organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­chloro-5-(2-meth­­oxy­phen­­oxy)-2,2′-bi­pyrimidine

aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: shizhanwang2010@yahoo.cn

(Received 26 December 2010; accepted 15 April 2011; online 7 May 2011)

In the title compound, C15H10Cl2N4O2, the dichloro­pyrimidine and meth­oxy­phen­oxy parts are approximately perpendicular [dihedral angle = 89.9 (9)°]. The dihedral angle between the two pyrimidine rings is 36.3 (4)° In the crystal, there are no hydrogen bonds but the mol­ecules are held together by short inter­molecular C⋯N [3.206 (3) Å] contacts and C—H⋯π inter­actions.

Related literature

For the use of 2,2′-bipyrimidine as a ligand in inorganic and organometallic chemistry, see: Fabrice et al. (2008[Fabrice, P., Patr, H., Kamal, B. & Cyri, T. (2008). Inorg Chim Acta, 361, 373-379.]); Hunziker & Ludi (1977[Hunziker, M. & Ludi, A. (1977). J. Am. Chem. Soc. 99, 7370-7371.]). It was first synthesized by Bly and Mellon (1962[Bly, D. D. & Mellon, M. G. (1962). J. Org. Chem. 27, 2945-2946.]) utilizing the Ullmann coupling of 2-bromo­pyrimidine in the presence of metallic copper.

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2N4O2

  • Mr = 349.17

  • Monoclinic, P 21 /n

  • a = 10.716 (2) Å

  • b = 8.1112 (18) Å

  • c = 18.601 (5) Å

  • β = 106.486 (3)°

  • V = 1550.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.911, Tmax = 0.926

  • 8106 measured reflections

  • 2733 independent reflections

  • 2319 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.08

  • 2733 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
C—H⋯π interactions (Å, °)

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cgi 0.93 2.87 3.760 (3) 161
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-Bipyrimidine has been used as a ligand in inorganic and organometallic chemistry (Hunziker & Ludi, 1977; Fabrice et al., 2008) and exhibits remarkable stability in acidic medium. It was first synthesized by Bly and Mellon (1962) utilizing the Ullmann coupling of 2-bromopyrimidine in the presence of metallic copper. As part of our studies on the synthesis and characterization of these compounds, we report here the crystal structure of (I).

In (I) the dichloropyrimidine and the methoxyphenoxy are approximately perpendicular (dihedral angle of 89.90 (91) °). The dihedral angle between the two pyrimidine rings is 36.25 (38)° (Fig. 1).

The molecules are linked by intermolecular C—H···N , C—H···C and C···N short contacts. C12—H12···N4, C12···N4=3.639 (3), H12···N4=2.728 (3), and C12—H12···N4=166.49; C8···N2=3.206 (3); C1—H1···C12, C1···C12=3.725 (3), H1···C12=2.814 (3), and C1—H1···C12=166.14; C10—H10···C13, C10···C13=3.694 (3)), H10···C13=2.886 (3), and C13—H10···C10=146.05.

Related literature top

For the use of 2,2'-bipyrimidine as a ligand in inorganic and organometallic chemistry, see: Fabrice et al. (2008); Hunziker & Ludi (1977). It was first synthesized by Bly and Mellon (1962) utilizing the Ullmann coupling of 2-bromopyrimidine in the presence of metallic copper.

Experimental top

A solution of 4,6-Dichloro-5-(2-methoxyphenoxy)-2,2'-bipyrimidine (10 mmol) in 50ml toluene was refluxed for 1h with stirring then filtered, washed several times with ethanol and dried in vacuo, to produce a powder of the title compound. The powder was added to 50ml toluene with stirring until completely dissolved. Finally, colourless crystals suitable for data collection were obtained by slow evaporation of the toluene at room temperature. Elemental analysis calculate: Elemental analysis: found: C, 51.60; H, 2.89; N, 16.05; calc. for C15H10Cl2N4O2: C,51.53; H, 2.93; N, 16.11.

Refinement top

Data collection-2102 independent reflections but 2101 in Refinement. H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the short contacts interactions as dashed lines.
4,6-Dichloro-5-(2-methoxyphenoxy)-2,2'-bipyrimidine top
Crystal data top
C15H10Cl2N4O2F(000) = 712
Mr = 349.17Dx = 1.496 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.716 (2) ÅCell parameters from 3720 reflections
b = 8.1112 (18) Åθ = 2.6–27.4°
c = 18.601 (5) ŵ = 0.43 mm1
β = 106.486 (3)°T = 296 K
V = 1550.3 (6) Å3Block, colourless
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2733 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.911, Tmax = 0.926k = 99
8106 measured reflectionsl = 2216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.7172P]
where P = (Fo2 + 2Fc2)/3
2733 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C15H10Cl2N4O2V = 1550.3 (6) Å3
Mr = 349.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.716 (2) ŵ = 0.43 mm1
b = 8.1112 (18) ÅT = 296 K
c = 18.601 (5) Å0.22 × 0.20 × 0.18 mm
β = 106.486 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2733 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2319 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.926Rint = 0.027
8106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
2733 reflectionsΔρmin = 0.54 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.35488 (7)0.23438 (8)0.95225 (4)0.0698 (2)
Cl10.12322 (6)0.00465 (9)0.81525 (4)0.0697 (2)
O10.09431 (17)0.24803 (18)0.84012 (8)0.0514 (4)
N10.04052 (18)0.1321 (2)0.93028 (10)0.0461 (4)
O20.01418 (17)0.4733 (2)0.74474 (9)0.0564 (4)
N30.25212 (18)0.0303 (2)0.99122 (9)0.0434 (4)
N20.07696 (19)0.3406 (2)1.05310 (10)0.0509 (5)
C40.1789 (2)0.2855 (3)1.03313 (11)0.0394 (5)
C50.1558 (2)0.1388 (3)0.98205 (11)0.0399 (5)
N40.29885 (19)0.3461 (2)1.05286 (11)0.0504 (5)
C90.1043 (2)0.2281 (3)0.76750 (11)0.0401 (5)
C80.1164 (2)0.1136 (3)0.88636 (11)0.0437 (5)
C130.0568 (2)0.3436 (3)0.64467 (12)0.0480 (5)
H130.01790.42420.60990.058*
C140.0468 (2)0.3523 (3)0.71727 (11)0.0403 (5)
C120.1243 (2)0.2156 (3)0.62364 (12)0.0512 (6)
H120.13110.21120.57490.061*
C60.2308 (2)0.0942 (3)0.94339 (11)0.0446 (5)
C20.2172 (3)0.5496 (3)1.11929 (13)0.0580 (6)
H20.23050.64381.14900.070*
C150.0513 (3)0.6175 (3)0.69994 (17)0.0712 (8)
H15A0.11140.58800.65280.107*
H15B0.02450.66740.69140.107*
H15C0.09200.69430.72550.107*
C100.1703 (2)0.1008 (3)0.74643 (12)0.0501 (6)
H100.20760.01850.78060.060*
C110.1813 (2)0.0952 (3)0.67400 (13)0.0537 (6)
H110.22720.01000.65960.064*
C30.0986 (3)0.4745 (3)1.09680 (13)0.0564 (6)
H30.03030.51801.11240.068*
C70.0238 (2)0.0064 (3)0.88345 (12)0.0457 (5)
C10.3157 (3)0.4805 (3)1.09624 (14)0.0589 (7)
H10.39780.52891.11130.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0869 (5)0.0571 (4)0.0554 (4)0.0231 (3)0.0039 (3)0.0114 (3)
Cl10.0610 (4)0.0732 (5)0.0600 (4)0.0094 (3)0.0073 (3)0.0149 (3)
O10.0831 (11)0.0397 (9)0.0335 (8)0.0168 (8)0.0197 (8)0.0094 (6)
N10.0521 (11)0.0438 (10)0.0403 (10)0.0047 (8)0.0095 (8)0.0056 (8)
O20.0784 (11)0.0468 (9)0.0461 (9)0.0198 (8)0.0209 (8)0.0144 (7)
N30.0577 (11)0.0390 (10)0.0316 (9)0.0020 (8)0.0094 (8)0.0035 (7)
N20.0617 (12)0.0495 (11)0.0446 (10)0.0045 (9)0.0203 (9)0.0101 (9)
C40.0534 (12)0.0357 (11)0.0291 (10)0.0028 (9)0.0115 (9)0.0003 (8)
C50.0518 (12)0.0379 (11)0.0307 (10)0.0062 (9)0.0127 (9)0.0015 (8)
N40.0558 (11)0.0447 (11)0.0490 (11)0.0080 (9)0.0121 (9)0.0089 (9)
C90.0471 (11)0.0431 (12)0.0286 (10)0.0003 (9)0.0084 (8)0.0024 (8)
C80.0639 (14)0.0369 (11)0.0313 (10)0.0119 (10)0.0151 (10)0.0058 (9)
C130.0564 (13)0.0493 (13)0.0362 (11)0.0062 (10)0.0095 (10)0.0082 (10)
C140.0436 (11)0.0402 (12)0.0357 (11)0.0011 (9)0.0087 (9)0.0036 (9)
C120.0572 (14)0.0628 (15)0.0355 (12)0.0119 (11)0.0164 (10)0.0054 (11)
C60.0624 (13)0.0374 (11)0.0334 (10)0.0003 (10)0.0124 (10)0.0003 (9)
C20.0844 (18)0.0406 (13)0.0435 (13)0.0036 (12)0.0093 (12)0.0116 (10)
C150.0818 (19)0.0533 (16)0.0810 (19)0.0250 (14)0.0273 (15)0.0276 (14)
C100.0566 (13)0.0499 (14)0.0410 (12)0.0122 (11)0.0090 (10)0.0039 (10)
C110.0554 (13)0.0608 (15)0.0465 (13)0.0065 (12)0.0171 (11)0.0070 (11)
C30.0767 (17)0.0511 (14)0.0449 (13)0.0041 (12)0.0228 (12)0.0099 (11)
C70.0530 (13)0.0463 (13)0.0350 (11)0.0105 (10)0.0079 (9)0.0040 (9)
C10.0678 (16)0.0462 (14)0.0581 (15)0.0152 (12)0.0103 (13)0.0121 (11)
Geometric parameters (Å, º) top
Cl2—C61.722 (2)C8—C61.384 (3)
Cl1—C71.722 (2)C13—C121.384 (3)
O1—C81.367 (2)C13—C141.386 (3)
O1—C91.394 (2)C13—H130.9300
N1—C71.320 (3)C12—C111.371 (3)
N1—C51.335 (3)C12—H120.9300
O2—C141.358 (3)C2—C31.364 (4)
O2—C151.426 (3)C2—C11.368 (4)
N3—C61.322 (3)C2—H20.9300
N3—C51.330 (3)C15—H15A0.9600
N2—C41.327 (3)C15—H15B0.9600
N2—C31.337 (3)C15—H15C0.9600
C4—N41.328 (3)C10—C111.386 (3)
C4—C51.498 (3)C10—H100.9300
N4—C11.338 (3)C11—H110.9300
C9—C101.370 (3)C3—H30.9300
C9—C141.393 (3)C1—H10.9300
C8—C71.380 (3)
C8—O1—C9118.03 (16)N3—C6—C8123.3 (2)
C7—N1—C5115.60 (19)N3—C6—Cl2117.29 (17)
C14—O2—C15117.23 (18)C8—C6—Cl2119.36 (17)
C6—N3—C5116.07 (19)C3—C2—C1117.1 (2)
C4—N2—C3115.4 (2)C3—C2—H2121.4
N2—C4—N4127.39 (19)C1—C2—H2121.4
N2—C4—C5116.39 (19)O2—C15—H15A109.5
N4—C4—C5116.22 (19)O2—C15—H15B109.5
N3—C5—N1126.23 (19)H15A—C15—H15B109.5
N3—C5—C4117.52 (18)O2—C15—H15C109.5
N1—C5—C4116.23 (19)H15A—C15—H15C109.5
C4—N4—C1115.1 (2)H15B—C15—H15C109.5
C10—C9—C14121.26 (19)C9—C10—C11119.7 (2)
C10—C9—O1123.52 (18)C9—C10—H10120.1
C14—C9—O1115.15 (18)C11—C10—H10120.1
O1—C8—C7122.9 (2)C12—C11—C10119.8 (2)
O1—C8—C6122.0 (2)C12—C11—H11120.1
C7—C8—C6114.86 (19)C10—C11—H11120.1
C12—C13—C14120.3 (2)N2—C3—C2122.3 (2)
C12—C13—H13119.9N2—C3—H3118.8
C14—C13—H13119.9C2—C3—H3118.8
O2—C14—C13125.57 (19)N1—C7—C8123.9 (2)
O2—C14—C9116.05 (18)N1—C7—Cl1116.80 (18)
C13—C14—C9118.4 (2)C8—C7—Cl1119.30 (16)
C11—C12—C13120.6 (2)N4—C1—C2122.6 (2)
C11—C12—H12119.7N4—C1—H1118.7
C13—C12—H12119.7C2—C1—H1118.7
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cgi0.932.873.760 (3)161
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10Cl2N4O2
Mr349.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.716 (2), 8.1112 (18), 18.601 (5)
β (°) 106.486 (3)
V3)1550.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.911, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
8106, 2733, 2319
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.08
No. of reflections2733
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.54

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cgi0.932.873.760 (3)161
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support provided by the National Natural Science Foundation of China (20761002), the Natural Science Foundation of Guangxi (No. 0832080) and the Innovation Project of Guangxi University for Nationlities (No. gxun-chx2010080).

References

First citationBly, D. D. & Mellon, M. G. (1962). J. Org. Chem. 27, 2945–2946.  CrossRef CAS Google Scholar
First citationFabrice, P., Patr, H., Kamal, B. & Cyri, T. (2008). Inorg Chim Acta, 361, 373–379.  Google Scholar
First citationHunziker, M. & Ludi, A. (1977). J. Am. Chem. Soc. 99, 7370–7371.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds