metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ-1H-benzimidazole-5,6-di­carboxyl­ato)lead(II)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: luoyf2010@yahoo.com.cn

(Received 2 April 2011; accepted 5 May 2011; online 14 May 2011)

The crystal structure of the two-dimensional polymeric title compound, [Pb(C9H4N2O4)]n, comprises one crystallo­graphic­ally independent PbII atom and one fully deprotonated 1H-benzimidazole-5,6-dicarboxyl­ate (H2L) ligand. The PbII atom is seven-coordinated by six O atoms and one N atom from the H2L ligands, giving a capped octa­hedral coordination geometry. The structure is a layered two-dimensional coordination polymer extending parallel to (100) with N—H⋯O hydrogen bonds inter­actions between the layers, stabilizing the crystal structure.

Related literature

For applications of metal-organic frameworks, see: Li et al. (2007[Li, C.-X., Quan, Z.-W., Yang, J., Yang, P.-P. & Lin, J. (2007). Inorg. Chem. 46, 6329-6337.]). For related structures, see: Gao et al. (2008[Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.]); Lo et al.. (2007[Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657-m2658.]); Wang et al. (2009[Wang, H., Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m1258.]); Wei et al. (2008[Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087-2089.]);Yao et al. (2008[Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299-2306.]); Zhai (2009[Zhai, H. (2009). Acta Cryst. E65, m1483.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C9H4N2O4)]

  • Mr = 411.34

  • Monoclinic, P 21 /c

  • a = 13.127 (2) Å

  • b = 9.5571 (14) Å

  • c = 6.7557 (10) Å

  • β = 99.587 (2)°

  • V = 835.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 20.19 mm−1

  • T = 273 K

  • 0.30 × 0.30 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.003, Tmax = 0.004

  • 3954 measured reflections

  • 1458 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.08

  • 1458 reflections

  • 133 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 3.24 e Å−3

  • Δρmin = −2.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.02 2.723 (12) 138
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, metal-organic frameworks (MOF) based on supramolecular chemistry and crystal engineering have attracted extensive attention not only due to their diverse topologies and intriguing structures but also owing to their interesting physical and chemical properties, such as photoluminescence, magnetism, ferroelectricity, gas storage, ion exchange and catalysis, Li et al. (2007). N-Heterocyclic multicarboxylic acids have been widely used to construct MOF for their potential application. 1H-benzimidazole-5,6-dicarboxylic acid possesses two nitrogen atoms of imidazole ring and four oxygen atoms of carboxylate groups, and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. Several coordination polymers fomed by this ligand have been reported recently: Gao et al. (2008); Lo et al. (2007); Wang et al. (2009); Wei et al. (2008); Yao et al. (2008); Zhai (2009). Herein we report the synthesis and crystal structure of the title complex of (C9H4N2O4Pb)n, Fig. 1. This is a layered 2D-coordination polymer structure with H-bonds interactions between the layers which is shown in Fig. 2.

Related literature top

For applications of metal-organic frameworks, see: Li et al. (2007). For related structures, see: Gao et al. (2008); Lo et al.. (2007); Wang et al. (2009); Wei et al. (2008);Yao et al. (2008); Zhai (2009).

Experimental top

A mixture of Pb(CH3COO)2 (0.6 mmol), H2L(0.6 mmol) and water (13 ml) was added to a 25 ml teflon-lined stainless container, which was heated to 430K and held at that temperature for 3 days. After cooling to room temperature, yellow crystals were recovered by filtration.

Refinement top

H atoms of water and hydroxyl were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.5 times those of the parent O atoms. the refinement using a riding-model approximation [C–H = 0.93, O–H = 0.84 and N—H = 0.86 Å] with Uiso(H) = 1.2 Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound, with H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.
Poly[(µ-1H-benzimidazole-5,6-dicarboxylato)lead(II)] top
Crystal data top
[Pb(C9H4N2O4)]F(000) = 744.0
Mr = 411.34Dx = 3.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2747 reflections
a = 13.127 (2) Åθ = 2.7–28.4°
b = 9.5571 (14) ŵ = 20.19 mm1
c = 6.7557 (10) ÅT = 273 K
β = 99.587 (2)°Block, yellow
V = 835.7 (2) Å30.30 × 0.30 × 0.27 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1458 independent reflections
Radiation source: fine-focus sealed tube1273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.003, Tmax = 0.004k = 118
3954 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0814P)2]
where P = (Fo2 + 2Fc2)/3
1458 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 3.24 e Å3
12 restraintsΔρmin = 2.83 e Å3
Crystal data top
[Pb(C9H4N2O4)]V = 835.7 (2) Å3
Mr = 411.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.127 (2) ŵ = 20.19 mm1
b = 9.5571 (14) ÅT = 273 K
c = 6.7557 (10) Å0.30 × 0.30 × 0.27 mm
β = 99.587 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1273 reflections with I > 2σ(I)
Tmin = 0.003, Tmax = 0.004Rint = 0.042
3954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04212 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 3.24 e Å3
1458 reflectionsΔρmin = 2.83 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The number of independent reflections and the number of reflections used in the refinement are not the same, because we use 'omit -3 50' to enhance the'_diffrn_measured_fraction_theta_full'.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.7560 (4)0.3072 (4)0.2539 (9)0.019 (2)
C50.6729 (3)0.2152 (5)0.2241 (10)0.0164 (19)
H50.60580.24960.19590.020*
C60.6901 (4)0.0717 (4)0.2362 (9)0.0152 (18)
C90.7904 (4)0.0203 (4)0.2783 (9)0.0169 (19)
C10.8736 (3)0.1123 (6)0.3081 (9)0.025 (3)
H10.94070.07790.33630.030*
C20.8564 (4)0.2558 (5)0.2959 (9)0.021 (2)
Pb10.62381 (3)0.62780 (3)0.17812 (5)0.0172 (2)
N10.7597 (7)0.4523 (8)0.2560 (13)0.0252 (19)
C30.8566 (8)0.4844 (11)0.2927 (15)0.025 (2)
H30.88100.57590.30030.029*
N20.9199 (8)0.3693 (7)0.3195 (14)0.021 (2)
H20.98630.36900.34590.025*
C80.8123 (9)0.1314 (8)0.3226 (17)0.020 (2)
O40.8944 (6)0.1832 (8)0.2949 (13)0.036 (2)
C70.6000 (7)0.0282 (8)0.1935 (12)0.0146 (19)
O20.5921 (6)0.1031 (6)0.0387 (11)0.0220 (16)
O10.5389 (5)0.0325 (6)0.3196 (9)0.0184 (14)
O30.7406 (4)0.2011 (6)0.3876 (9)0.0167 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.024 (5)0.013 (4)0.019 (5)0.001 (4)0.002 (4)0.001 (3)
C50.006 (4)0.021 (4)0.022 (4)0.005 (3)0.002 (3)0.002 (3)
C60.014 (5)0.012 (4)0.021 (5)0.003 (3)0.007 (4)0.000 (3)
C90.018 (5)0.017 (4)0.017 (5)0.003 (4)0.007 (4)0.001 (3)
C10.030 (6)0.017 (5)0.030 (6)0.005 (3)0.011 (5)0.001 (3)
C20.033 (6)0.015 (5)0.016 (5)0.006 (4)0.008 (4)0.002 (4)
Pb10.0188 (3)0.0151 (3)0.0172 (3)0.00085 (11)0.0019 (2)0.00061 (10)
N10.026 (5)0.021 (4)0.029 (5)0.001 (4)0.008 (4)0.003 (3)
C30.029 (6)0.016 (5)0.028 (6)0.004 (4)0.003 (5)0.001 (4)
N20.016 (5)0.019 (4)0.031 (5)0.004 (3)0.010 (4)0.001 (3)
C80.013 (6)0.019 (5)0.027 (6)0.001 (3)0.003 (5)0.006 (3)
O40.021 (4)0.021 (4)0.066 (6)0.000 (3)0.011 (4)0.004 (4)
C70.013 (5)0.014 (4)0.014 (5)0.004 (3)0.006 (4)0.005 (3)
O20.030 (4)0.017 (3)0.021 (4)0.003 (3)0.010 (3)0.003 (3)
O10.010 (3)0.032 (3)0.013 (3)0.001 (2)0.003 (3)0.002 (2)
O30.010 (3)0.018 (3)0.021 (3)0.001 (2)0.000 (3)0.003 (2)
Geometric parameters (Å, º) top
C4—N11.387 (8)Pb1—O1iv2.653 (6)
C4—C51.389 (7)Pb1—O2i2.746 (6)
C4—C21.391 (7)N1—C31.292 (13)
C5—C61.390 (7)C3—N21.371 (13)
C5—H50.9300C3—H30.9300
C6—C91.390 (7)N2—H20.8600
C6—C71.510 (10)C8—O41.228 (13)
C9—C11.390 (7)C8—O31.289 (11)
C9—C81.498 (9)C7—O21.258 (11)
C1—C21.390 (7)C7—O11.265 (11)
C1—H10.9300O2—Pb1iv2.549 (7)
C2—N21.362 (9)O2—Pb1v2.746 (6)
Pb1—N12.442 (8)O1—Pb1vi2.630 (6)
Pb1—O3i2.511 (6)O1—Pb1ii2.653 (6)
Pb1—O2ii2.549 (7)O3—Pb1v2.511 (6)
Pb1—O1iii2.630 (6)
N1—C4—C5131.3 (5)N1—Pb1—O2i141.3 (2)
N1—C4—C2108.7 (5)O3i—Pb1—O2i68.1 (2)
C5—C4—C2120.0 (4)O2ii—Pb1—O2i112.01 (18)
C4—C5—C6120.0 (4)O1iii—Pb1—O2i118.1 (2)
C6—C5—H5120.0O1iv—Pb1—O2i89.52 (19)
C4—C5—H5120.0C3—N1—C4105.7 (7)
C9—C6—C5120.0 (4)C3—N1—Pb1122.6 (6)
C9—C6—C7120.0 (4)C4—N1—Pb1131.4 (5)
C5—C6—C7119.9 (4)N1—C3—N2113.0 (9)
C1—C9—C6120.1 (4)N1—C3—H3123.5
C1—C9—C8117.6 (5)N2—C3—H3123.5
C6—C9—C8121.8 (5)C2—N2—C3106.1 (8)
C2—C1—H1120.0C2—N2—H2126.9
C9—C1—H1120.0C3—N2—H2126.9
C9—C1—C2120.0 (4)O4—C8—O3123.6 (8)
N2—C2—C1133.6 (5)O4—C8—C9120.2 (8)
N2—C2—C4106.4 (5)O3—C8—C9116.2 (8)
C1—C2—C4120.0 (4)O2—C7—O1124.6 (8)
N1—Pb1—O3i88.3 (2)O2—C7—C6118.2 (8)
N1—Pb1—O2ii87.7 (2)O1—C7—C6117.2 (7)
O3i—Pb1—O2ii72.7 (2)C7—O2—Pb1iv147.5 (6)
N1—Pb1—O1iii99.4 (2)C7—O2—Pb1v105.1 (5)
O3i—Pb1—O1iii142.76 (18)Pb1iv—O2—Pb1v101.6 (2)
O2ii—Pb1—O1iii71.3 (2)C7—O1—Pb1vi126.3 (5)
N1—Pb1—O1iv98.2 (2)C7—O1—Pb1ii114.1 (5)
O3i—Pb1—O1iv149.59 (19)Pb1vi—O1—Pb1ii114.4 (2)
O2ii—Pb1—O1iv136.9 (2)C8—O3—Pb1v123.8 (6)
O1iii—Pb1—O1iv65.6 (2)
N1—C4—C5—C6177.8 (6)O1iii—Pb1—N1—C414.3 (7)
C2—C4—C5—C60.0O1iv—Pb1—N1—C452.2 (7)
C4—C5—C6—C90.0O2i—Pb1—N1—C4151.8 (5)
C4—C5—C6—C7176.9 (6)C4—N1—C3—N21.0 (11)
C5—C6—C9—C10.0Pb1—N1—C3—N2175.9 (7)
C7—C6—C9—C1176.9 (6)C1—C2—N2—C3178.7 (6)
C5—C6—C9—C8170.9 (7)C4—C2—N2—C30.4 (9)
C7—C6—C9—C812.2 (8)N1—C3—N2—C20.4 (12)
C6—C9—C1—C20.0C1—C9—C8—O432.8 (12)
C8—C9—C1—C2171.2 (7)C6—C9—C8—O4156.1 (8)
C9—C1—C2—N2179.1 (9)C1—C9—C8—O3147.9 (7)
C9—C1—C2—C40.0C6—C9—C8—O323.2 (11)
N1—C4—C2—N21.1 (7)C5—C6—C7—O2112.1 (7)
C5—C4—C2—N2179.3 (6)C9—C6—C7—O264.9 (8)
N1—C4—C2—C1178.2 (5)C5—C6—C7—O169.5 (8)
C5—C4—C2—C10.0C9—C6—C7—O1113.6 (7)
C5—C4—N1—C3179.3 (6)O1—C7—O2—Pb1iv150.4 (8)
C2—C4—N1—C31.3 (8)C6—C7—O2—Pb1iv31.3 (15)
C5—C4—N1—Pb16.5 (9)O1—C7—O2—Pb1v65.2 (9)
C2—C4—N1—Pb1175.5 (5)C6—C7—O2—Pb1v113.1 (6)
O3i—Pb1—N1—C329.0 (8)O2—C7—O1—Pb1vi94.0 (9)
O2ii—Pb1—N1—C3101.8 (8)C6—C7—O1—Pb1vi87.7 (7)
O1iii—Pb1—N1—C3172.4 (7)O2—C7—O1—Pb1ii113.2 (8)
O1iv—Pb1—N1—C3121.2 (8)C6—C7—O1—Pb1ii65.2 (7)
O2i—Pb1—N1—C321.6 (10)O4—C8—O3—Pb1v74.3 (13)
O3i—Pb1—N1—C4157.6 (7)C9—C8—O3—Pb1v105.0 (7)
O2ii—Pb1—N1—C484.8 (7)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y1, z; (vi) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4vii0.862.022.723 (12)138
Symmetry code: (vii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pb(C9H4N2O4)]
Mr411.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)13.127 (2), 9.5571 (14), 6.7557 (10)
β (°) 99.587 (2)
V3)835.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)20.19
Crystal size (mm)0.30 × 0.30 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.003, 0.004
No. of measured, independent and
observed [I > 2σ(I)] reflections
3954, 1458, 1273
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.08
No. of reflections1458
No. of parameters133
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.24, 2.83

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.022.723 (12)138
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of PRC (project No. 2010B090400184).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, C.-X., Quan, Z.-W., Yang, J., Yang, P.-P. & Lin, J. (2007). Inorg. Chem. 46, 6329–6337.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Song, W.-D., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m1258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des. 8, 2087–2089.  Web of Science CrossRef CAS Google Scholar
First citationYao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2299–2306.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhai, H. (2009). Acta Cryst. E65, m1483.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds