by 4-chlorobenzene bridge at 1, 2 position (Fig.1). The C7 —O1 and C16—O2 bond lengths in the both side arms of 1.220 (5) and 1.230 (5) Å, respectively, are slightly longer than the normal C=O double bonds (1.200 Å) and comparable to those in 1,2-bis(*N'*-benzoylthioureido)benzene (Thiam *et al.* 2008) and 1-benzoyl-3-[4-(3-benzoylthioureido)-phenyl]thiourea (Woei Hung & Kassim 2010). Other bond lengths and angles are in normal ranges (Allen, 2002). Both methylene carbamothioyl formamide, S1/O1/N1/N2/C6/C7/C8/C9 and S2/O2/N3/N4/C14/C15/C16 fragments of the benzoyl thiourea side arms are planar with maximum deviation of 0.060 (3)Å for O1 atom and make dihedral angles of 87.00 (10)°. The dihedral angle between (C1—C6) and (C17—C22) benzene rings is 86.4 (2)° to each other. There are four intramolecular hydrogen bonds forming three pseudo-six-membered ring [S1…H10A—C10—C9—N2—C8], [O1…H2A—N2—C8—N1—C7] and [O2…H3A—N3—C15—N4—C16] and one pseudo-seven-membered ring [S2…H2A—N2—C9—C14—N3—C15] as compared to two intramolecular hydrogen bonds observed in 1,2-bis(*N'*-benzoylthioureido) benzene (Thiam *et al.* 2008) and 1,2-bis[*N'*-(2,2-dimethyl-propionyl)thioureido] cyclohexane (Yusof *et al.* 2008). In the crystal structure, the molecules are linked by N1—H1A…O2 and N4—H4A…S2 intermolecular hydrogen bonds (symmetry codes as in Table 2) into a zigzag chains along the *a* axis.

S2. Experimental

To a stirring acetone solution (75 ml) of benzoyl chloride (0.04 mol) and ammonium thiocyanate (0.04 mol). 4-chlorobenzene-1,2-diamine (0.02 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice cubes. The white precipitate was filtered off and washed with distilled water and cold ethanol before dried under vacuum. Good quality crystals were obtained by recrystallization from ethanol.

S3. Refinement

H atoms on the parent carbon and nitrogen atoms were positioned geometrically with C—H= 0.93Å and N—H = 0.86 Å, constrained to ride on their parent atoms with U_{iso} (H)= xU_{eq} (parent atom) where x=1.2 for both CH and NH groups. There are highest peak of 0.88Å from H12A and deepest hole 0.91Å from S1.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A packing diagram of the title compound viewed down the a-axis. Hydrogen bonds are shown by dashed lines.

1-Benzoyl-3-[2-(N'-benzoylthioureido)-5-chlorophenyl]thiourea

Crystal data	
$C_{22}H_{17}CIN_4O_2S_2$	Z = 2
$M_r = 468.97$	F(000) = 484
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.417 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Melting point = $458.5-459.5$ K
a = 9.637 (4) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 10.820 (4) Å	Cell parameters from 2481 reflections
c = 11.370 (4) Å	$\theta = 1.8 - 25.5^{\circ}$
$\alpha = 84.443 \ (8)^{\circ}$	$\mu = 0.39 \text{ mm}^{-1}$
$\beta = 68.706 \ (8)^{\circ}$	T = 298 K
$\gamma = 86.551 \ (9)^{\circ}$	Plate, colourless
V = 1099.1 (7) Å ³	$0.49\times0.16\times0.09~mm$
Data collection	
Bruker SMART APEX CCD area-detector	12132 measured reflections
diffractometer	4083 independent reflections
Radiation source: fine-focus sealed tube	3107 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.042$
Detector resolution: 83.66 pixels mm ⁻¹	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(SADABS; Bruker, 2000)	$l = -13 \rightarrow 13$
$T_{\min} = 0.928, \ T_{\max} = 0.965$	

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.173$	neighbouring sites
S = 1.08	H-atom parameters constrained
4083 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0812P)^2 + 0.6319P]$
280 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.79 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.16623 (15)	0.60564 (10)	0.11914 (13)	0.0845 (4)	
S 1	-0.13518 (13)	0.32671 (13)	0.50891 (12)	0.0882 (5)	
S2	0.50891 (11)	0.17508 (8)	0.38266 (10)	0.0524 (3)	
01	0.1820 (3)	0.0277 (3)	0.5716 (3)	0.0866 (11)	
O2	0.3898 (3)	-0.1381 (2)	0.2029 (3)	0.0570 (7)	
N1	-0.0285 (3)	0.1455 (3)	0.6212 (3)	0.0504 (7)	
H1A	-0.1142	0.1557	0.6795	0.060*	
N2	0.1368 (3)	0.2180 (3)	0.4276 (3)	0.0486 (7)	
H2A	0.1939	0.1630	0.4482	0.058*	
N3	0.3678 (3)	0.1001 (2)	0.2425 (2)	0.0400 (6)	
H3A	0.3400	0.0403	0.2122	0.048*	
N4	0.4966 (3)	-0.0519 (2)	0.3218 (3)	0.0439 (7)	
H4A	0.5480	-0.0695	0.3695	0.053*	
C1	0.0621 (5)	-0.1393 (4)	0.7813 (4)	0.0604 (10)	
H1B	0.1408	-0.1673	0.7127	0.072*	
C2	0.0101 (6)	-0.2134 (4)	0.8932 (5)	0.0743 (13)	
H2B	0.0531	-0.2919	0.8994	0.089*	
C3	-0.1036 (6)	-0.1724 (5)	0.9943 (5)	0.0819 (14)	
H3B	-0.1391	-0.2234	1.0691	0.098*	
C4	-0.1669 (5)	-0.0552 (5)	0.9864 (4)	0.0759 (13)	
H4B	-0.2428	-0.0267	1.0567	0.091*	
C5	-0.1177 (4)	0.0195 (4)	0.8750 (4)	0.0577 (10)	
H5A	-0.1614	0.0978	0.8695	0.069*	
C6	-0.0031 (4)	-0.0226 (3)	0.7712 (3)	0.0496 (9)	
C7	0.0582 (4)	0.0508 (3)	0.6474 (3)	0.0497 (9)	

C8	0.0013 (4)	0.2288 (3)	0.5134 (3)	0.0466 (8)
C9	0.2023 (4)	0.2824 (3)	0.3077 (3)	0.0415 (8)
C10	0.1586 (4)	0.4028 (3)	0.2774 (4)	0.0526 (9)
H10A	0.0848	0.4461	0.3378	0.063*
C11	0.2265 (4)	0.4562 (3)	0.1565 (4)	0.0530 (9)
C12	0.3378 (5)	0.3993 (3)	0.0662 (4)	0.0594 (10)
H12A	0.3811	0.4381	-0.0147	0.071*
C13	0.3855 (4)	0.2818 (3)	0.0974 (3)	0.0514 (9)
H13A	0.4631	0.2415	0.0371	0.062*
C14	0.3192 (4)	0.2239 (3)	0.2167 (3)	0.0394 (7)
C15	0.4541 (3)	0.0725 (3)	0.3110 (3)	0.0393 (7)
C16	0.4686 (4)	-0.1497 (3)	0.2677 (3)	0.0403 (7)
C17	0.5404 (3)	-0.2712 (3)	0.2888 (3)	0.0392 (7)
C22	0.6633 (4)	-0.2819 (3)	0.3250 (4)	0.0526 (9)
H18A	0.7052	-0.2112	0.3372	0.063*
C21	0.7232 (5)	-0.3984 (4)	0.3429 (4)	0.0673 (11)
H19A	0.8056	-0.4062	0.3675	0.081*
C20	0.6622 (5)	-0.5012 (4)	0.3248 (4)	0.0693 (12)
H20A	0.7035	-0.5791	0.3370	0.083*
C19	0.5408 (5)	-0.4921 (3)	0.2890 (4)	0.0642 (11)
H21A	0.4997	-0.5634	0.2773	0.077*
C18	0.4797 (4)	-0.3769 (3)	0.2702 (3)	0.0488 (8)
H22A	0.3978	-0.3702	0.2450	0.059*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1099 (10)	0.0483 (6)	0.0988 (9)	0.0119 (6)	-0.0510 (7)	0.0225 (6)
S 1	0.0625 (7)	0.1060 (10)	0.0712 (7)	0.0420 (7)	-0.0088 (6)	0.0230 (7)
S2	0.0667 (6)	0.0323 (4)	0.0726 (6)	0.0039 (4)	-0.0429 (5)	-0.0049 (4)
01	0.0605 (18)	0.0737 (19)	0.087 (2)	0.0224 (15)	0.0032 (16)	0.0421 (16)
O2	0.0740 (17)	0.0382 (13)	0.0780 (18)	0.0112 (12)	-0.0508 (15)	-0.0109 (12)
N1	0.0401 (15)	0.0577 (18)	0.0452 (16)	0.0099 (13)	-0.0098 (13)	0.0052 (14)
N2	0.0436 (16)	0.0429 (16)	0.0534 (17)	0.0123 (12)	-0.0160 (14)	0.0093 (13)
N3	0.0491 (16)	0.0318 (13)	0.0444 (15)	0.0029 (11)	-0.0241 (13)	-0.0024 (11)
N4	0.0546 (17)	0.0326 (14)	0.0528 (17)	0.0124 (12)	-0.0305 (14)	-0.0064 (12)
C1	0.066 (2)	0.054 (2)	0.065 (2)	-0.0002 (18)	-0.030 (2)	0.0100 (19)
C2	0.091 (3)	0.063 (3)	0.076 (3)	-0.015 (2)	-0.044 (3)	0.026 (2)
C3	0.089 (3)	0.101 (4)	0.060 (3)	-0.031 (3)	-0.038 (3)	0.032 (3)
C4	0.063 (3)	0.112 (4)	0.049 (2)	-0.011 (3)	-0.019 (2)	0.006 (2)
C5	0.051 (2)	0.075 (3)	0.051 (2)	-0.0052 (19)	-0.0231 (18)	0.0013 (19)
C6	0.046 (2)	0.054 (2)	0.054 (2)	-0.0110 (16)	-0.0269 (18)	0.0067 (17)
C7	0.045 (2)	0.046 (2)	0.055 (2)	0.0010 (15)	-0.0170 (17)	0.0080 (16)
C8	0.050 (2)	0.0447 (19)	0.0452 (19)	0.0094 (15)	-0.0195 (16)	-0.0017 (15)
C9	0.0456 (19)	0.0334 (16)	0.0503 (19)	0.0009 (14)	-0.0255 (16)	0.0061 (14)
C10	0.055 (2)	0.0405 (19)	0.064 (2)	0.0103 (16)	-0.0271 (19)	0.0000 (17)
C11	0.066 (2)	0.0375 (18)	0.063 (2)	-0.0026 (17)	-0.037 (2)	0.0152 (17)
C12	0.079 (3)	0.049 (2)	0.051 (2)	-0.0070 (19)	-0.028 (2)	0.0135 (18)

supporting information

				/		
C13	0.064 (2)	0.047 (2)	0.043 (2)	0.0006 (17)	-0.0201 (17)	0.0017 (16)
C14	0.0483 (19)	0.0310 (15)	0.0449 (18)	0.0024 (14)	-0.0254 (15)	0.0014 (14)
C15	0.0402 (17)	0.0361 (17)	0.0398 (17)	0.0047 (13)	-0.0139 (14)	-0.0004 (13)
C16	0.0415 (18)	0.0323 (16)	0.0465 (18)	0.0039 (13)	-0.0158 (15)	-0.0037 (14)
C17	0.0429 (18)	0.0331 (16)	0.0410 (17)	0.0066 (13)	-0.0148 (14)	-0.0059 (13)
C22	0.052 (2)	0.0411 (19)	0.069 (2)	0.0076 (16)	-0.0261 (19)	-0.0121 (17)
C21	0.064 (3)	0.060 (2)	0.087 (3)	0.024 (2)	-0.040 (2)	-0.010 (2)
C20	0.094 (3)	0.036 (2)	0.085 (3)	0.020 (2)	-0.045 (3)	-0.0045 (19)
C19	0.086 (3)	0.0315 (18)	0.081 (3)	0.0004 (18)	-0.039 (2)	-0.0004 (18)
C18	0.053 (2)	0.0397 (18)	0.055 (2)	0.0037 (15)	-0.0214 (17)	-0.0054 (15)

Geometric parameters (Å, °)

Cl1—C11	1.750 (3)	C4—H4B	0.9300	
S1—C8	1.651 (3)	C5—C6	1.385 (5)	
S2—C15	1.653 (3)	C5—H5A	0.9300	
O1—C7	1.220 (4)	C6—C7	1.482 (5)	
O2—C16	1.229 (4)	C9—C14	1.391 (5)	
N1—C7	1.363 (4)	C9—C10	1.395 (4)	
N1—C8	1.399 (4)	C10—C11	1.375 (5)	
N1—H1A	0.8600	C10—H10A	0.9300	
N2—C8	1.322 (4)	C11—C12	1.351 (6)	
N2—C9	1.409 (4)	C12—C13	1.384 (5)	
N2—H2A	0.8600	C12—H12A	0.9300	
N3—C15	1.335 (4)	C13—C14	1.376 (5)	
N3—C14	1.431 (4)	C13—H13A	0.9300	
N3—H3A	0.8600	C16—C17	1.488 (4)	
N4—C16	1.361 (4)	C17—C18	1.382 (5)	
N4—C15	1.390 (4)	C17—C22	1.384 (5)	
N4—H4A	0.8600	C22—C21	1.383 (5)	
C1—C2	1.379 (6)	C22—H18A	0.9300	
C1—C6	1.390 (5)	C21—C20	1.355 (6)	
C1—H1B	0.9300	C21—H19A	0.9300	
С2—С3	1.358 (7)	C20—C19	1.367 (6)	
C2—H2B	0.9300	C20—H20A	0.9300	
C3—C4	1.383 (7)	C19—C18	1.377 (5)	
С3—Н3В	0.9300	C19—H21A	0.9300	
C4—C5	1.376 (6)	C18—H22A	0.9300	
C7—N1—C8	129.6 (3)	C11—C10—C9	118.8 (3)	
C7—N1—H1A	115.2	C11—C10—H10A	120.6	
C8—N1—H1A	115.2	C9—C10—H10A	120.6	
C8—N2—C9	130.2 (3)	C12—C11—C10	123.1 (3)	
C8—N2—H2A	114.9	C12—C11—Cl1	118.8 (3)	
C9—N2—H2A	114.9	C10—C11—C11	118.0 (3)	
C15—N3—C14	123.5 (3)	C11—C12—C13	118.3 (3)	
C15—N3—H3A	118.2	C11—C12—H12A	120.9	
C14—N3—H3A	118.2	C13—C12—H12A	120.9	

9.7 9.7 0.5 (3) 8.5 (3) 0.9 (3) 5.9 (3) 4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6.7 (3)
9.7 0.5 (3) 8.5 (3) 0.9 (3) 5.9 (3) 4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6.7 (3)
0.5 (3) 8.5 (3) 0.9 (3) 5.9 (3) 4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6.7 (3)
8.5 (3) 0.9 (3) 5.9 (3) 4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6.7 (3)
0.9 (3) 5.9 (3) 4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6.7 (3)
5.9 (3) 4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6.7 (3)
4.3 (2) 9.8 (2) 1.8 (3) 1.5 (3) 6 7 (3)
9.8 (2) 1.8 (3) 1.5 (3) 6 7 (3)
1.8 (3) 1.5 (3) 6 7 (3)
1.5 (3)
67(3)
0.7 (3)
9.6 (3)
7.3 (3)
3.1 (3)
9.4 (3)
0.3
0.3
0.3 (4)
9.9
9.9
0.9 (3)
9.5
9.5
9.7 (4)
0.1
0.1
0.0 (3)
0.0
0.0
4 (5)
7.1 (3)
.9 (5)
8.9 (3)
79.5 (3)
2 (4)
5.1 (4)
8.2 (4)
\[
77.1 (3)
77.1 (3) 7 (4)
77.1 (3) 7 (4) 3 (5)
77.1 (3) 7 (4) 3 (5) 77.5 (3)
77.1 (3) 7 (4) 3 (5) 77.5 (3) .9 (5)
77.1 (3) 7 (4) 3 (5) 77.5 (3) .9 (5) 5.0 (3)
77.1 (3) 7 (4) 3 (5) 77.5 (3) .9 (5) 5.0 (3) 0.7 (5)
77.1 (3) 7 (4) 3 (5) 77.5 (3) .9 (5) 5.0 (3) 0.7 (5) 0.4 (3)

C7—N1—C8—S1	175.7 (3)	N4—C16—C17—C22	-19.8 (5)
C8—N2—C9—C14	-154.5 (3)	C18—C17—C22—C21	-0.4 (5)
C8—N2—C9—C10	27.3 (6)	C16—C17—C22—C21	179.9 (3)
C14—C9—C10—C11	3.8 (5)	C17—C22—C21—C20	0.2 (6)
N2-C9-C10-C11	-178.1 (3)	C22—C21—C20—C19	-0.1 (7)
C9—C10—C11—C12	-2.4 (6)	C21—C20—C19—C18	0.3 (7)
C9—C10—C11—Cl1	178.2 (3)	C20-C19-C18-C17	-0.6 (6)
C10-C11-C12-C13	-0.1 (6)	C22-C17-C18-C19	0.6 (5)
Cl1—C11—C12—C13	179.3 (3)	C16—C17—C18—C19	-179.6 (3)
C11-C12-C13-C14	1.1 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
N2—H2A····S2	0.86	2.86	3.443 (4)	127
N2—H2A···O1	0.86	1.91	2.621 (5)	140
N2—H2A···N3	0.86	2.46	2.791 (4)	103
N3—H3A····O2	0.86	1.96	2.642 (3)	135
C10—H10A…S1	0.93	2.61	3.173 (5)	120
N1—H1A····O2 ⁱ	0.86	2.51	3.328 (5)	159
N4—H4 <i>A</i> ···S2 ⁱⁱ	0.86	2.81	3.476 (4)	136

Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1.