metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m688-m689

Bis(μ-2-tert-butyl­phenyl­imido-1:2κ2N:N)chlorido-2κCl-(di­ethyl ether-1κO)(2η5-penta­methyl­cyclo­penta­dien­yl)lithiumtantalum(V)

aCavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England, bDepartment of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong, cDepartment of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, England, and dDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: jmc61@cam.ac.uk

(Received 29 March 2011; accepted 26 April 2011; online 7 May 2011)

In the title compound, [LiTa(C10H15)(C10H13N)2Cl(C4H10O)], the TaV atom is coordinated by a η5-penta­methyl­cyclo­penta­dienyl (Cp*) ligand, a chloride ion and two N-bonded 2-tert-butyl­phenyl­imide dianions. With respect to the two N atoms, the chloride ion and the centroid of the Cp* ring, the tantalum coordination geometry is approximately tetra­hedral. The lithium cation is bonded to both the 2-tert-butyl­phenyl­imide dianions and also a diethyl ether mol­ecule, in an approximate trigonal planar arrangement. The Ta⋯Li separation is 2.681 (15) Å. In the crystal, a weak C—H⋯Cl inter­action links the mol­ecules. When compared to the 2,6-diisopropyl­phenyl­imide analogue (`the Wigley derivative') of the title compound, the two structures are conformationally matched with an overall r.m.s. difference of 0.461Å.

Related literature

For related work demonstrating the stabilization of unusual imido metal species via 2,6-diisopropyl­phenyl substitution, see: Cockcroft et al. (1992[Cockcroft, J. K., Gibson, V. C., Howard, J. A. K., Poole, A. D., Siemeling, U. & Wilson, C. (1992). J. Chem. Soc. Chem. Commun. pp. 1668-1670.]); Glueck et al. (1991[Glueck, D. S., Wu, J. X., Hollander, F. J. & Bergman, R. G. (1991). J. Am. Chem. Soc. 113, 2041-2054.]); Anhaus et al. (1990[Anhaus, J. T., Kee, T. P., Schofield, M. H. & Schrock, R. R. (1990). J. Am. Chem. Soc. 112, 1642-1643.]); Gibson & Poole (1995[Gibson, V. C. & Poole, A. D. (1995). J. Chem. Soc. Chem. Commun. pp. 2261-2262.]); Baldwin et al. (1993[Baldwin, T. C., Huber, S. R., Bruck, M. A. & Wigley, D. E. (1993). Inorg. Chem. 32, 5682-5686.]). For conformational analysis of structures, see: Weng et al. (2008[Weng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008). J. Appl. Cryst. 41, 955-957.]). For van der Waals contact distances, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For crystal mounting techniques, see: Kottke & Stalke (1993[Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615-619.]).

[Scheme 1]

Experimental

Crystal data
  • [LiTa(C10H15)(C10H13N)2Cl(C4H10O)]

  • Mr = 727.11

  • Orthorhombic, P b c a

  • a = 19.5365 (12) Å

  • b = 16.3544 (10) Å

  • c = 21.3272 (13) Å

  • V = 6814.2 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.33 mm−1

  • T = 150 K

  • 0.60 × 0.34 × 0.16 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1995[Siemens (1995). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.346, Tmax = 0.666

  • 24495 measured reflections

  • 4848 independent reflections

  • 4792 reflections with I > 2σ(I)

  • Rint = 0.060

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.105

  • S = 1.23

  • 4848 reflections

  • 337 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Selected bond lengths (Å)

Ta1—N1 1.842 (6)
Ta1—N2 1.854 (6)
Ta1—Cl1 2.3985 (19)
Li1—N1 2.048 (16)
Li1—N2 2.062 (16)
Li1—O1 1.910 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Cl1i 0.95 2.89 3.593 (8) 132
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL93.

Supporting information


Comment top

The bulky 2,6-diisopropylphenyl substituent has been investigated widely in transition metal imido chemistry, and has been shown to stabilize a variety of unusual imido metal species (Cockcroft et al., 1992; Glueck et al., 1991; Anhaus et al., 1990; Gibson & Poole, 1995). The presence of two bulky ortho isopropyl substituents undoubtedly plays an important role in this stabilization. Imido aryl substituents containing one bulky substituent in the ortho position also offer the possibility for substantial steric protection, not only due to the presence of the large substituent but also as a result of bending at the imido nitrogen. We have thus studied the bis (2 - t-butylphenylimido) chloro (η5-pentamethylcyclopentadienyl) tantalum(V) anion (I) with a view to comparing its structure with its previously reported 2,6-diisopropylphenylimido analogue (II) (Baldwin et al., 1993).

The 50% probability thermal ellipsoid plot of the molecular structure of (I) is given in Figure 1. Selected bond distances and angles are given in Table 1. Fractional coordinates and anisotropic displacement parameters are provided in supplementary material.

The overall bond geometry of the title compound is generally similar to its 2,6-diisopropylphenylimido analogue. In particular, the Ta(1)—N(1) and Ta(1)—N(2) distances and Ta(1)—N(1)—C(11) and Ta(1)—N(2)—C(21) angles are comparable [1.844 (6) Å, 1.848 (6) Å, 165.9 (5)° and 161.7 (5)° repectively].

However, several geometrical differences exist between the two compounds as a result of the presence of a more bulky aryl imido substituent in this case.

In the 2,6-diisopropylphenylimido structure, the planes of the arylimido and Cp* rings are approximately parallel to each other to minimize steric repulsion between the respective isopropyl and methyl groups. The situation for the 2 - t-butylphenylimido congener is comparable, except that the single bulky tert-butyl substituent on each imido ligand is now positioned in a less congested orientation away from the [µ-Li(OEt2)]+ moiety, such that they point in a similar direction to the Ta—Cl vector.

This steric alleviation is shown in Figure 2, which also illustrates the overall conformational difference between the two structures. This structure overlay was generated by matching the following respective atom pairs in each molecule: Ta, N, Li, O, Cp* and phenyl C atoms (Weng et al., 2008). These atoms are conformationally matched with an overall root-mean-square difference of 0.461 Å. The geometric differences between the tert-butyl and disopropyl phenyl substituents are emphasized by the visual offset to this conformationally matched molecular fragment. A full list of individual atomic pairwise deviations from a perfect match is given in supplementary information.

The Ta(1)—Li(1) distance of 2.68 (1)Å is slightly longer than in the Wigley derivative, being the only other reported. We presume that this is also consequent upon the greater steric repulsion from the tertiary butyl groups compared to the isopropyl groups of the phenylimido ligands.

The atoms in the OEt2 fragment of the subject compound display large isotropic displacement parameters. Given the terminal nature of this fragment, significant thermal motion is likely the cause, although positional disorder cannot be excluded. In contrast, the analogous displacement parameters in the Wigley derivative appear regular, being comparable in size to other terminal carbon atoms in the main part of the structure.

The structure of (I) contains a weak C12—H12A···Cl1 interaction [H···Cl = 2.89 (2) Å, symmetry code: 3/2 - x, 1/2 + y, z; c.f. sum of van der Waals radii of H and Cl = 2.95 Å (Bondi, 1964)]. This links adjacent molecules forming chains which are almost parallel to the y-axis (see Figure 3). Adjacent chains are arranged anti-parallel to each other thus completing the three-dimensional structure. In contrast, no hydrogen-bonds or short non-bonded contacts are present in the diisopropylphenyl structure, as deduced from a search in Materials Mercury (Macrae et al., 2008).

Related literature top

For related work demonstrating the stabilization of unusual imido metal species via 2,6-diisopropylphenyl substitution, see: Cockcroft et al. (1992); Glueck et al. (1991); Anhaus et al. (1990); Gibson & Poole (1995); Baldwin et al. (1993). For conformational analysis of structures, see: Weng et al. (2008). For van der Waals contact distances, see: Bondi (1964). For crystal mounting techniques, see: Kottke & Stalke (1993).

Experimental top

A solution of LiNH(2-tBuC6H4) (1.717 g, 11.07 mmol) in Et2O (80 ml) was added dropwise to a stirred solution of Cp*TaCl4 (1.267 g, 2.77 mmol) in Et2O (80 ml) at 0 °C. This mixture was allowed to warm up to room temperature and stirred for 24 h. The resultant yellow/brown solution was filtered from the white residue of LiCl, concentrated and cooled to -30 °C to yield long yellow crystals of (I) (yield: 1.47 g, 73%).

Elemental analysis for C34H51N2OClLiTa (727.14) found (required): %C = 56.17 (56.16), %H = 7.10 (7.07), %N = 3.82 (3.85).

Mass Spectrometry data (EI, m/z, 35Cl): 646 [M - LiOEt2]+.

1H NMR data (400 MHz, C6D6, 298 K): 0.57 (broad t, OCH2CH3), 1.62 (s, 18H, CMe3), 2.08 (s, 15H, C5Me5), 2.69 (broad q, OCH2CH3), 6.64 (d, 2H, J = 7.6 Hz, H3), 6.70, 7.05 (two t, 4H, J = 7.4 Hz, H4 and H5), 7.32 (d, 2H, J = 7.8 Hz, H6).

13C NMR data (100 MHz, C6D6, 298 K): 11.2 (q, J = 127 Hz, C5Me5), 14.4 (q, J = 127 Hz, OCH2CH3), 29.6 (q, J = 125 Hz, CMe3), 35.7 (s, CMe3), 64.6 (t, J = 143 Hz, OCH2CH3), 116.7 (s, C5Me5), 118.9, 125.3, 126.3, 126.9 (doublets, J = 154–159 Hz, C3–6), 140.5 (s, C2), 158.9 (s, C1).

Refinement top

A yellow rectangular crystal was mounted onto a Siemens SMART-CCD diffractometer using the oil-drop method (Kottke & Stalke, 1993).

Positional and anisotropic displacement parameters for all non-hydrogen atoms in the anionic part of the molecule were refined. Likewise, the lithium atom within the cation was refined anisotropically. The displacement parameters of the oxydiethyl group were refined isotropically. All hydrogen isotropic displacement parameters in the molecule were constrained to the riding model, Uiso(H) = 1.2Ueq(C) except for those relating to terminal methyl group H atoms, where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL93 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL93 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement parameters are displayed at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. Best fit overlay of molecules (I) and (II).
[Figure 3] Fig. 3. Hydrogen-bonding linking chains of molecules in (I) along the crystallographic y-axis.
Bis(µ-2-tert-butylphenylimido-1:2κ2N:N)chlorido- 2κCl-(diethyl ether-1κO)(2η5- pentamethylcyclopentadienyl)lithiumtantalum(V) top
Crystal data top
[LiTa(C10H15)(C10H13N)2Cl(C4H10O)]F(000) = 2960
Mr = 727.11Dx = 1.417 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 498 reflections
a = 19.5365 (12) Åθ = 4.0–21.1°
b = 16.3544 (10) ŵ = 3.33 mm1
c = 21.3272 (13) ÅT = 150 K
V = 6814.2 (7) Å3Rectangular block, yellow
Z = 80.60 × 0.34 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
4848 independent reflections
Radiation source: fine-focus sealed tube4792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 23.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Siemens, 1995)
h = 2021
Tmin = 0.346, Tmax = 0.666k = 1718
24495 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0141P)2 + 61.7377P]
where P = (Fo2 + 2Fc2)/3
4848 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 1.29 e Å3
1 restraintΔρmin = 0.95 e Å3
Crystal data top
[LiTa(C10H15)(C10H13N)2Cl(C4H10O)]V = 6814.2 (7) Å3
Mr = 727.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.5365 (12) ŵ = 3.33 mm1
b = 16.3544 (10) ÅT = 150 K
c = 21.3272 (13) Å0.60 × 0.34 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
4848 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1995)
4792 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.666Rint = 0.060
24495 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0141P)2 + 61.7377P]
where P = (Fo2 + 2Fc2)/3
4848 reflectionsΔρmax = 1.29 e Å3
337 parametersΔρmin = 0.95 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.770702 (15)0.594882 (18)0.131442 (14)0.02547 (13)
Cl10.76902 (10)0.45343 (11)0.10178 (10)0.0383 (5)
C10.8795 (4)0.5664 (5)0.1864 (4)0.0326 (18)
C20.8751 (4)0.6522 (5)0.1761 (4)0.035 (2)
C30.8178 (4)0.6815 (4)0.2118 (4)0.0323 (19)
C40.7888 (4)0.6145 (5)0.2446 (3)0.0315 (18)
C50.8262 (4)0.5434 (5)0.2284 (3)0.0294 (18)
C60.9339 (4)0.5112 (5)0.1595 (4)0.043 (2)
H6A0.96390.54290.13180.052*
H6B0.96100.48760.19370.052*
H6C0.91220.46710.13550.052*
C70.9227 (5)0.7023 (6)0.1368 (4)0.046 (2)
H7A0.95740.66670.11800.055*
H7B0.89680.72970.10350.055*
H7C0.94520.74350.16310.055*
C80.7991 (5)0.7695 (5)0.2201 (4)0.045 (2)
H8A0.82680.80320.19190.054*
H8B0.75050.77710.21020.054*
H8C0.80760.78590.26360.054*
C90.7304 (4)0.6190 (5)0.2893 (4)0.043 (2)
H9A0.72030.56420.30530.051*
H9B0.74260.65500.32430.051*
H9C0.69010.64080.26770.051*
C100.8139 (5)0.4592 (5)0.2540 (4)0.040 (2)
H10A0.77400.46020.28190.048*
H10B0.80540.42120.21940.048*
H10C0.85420.44120.27760.048*
N10.7902 (3)0.6469 (4)0.0570 (3)0.0278 (14)
C110.8143 (4)0.6997 (4)0.0099 (4)0.0283 (17)
C120.8098 (4)0.7845 (5)0.0219 (4)0.0342 (19)
H12A0.79370.80210.06170.041*
C130.8277 (5)0.8422 (5)0.0214 (4)0.045 (2)
H13A0.82360.89880.01210.054*
C140.8519 (5)0.8165 (5)0.0790 (4)0.048 (2)
H14A0.86370.85560.11010.057*
C150.8590 (5)0.7337 (5)0.0915 (4)0.044 (2)
H15A0.87650.71750.13110.053*
C160.8415 (4)0.6732 (5)0.0483 (3)0.0285 (17)
C170.8502 (4)0.5813 (5)0.0649 (4)0.0356 (19)
C180.7817 (5)0.5367 (5)0.0635 (4)0.048 (2)
H18A0.78870.47890.07390.058*
H18B0.76170.54100.02150.058*
H18C0.75060.56140.09420.058*
C190.9004 (5)0.5425 (6)0.0171 (5)0.051 (2)
H19A0.90640.48440.02690.061*
H19B0.94470.57040.01960.061*
H19C0.88180.54820.02530.061*
C200.8814 (5)0.5694 (6)0.1295 (4)0.053 (3)
H20A0.88630.51090.13810.064*
H20B0.85160.59430.16120.064*
H20C0.92660.59550.13100.064*
N20.6791 (3)0.6225 (4)0.1398 (3)0.0286 (14)
C210.6174 (4)0.6516 (5)0.1624 (3)0.0291 (17)
C220.6147 (4)0.7345 (5)0.1801 (4)0.039 (2)
H22A0.65470.76700.17570.047*
C230.5558 (5)0.7708 (5)0.2039 (4)0.044 (2)
H23A0.55600.82670.21610.052*
C240.4974 (5)0.7246 (6)0.2094 (4)0.042 (2)
H24A0.45670.74810.22590.051*
C250.4985 (4)0.6440 (5)0.1908 (4)0.037 (2)
H25A0.45750.61310.19470.044*
C260.5559 (4)0.6054 (5)0.1667 (3)0.0301 (18)
C270.5531 (4)0.5142 (5)0.1470 (4)0.037 (2)
C280.4805 (5)0.4798 (6)0.1530 (5)0.055 (3)
H28A0.44970.51020.12520.066*
H28B0.48050.42190.14110.066*
H28C0.46490.48530.19650.066*
C290.5753 (5)0.5038 (5)0.0792 (4)0.046 (2)
H29A0.62170.52560.07390.055*
H29B0.57480.44560.06820.055*
H29C0.54370.53360.05170.055*
C300.5987 (5)0.4636 (5)0.1916 (5)0.049 (2)
H30A0.64600.48360.18920.059*
H30B0.58190.46930.23470.059*
H30C0.59730.40590.17920.059*
Li10.6892 (8)0.6800 (10)0.0542 (7)0.049 (4)
O10.6296 (6)0.7269 (7)0.0070 (6)0.124 (4)*
C500.6498 (19)0.759 (2)0.0679 (18)0.256 (15)*
H50A0.69910.77310.06730.308*
H50B0.62370.80950.07700.308*
C510.6380 (13)0.7041 (15)0.1120 (12)0.183 (10)*
H51A0.65900.72200.15140.274*
H51B0.65760.65150.09940.274*
H51C0.58850.69800.11800.274*
C610.5323 (12)0.7245 (14)0.0022 (11)0.179 (9)*
H61A0.48530.74280.00980.269*
H61B0.53710.70750.04170.269*
H61C0.54280.67820.02970.269*
C600.5824 (19)0.795 (2)0.016 (2)0.33 (2)*
H60A0.58730.81050.06050.398*
H60B0.57850.84320.01220.398*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.02539 (19)0.02426 (18)0.02676 (19)0.00208 (13)0.00071 (13)0.00144 (13)
Cl10.0452 (12)0.0255 (10)0.0441 (11)0.0005 (9)0.0013 (10)0.0065 (9)
C10.027 (4)0.040 (5)0.031 (4)0.003 (4)0.004 (4)0.005 (4)
C20.036 (5)0.041 (5)0.029 (4)0.014 (4)0.012 (4)0.004 (4)
C30.041 (5)0.022 (4)0.034 (4)0.009 (4)0.011 (4)0.002 (3)
C40.037 (5)0.036 (4)0.022 (4)0.006 (4)0.003 (3)0.002 (3)
C50.028 (4)0.034 (4)0.026 (4)0.004 (3)0.005 (3)0.005 (3)
C60.030 (5)0.050 (5)0.050 (5)0.005 (4)0.006 (4)0.005 (4)
C70.037 (5)0.052 (6)0.048 (5)0.015 (4)0.014 (4)0.012 (4)
C80.059 (6)0.030 (4)0.046 (5)0.009 (4)0.016 (5)0.005 (4)
C90.049 (6)0.041 (5)0.038 (5)0.000 (4)0.007 (4)0.002 (4)
C100.040 (5)0.036 (4)0.045 (5)0.003 (4)0.003 (4)0.009 (4)
N10.026 (3)0.025 (3)0.032 (4)0.000 (3)0.005 (3)0.005 (3)
C110.029 (4)0.023 (4)0.033 (4)0.001 (3)0.003 (4)0.001 (3)
C120.045 (5)0.030 (4)0.027 (4)0.000 (4)0.001 (4)0.001 (3)
C130.059 (6)0.033 (5)0.042 (5)0.004 (4)0.006 (5)0.003 (4)
C140.053 (6)0.042 (5)0.047 (6)0.005 (4)0.001 (5)0.017 (4)
C150.047 (5)0.047 (5)0.039 (5)0.004 (4)0.011 (4)0.001 (4)
C160.024 (4)0.038 (4)0.024 (4)0.001 (3)0.004 (3)0.001 (3)
C170.042 (5)0.037 (5)0.027 (4)0.012 (4)0.010 (4)0.002 (4)
C180.066 (6)0.041 (5)0.038 (5)0.005 (5)0.007 (5)0.011 (4)
C190.049 (6)0.042 (5)0.062 (6)0.015 (5)0.008 (5)0.005 (5)
C200.062 (6)0.055 (6)0.042 (5)0.013 (5)0.016 (5)0.006 (4)
N20.029 (4)0.020 (3)0.037 (4)0.000 (3)0.005 (3)0.005 (3)
C210.024 (4)0.037 (4)0.027 (4)0.001 (3)0.002 (3)0.001 (3)
C220.034 (5)0.032 (5)0.052 (5)0.003 (4)0.006 (4)0.001 (4)
C230.051 (6)0.034 (5)0.047 (5)0.011 (4)0.003 (4)0.004 (4)
C240.035 (5)0.054 (6)0.039 (5)0.012 (4)0.010 (4)0.002 (4)
C250.026 (4)0.047 (5)0.037 (5)0.001 (4)0.001 (4)0.009 (4)
C260.028 (4)0.037 (5)0.025 (4)0.000 (4)0.004 (3)0.004 (3)
C270.032 (5)0.034 (5)0.045 (5)0.009 (4)0.001 (4)0.005 (4)
C280.040 (5)0.046 (6)0.079 (7)0.011 (4)0.000 (5)0.004 (5)
C290.045 (5)0.042 (5)0.051 (6)0.004 (4)0.010 (5)0.008 (4)
C300.045 (6)0.038 (5)0.063 (6)0.001 (4)0.000 (5)0.007 (4)
Li10.035 (8)0.069 (10)0.045 (9)0.012 (7)0.000 (7)0.011 (8)
Geometric parameters (Å, º) top
Ta1—N11.842 (6)C17—C181.526 (12)
Ta1—N21.854 (6)C17—C191.549 (12)
Ta1—Cl12.3985 (19)C18—H18A0.9800
Ta1—C32.405 (7)C18—H18B0.9800
Ta1—C22.438 (8)C18—H18C0.9800
Ta1—C42.460 (7)C19—H19A0.9800
Ta1—C12.472 (8)C19—H19B0.9800
Ta1—C52.481 (7)C19—H19C0.9800
Ta1—Li12.681 (15)C20—H20A0.9800
C1—C21.422 (11)C20—H20B0.9800
C1—C51.423 (11)C20—H20C0.9800
C1—C61.507 (11)N2—C211.383 (10)
C2—C31.435 (12)C21—C221.409 (11)
C2—C71.499 (11)C21—C261.422 (10)
C3—C41.417 (11)C21—Li12.740 (17)
C3—C81.496 (11)C22—C231.389 (12)
C4—C51.416 (11)C22—H22A0.9500
C4—C91.488 (11)C23—C241.374 (12)
C5—C101.502 (11)C23—H23A0.9500
C6—H6A0.9800C24—C251.378 (12)
C6—H6B0.9800C24—H24A0.9500
C6—H6C0.9800C25—C261.386 (11)
C7—H7A0.9800C25—H25A0.9500
C7—H7B0.9800C26—C271.551 (11)
C7—H7C0.9800C27—C291.521 (12)
C8—H8A0.9800C27—C281.531 (12)
C8—H8B0.9800C27—C301.543 (12)
C8—H8C0.9800C28—H28A0.9800
C9—H9A0.9800C28—H28B0.9800
C9—H9B0.9800C28—H28C0.9800
C9—H9C0.9800C29—H29A0.9800
C10—H10A0.9800C29—H29B0.9800
C10—H10B0.9800C29—H29C0.9800
C10—H10C0.9800C30—H30A0.9800
N1—C111.405 (10)C30—H30B0.9800
Li1—N12.048 (16)C30—H30C0.9800
Li1—N22.062 (16)O1—C501.46 (3)
Li1—O11.910 (19)O1—C601.527 (18)
C11—C121.412 (10)C50—C511.32 (3)
C11—C161.418 (10)C50—H50A0.9900
C11—Li12.641 (17)C50—H50B0.9900
C12—C131.366 (11)C51—H51A0.9800
C12—H12A0.9500C51—H51B0.9800
C13—C141.382 (13)C51—H51C0.9800
C13—H13A0.9500C61—C601.54 (4)
C14—C151.387 (12)C61—H61A0.9800
C14—H14A0.9500C61—H61B0.9800
C15—C161.394 (11)C61—H61C0.9800
C15—H15A0.9500C60—H60A0.9900
C16—C171.554 (11)C60—H60B0.9900
C17—C201.521 (11)
N1—Ta1—N299.8 (3)C15—C16—C11117.0 (7)
N1—Ta1—Cl1102.76 (19)C15—C16—C17120.6 (7)
N2—Ta1—Cl1104.27 (18)C11—C16—C17122.4 (7)
N1—Ta1—C3105.3 (3)C20—C17—C18108.0 (7)
N2—Ta1—C399.1 (3)C20—C17—C19106.9 (7)
Cl1—Ta1—C3139.54 (19)C18—C17—C19110.3 (7)
N1—Ta1—C289.2 (3)C20—C17—C16112.0 (7)
N2—Ta1—C2132.6 (3)C18—C17—C16111.2 (7)
Cl1—Ta1—C2119.0 (2)C19—C17—C16108.4 (7)
C3—Ta1—C234.5 (3)C17—C18—H18A109.5
N1—Ta1—C4139.1 (3)C17—C18—H18B109.5
N2—Ta1—C490.8 (3)H18A—C18—H18B109.5
Cl1—Ta1—C4112.73 (18)C17—C18—H18C109.5
C3—Ta1—C433.9 (3)H18A—C18—H18C109.5
C2—Ta1—C456.4 (3)H18B—C18—H18C109.5
N1—Ta1—C1108.5 (3)C17—C19—H19A109.5
N2—Ta1—C1146.2 (3)C17—C19—H19B109.5
Cl1—Ta1—C187.41 (19)H19A—C19—H19B109.5
C3—Ta1—C156.3 (3)C17—C19—H19C109.5
C2—Ta1—C133.7 (3)H19A—C19—H19C109.5
C4—Ta1—C155.7 (3)H19B—C19—H19C109.5
N1—Ta1—C5141.7 (3)C17—C20—H20A109.5
N2—Ta1—C5115.1 (3)C17—C20—H20B109.5
Cl1—Ta1—C584.18 (19)H20A—C20—H20B109.5
C3—Ta1—C555.9 (3)C17—C20—H20C109.5
C2—Ta1—C555.9 (3)H20A—C20—H20C109.5
C4—Ta1—C533.3 (3)H20B—C20—H20C109.5
C1—Ta1—C533.4 (2)C21—N2—Ta1163.4 (5)
N1—Ta1—Li149.7 (4)C21—N2—Li1103.6 (6)
N2—Ta1—Li150.1 (4)Ta1—N2—Li186.2 (5)
Cl1—Ta1—Li1109.3 (4)N2—C21—C22117.3 (7)
C3—Ta1—Li1111.0 (4)N2—C21—C26125.1 (7)
C2—Ta1—Li1122.5 (4)C22—C21—C26117.5 (7)
C4—Ta1—Li1128.3 (4)N2—C21—Li147.0 (5)
C1—Ta1—Li1154.2 (4)C22—C21—Li194.7 (6)
C5—Ta1—Li1161.4 (4)C26—C21—Li1125.2 (6)
C2—C1—C5108.1 (7)C23—C22—C21122.7 (8)
C2—C1—C6125.2 (7)C23—C22—H22A118.7
C5—C1—C6126.6 (7)C21—C22—H22A118.7
C2—C1—Ta171.9 (4)C24—C23—C22119.0 (8)
C5—C1—Ta173.7 (4)C24—C23—H23A120.5
C6—C1—Ta1122.6 (5)C22—C23—H23A120.5
C1—C2—C3107.2 (7)C23—C24—C25119.2 (8)
C1—C2—C7126.0 (8)C23—C24—H24A120.4
C3—C2—C7126.8 (8)C25—C24—H24A120.4
C1—C2—Ta174.5 (4)C24—C25—C26123.7 (8)
C3—C2—Ta171.5 (4)C24—C25—H25A118.1
C7—C2—Ta1120.7 (5)C26—C25—H25A118.1
C4—C3—C2108.4 (7)C25—C26—C21117.8 (7)
C4—C3—C8126.0 (8)C25—C26—C27120.6 (7)
C2—C3—C8125.1 (7)C21—C26—C27121.6 (7)
C4—C3—Ta175.2 (4)C29—C27—C28107.6 (7)
C2—C3—Ta174.0 (4)C29—C27—C30111.2 (7)
C8—C3—Ta1123.9 (6)C28—C27—C30106.7 (7)
C5—C4—C3107.9 (7)C29—C27—C26110.8 (7)
C5—C4—C9126.4 (7)C28—C27—C26111.3 (7)
C3—C4—C9125.7 (7)C30—C27—C26109.2 (7)
C5—C4—Ta174.2 (4)C27—C28—H28A109.5
C3—C4—Ta171.0 (4)C27—C28—H28B109.5
C9—C4—Ta1121.7 (5)H28A—C28—H28B109.5
C4—C5—C1108.4 (7)C27—C28—H28C109.5
C4—C5—C10125.5 (7)H28A—C28—H28C109.5
C1—C5—C10126.1 (7)H28B—C28—H28C109.5
C4—C5—Ta172.5 (4)C27—C29—H29A109.5
C1—C5—Ta172.9 (4)C27—C29—H29B109.5
C10—C5—Ta1123.0 (5)H29A—C29—H29B109.5
C1—C6—H6A109.5C27—C29—H29C109.5
C1—C6—H6B109.5H29A—C29—H29C109.5
H6A—C6—H6B109.5H29B—C29—H29C109.5
C1—C6—H6C109.5C27—C30—H30A109.5
H6A—C6—H6C109.5C27—C30—H30B109.5
H6B—C6—H6C109.5H30A—C30—H30B109.5
C2—C7—H7A109.5C27—C30—H30C109.5
C2—C7—H7B109.5H30A—C30—H30C109.5
H7A—C7—H7B109.5H30B—C30—H30C109.5
C2—C7—H7C109.5O1—Li1—N1135.5 (9)
H7A—C7—H7C109.5O1—Li1—N2136.9 (9)
H7B—C7—H7C109.5N1—Li1—N286.9 (6)
C3—C8—H8A109.5O1—Li1—C11105.7 (8)
C3—C8—H8B109.5N1—Li1—C1131.8 (3)
H8A—C8—H8B109.5N2—Li1—C11117.4 (7)
C3—C8—H8C109.5O1—Li1—Ta1172.1 (10)
H8A—C8—H8C109.5N1—Li1—Ta143.3 (3)
H8B—C8—H8C109.5N2—Li1—Ta143.6 (3)
C4—C9—H9A109.5C11—Li1—Ta174.5 (4)
C4—C9—H9B109.5O1—Li1—C21109.4 (7)
H9A—C9—H9B109.5N1—Li1—C21115.1 (7)
C4—C9—H9C109.5N2—Li1—C2129.4 (3)
H9A—C9—H9C109.5C11—Li1—C21142.7 (6)
H9B—C9—H9C109.5Ta1—Li1—C2172.5 (4)
C5—C10—H10A109.5C50—O1—C60101 (2)
C5—C10—H10B109.5C50—O1—Li1126.2 (18)
H10A—C10—H10B109.5C60—O1—Li1116.3 (19)
C5—C10—H10C109.5C51—C50—O1110 (3)
H10A—C10—H10C109.5C51—C50—H50A109.7
H10B—C10—H10C109.5O1—C50—H50A109.7
C11—N1—Ta1165.7 (5)C51—C50—H50B109.7
C11—N1—Li198.1 (6)O1—C50—H50B109.7
Ta1—N1—Li187.0 (5)H50A—C50—H50B108.2
N1—C11—C12116.9 (7)C50—C51—H51A109.5
N1—C11—C16124.3 (6)C50—C51—H51B109.5
C12—C11—C16118.8 (7)H51A—C51—H51B109.5
N1—C11—Li150.1 (5)C50—C51—H51C109.5
C12—C11—Li189.8 (6)H51A—C51—H51C109.5
C16—C11—Li1128.5 (6)H51B—C51—H51C109.5
C13—C12—C11122.6 (8)C60—C61—H61A109.5
C13—C12—H12A118.7C60—C61—H61B109.5
C11—C12—H12A118.7H61A—C61—H61B109.5
C12—C13—C14118.6 (8)C60—C61—H61C109.5
C12—C13—H13A120.7H61A—C61—H61C109.5
C14—C13—H13A120.7H61B—C61—H61C109.5
C13—C14—C15120.1 (8)O1—C60—C6177.0 (18)
C13—C14—H14A120.0O1—C60—H60A115.7
C15—C14—H14A120.0C61—C60—H60A115.7
C14—C15—C16122.8 (8)O1—C60—H60B115.7
C14—C15—H15A118.6C61—C60—H60B115.7
C16—C15—H15A118.6H60A—C60—H60B112.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cl1i0.952.893.593 (8)132
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[LiTa(C10H15)(C10H13N)2Cl(C4H10O)]
Mr727.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)19.5365 (12), 16.3544 (10), 21.3272 (13)
V3)6814.2 (7)
Z8
Radiation typeMo Kα
µ (mm1)3.33
Crystal size (mm)0.60 × 0.34 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1995)
Tmin, Tmax0.346, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
24495, 4848, 4792
Rint0.060
θmax (°)23.3
(sin θ/λ)max1)0.555
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.105, 1.23
No. of reflections4848
No. of parameters337
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0141P)2 + 61.7377P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.29, 0.95

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS86 (Sheldrick, 2008), SHELXL93 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Selected bond lengths (Å) top
Ta1—N11.842 (6)Li1—N12.048 (16)
Ta1—N21.854 (6)Li1—N22.062 (16)
Ta1—Cl12.3985 (19)Li1—O11.910 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cl1i0.952.893.593 (8)132
Symmetry code: (i) x+3/2, y+1/2, z.
 

Footnotes

Alternative address: Department of Chemistry, University of New Brunswick, PO Box 4400, Fredericton, NB, Canada E3B 5A3.

Acknowledgements

All authors would like to thank the University of Durham for provision of all experimentation carried out in this study. JMC expresses her thanks to the Institut Laue Langevin, Grenoble, France, and the EPSRC, for financial support; the Royal Society for a University Research Fellowship and the University of New Brunswick for the UNB Vice-Chancellor's Research Chair. MCWC wishes to thank the Research Grants Council of the Hong Kong SAR, China (CityU 100307) for financial support.

References

First citationAnhaus, J. T., Kee, T. P., Schofield, M. H. & Schrock, R. R. (1990). J. Am. Chem. Soc. 112, 1642–1643.  CrossRef CAS Google Scholar
First citationBaldwin, T. C., Huber, S. R., Bruck, M. A. & Wigley, D. E. (1993). Inorg. Chem. 32, 5682–5686.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationCockcroft, J. K., Gibson, V. C., Howard, J. A. K., Poole, A. D., Siemeling, U. & Wilson, C. (1992). J. Chem. Soc. Chem. Commun. pp. 1668–1670.  CrossRef Google Scholar
First citationGibson, V. C. & Poole, A. D. (1995). J. Chem. Soc. Chem. Commun. pp. 2261–2262.  CrossRef Google Scholar
First citationGlueck, D. S., Wu, J. X., Hollander, F. J. & Bergman, R. G. (1991). J. Am. Chem. Soc. 113, 2041–2054.  CrossRef CAS Google Scholar
First citationKottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615–619.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWeng, Z. F., Motherwell, W. D. S. & Cole, J. M. (2008). J. Appl. Cryst. 41, 955–957.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m688-m689
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds