

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[bis(3-hydroxyadamantane-1-carboxylato- κO^1)(3-hydroxyadamantane-1-carboxylic acid- κO^1)zinc(II)]- μ_2 -4,4'-bipyridine] monohydrate]

Jin-Bei Shen,^a Quan-Yin Guan,^a Xiao-Ju Chen^a and Guo-Liang Zhao^{a,b}*

^aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and ^bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China Correspondence e-mail: sky53@zjnu.cn

Received 22 April 2011; accepted 30 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.038; wR factor = 0.094; data-to-parameter ratio = 13.6.

In the title coordination polymer, {[$Zn(C_{11}H_{15}O_3)_2(C_{10}H_8N_2)$ -($C_{11}H_{16}O_3$)]· H_2O }_n, the Zn^{II} ion is five coordinated by two N atoms from two 4,4'-bipyridine (4,4'-bpy) molecules and three O atoms from two 3-hydroxyadamantane-1-carboxylate anions (*L*) and one 3-hydroxyadamantane-1-carboxylic acid (H*L*) molecule. The resulting coordination polyhedron is a near regular ZnN₂O₃ trigonal bipyramid, with the N atoms in axial sites. The 4,4'-bpy molecules [dihedral angle between the aromatic rings = 17.2 (2)°] act as bridges, connecting the metal ions into an infinite polymeric chain propagating in [101]. O– H···O hydrogen bonds help to consolidate the packing.

Related literature

For background to adamantane-1-carboxylic acid complexes, see: Zhu *et al.* (2005); Milios *et al.* (2007); Korlyukov *et al.* (2008).

 $\beta = 92.642 \ (1)^{\circ}$

Z = 4

V = 3941.26 (7) Å³

Mo $K\alpha$ radiation

 $0.34 \times 0.23 \times 0.15 \text{ mm}$

26431 measured reflections

6904 independent reflections

6188 reflections with $I > 2\sigma(I)$

 $\mu = 0.69 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.051$

Experimental

Crystal data

$$\begin{split} & [\text{Zn}(\text{C}_{11}\text{H}_{15}\text{O}_{3})_2(\text{C}_{10}\text{H}_8\text{N}_2) - \\ & (\text{C}_{11}\text{H}_{16}\text{O}_3)]\cdot\text{H}_2\text{O} \\ & M_r = 826.27 \\ & \text{Monoclinic, } Cc \\ & a = 17.8778 \ (2) \text{ Å} \\ & b = 16.6364 \ (2) \text{ Å} \\ & c = 13.2655 \ (1) \text{ Å} \end{split}$$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.826, T_{\rm max} = 0.904$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
wR(F^2) = 0.094	$\Delta a = 0.28 \text{ e} ^{\text{A}^{-3}}$
S = 1.04	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
5904 reflections	Absolute structure: Flack (1983),
506 parameters	3423 Friedel pairs
l restraints	Flack parameter: 0.202 (9)

Table 1

Selected bond lengths (Å).

Zn1–O2 Zn1–O8 Zn1–O4		2.01 2.03 2.06	.6 (3) 36 (3) 55 (3)	$Zn1-N2^i$ Zn1-N1	2.138 (3) 2.174 (4)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

	• • • •			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O9−H9A…O1 ⁱⁱ	0.82	2.05	2.872 (4)	178
O6−H6A···O3 ⁱⁱⁱ	0.82	2.00	2.812 (4)	169
$O3-H3A\cdots O9^{iv}$	0.82	1.99	2.790 (4)	165
$O1W-H1WA\cdots O6$	0.85	2.19	3.013 (9)	163
$O5-H5C\cdots O7$	0.85	1.67	2.447 (3)	151
$O1W-H1WB\cdots O7^{v}$	0.85	2.44	3.287 (9)	179

Symmetry codes: (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $x, -y + 1, z - \frac{1}{2}$; (iv) $x - \frac{1}{2}, y + \frac{1}{2}, z$; (v) $x, -y, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5859).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Korlyukov, A. A., Komissarov, E. A. & Antipin, M. Y. (2008). J. Mol. Struct. **875**, 135–142.

Milios, C. J., Inglis, R. & Bagai, R. (2007). Chem. Commun. 33, 3476–3478. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Zhu, Z.-L., Feng, Y.-L., Lin, H. & Chin, J. (2005). Rare Earth Soc. 23, 641-644.

supporting information

Acta Cryst. (2011). E67, m715-m716 [doi:10.1107/S1600536811016424]

catena-Poly[[[bis(3-hydroxyadamantane-1-carboxylato- κO^1)(3-hydroxyadamantane-1-carboxylic acid- κO^1)zinc(II)]- μ_2 -4,4'-bipyridine] monohydrate]

Jin-Bei Shen, Quan-Yin Guan, Xiao-Ju Chen and Guo-Liang Zhao

S1. Comment

The fascinating structures of adamantane-1- carboxylic acid complexes coupled with their special functionality catch a lot of chemists' interests (Zhu *et al.*,2005; Milios *et al.*,2007; Korlyukov *et al.*,2008). To the best of our knowledge, the polymer complex using 4,4'-bipyridine as the linker and 3-hydroxyadamantane-1- carboxylic acid as filling agent has not been reported up to the present time. As an extension of our work in this field, we describe a new Zn^{II} complex.

The structure of complex (1) was shown in Fig.1 and the coordination environment of Zn^{II} was shown in Fig. 2.In the coordination compound poly, $[Zn(C_{10}H_8N_2).(C_{11}H_{15}O_3)_2.(C_{11}H_{16}O_3)]_n.n(H_20)$, each Zn^{II} ion is five coordinated by two N atoms from two 4,4'-bpy molecules and three O atoms from two 3-hydroxyadamantane-1-carboxylic anions (*L*) and one 3-hydroxy-1-adamantanecarboxylic acid (H*L*). The 4,4'-bpy molecules act as bidentate bridges,connecting the Zn^{II} ions centres in a distorted trigonal-bipyramidal geometry into an infinite polymeric chain. The coordination geometry around Zn^{II} seems to be classified as a trigonal bipyramid; O2, O4 and O8 atoms form the equatorial trigonal plane indicated by the angle of O2—Zn1—O4, O2—Zn1—O8 and O8—Zn1—O4 being 140.19 (11)°,102.42 (11)° and 117.37 (8)°, respectively. The axial position occupy N1 and N2 atoms; N1—Zn—N2 is the only combination with bonding angle close to 180 degrees. The Zn—O and Zn—N bond distances are listed in Table1.

The hydrogen bonds and $\pi \cdots \pi$ weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig.3.

S2. Experimental

Reagents and solvents used were of commercially available quality and without purified before using. A mixture of 3-hydroxyadamantane-1-carboxylic acid (0.3924 g, 2 mmol), Zn(OH)₂ (0.0994 g, 1 mmol), 4,4'-bipyridine (0.1562 g, 1 mmol) and water (16 ml) was sealed in a 25 ml stainless steel reactor and heated at 160 K for 2 d and then cooled to room temperature over 3 d. The resulting colourless crystals were obtained and collected by filtration, washed with water, and dried in air (yield 33%).

S3. Refinement

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å ($U_{iso}(H) = 1.5U_{eq}(C)$), aromatic C—H = 0.93 Å ($U_{iso}(H) = 1.2U_{eq}(C)$)]. H atoms bonded to O atoms were located in difference Fourier maps and refined with O—H distance restraints of 0.83 (2) and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular structure of the title complex, showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

The coordination environment of the Zn^{II} atom, showing the octahedral structurem.

Figure 3

The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π ... π stacking interactions.

catena-Poly[[[bis(3-hydroxyadamantane-1-carboxylato- κO^1)(3-hydroxyadamantane-1-carboxylic acid- κO^{1} zinc(II)]- μ_{2} -4,4'-bipyridine] monohydrate]

Crystal data	
$[Zn(C_{11}H_{15}O_3)_2(C_{10}H_8N_2)(C_{11}H_{16}O_3)] \cdot H_2O$ $M_r = 826.27$ Monoclinic, Cc Hall symbol: C -2yc a = 17.8778 (2) Å b = 16.6364 (2) Å c = 13.2655 (1) Å $\beta = 92.642$ (1)° V = 3941.26 (7) Å ³ Z = 4	F(000) = 1752 $D_x = 1.392 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5047 reflections $\theta = 2.3-25.0^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.34 \times 0.23 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.826, T_{\max} = 0.904$	26431 measured reflections 6904 independent reflections 6188 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -21 \rightarrow 21$ $k = -18 \rightarrow 19$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0484P)^2 + 1.9133P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
6904 reflections	$(\Delta/\sigma)_{\rm max} = 0.010$
506 parameters	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 3423 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.202 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.40049 (2)	0.236430 (19)	0.71677 (3)	0.03051 (11)	
N1	0.49072 (19)	0.23781 (19)	0.6124 (3)	0.0342 (8)	
O4	0.33507 (14)	0.17132 (17)	0.6136 (2)	0.0402 (7)	
01	0.34888 (16)	0.35868 (16)	0.6198 (2)	0.0550 (7)	
C6	0.6136 (2)	0.2535 (2)	0.4895 (3)	0.0315 (9)	
C7	0.4819 (2)	0.2425 (3)	0.5126 (3)	0.0451 (11)	
H7A	0.4336	0.2408	0.4836	0.054*	
C8	0.6799 (2)	0.2591 (2)	0.4261 (3)	0.0284 (9)	
С9	0.3480 (2)	0.6166 (2)	0.7172 (3)	0.0366 (8)	
C10	0.7489 (2)	0.2815 (2)	0.4668 (3)	0.0356 (9)	
H10A	0.7546	0.2954	0.5346	0.043*	
C13	0.5609 (3)	0.2407 (3)	0.6506 (3)	0.0468 (12)	
H13A	0.5689	0.2376	0.7203	0.056*	
C14	0.54545 (18)	0.0765 (2)	0.9012 (2)	0.0318 (7)	
C15	0.3374 (2)	0.5255 (2)	0.7198 (3)	0.0369 (9)	
H15A	0.2933	0.5109	0.6784	0.044*	
H15B	0.3296	0.5084	0.7884	0.044*	
C16	0.6481 (2)	0.1194 (3)	1.0717 (3)	0.0467 (10)	
H16A	0.6369	0.1762	1.0771	0.056*	
H16B	0.6859	0.1058	1.1236	0.056*	
09	0.74338 (14)	0.14821 (19)	0.9501 (2)	0.0595 (8)	
H9A	0.7727	0.1453	0.9993	0.089*	
O2	0.42651 (15)	0.35127 (16)	0.7520 (2)	0.0451 (6)	

C19	0.6213 (3)	0.2479 (3)	0.5933 (4)	0.0510(13)
H19A	0.6689	0.2490	0.6245	0.061*
05	0.38659 (15)	0.05103 (16)	0.6003 (2)	0.0524 (7)
H5C	0.4219	0.0611	0.6435	0.079*
C23	0.3919 (2)	0.3914 (2)	0.6833 (3)	0.0413 (9)
C24	0.61765 (18)	0.1252 (2)	0.8871 (3)	0.0360 (8)
H24A	0.6361	0.1148	0.8207	0.043*
H24B	0.6069	0.1822	0.8920	0.043*
C25	0.3097(2)	0.1414 (2)	0.3941 (3)	0.0370 (8)
H25A	0.3058	0.1972	0.4147	0.044*
H25B	0.3611	0.1312	0.3776	0.044*
C26	0.2442(3)	-0.0157(2)	0.3534 (4)	0.0623 (14)
H26A	0.2491	-0.0718	0.3320	0.075*
08	0.46501 (15)	0.17339 (19)	0.8196 (2)	0.0432 (7)
C31	0.6747 (3)	0.2418 (3)	0.3243 (4)	0.0467(12)
H31A	0.6290	0.2272	0.2933	0.056*
C32	0.5637(2)	-0.0133(2)	0.8930(3)	0.0448 (9)
H32A	0.5188	-0.0448	0.9022	0.054*
H32B	0.5813	-0.0250	0.8265	0.054*
C33	0.5409 (2)	0.2496 (3)	0.4499 (3)	0.0440 (10)
H33A	0.5316	0.2518	0.3804	0.053*
C34	0.28800 (19)	0.0859 (2)	0.4816 (3)	0.0345 (8)
C35	0.2579 (2)	0.1262 (2)	0.3016 (3)	0.0410 (8)
C36	0.5172 (2)	0.0942 (3)	1.0063 (3)	0.0430 (9)
H36A	0.5059	0.1510	1.0121	0.052*
H36B	0.4716	0.0642	1.0163	0.052*
C37	0.6940 (2)	0.0121 (2)	0.9582 (3)	0.0459 (9)
H37A	0.7120	0.0012	0.8917	0.055*
H37B	0.7328	-0.0034	1.0079	0.055*
C38	0.1781 (2)	0.1421 (2)	0.3269 (3)	0.0497 (10)
H38A	0.1453	0.1331	0.2677	0.060*
H38B	0.1727	0.1977	0.3474	0.060*
C42	0.1637 (3)	-0.0001(3)	0.3796 (4)	0.0777 (17)
H42A	0.1305	-0.0107	0.3213	0.093*
H42B	0.1501	-0.0357	0.4337	0.093*
C43	0.4178 (2)	0.5102 (3)	0.5727 (3)	0.0538 (10)
H43A	0.3749	0.4949	0.5295	0.065*
H43B	0.4618	0.4842	0.5474	0.065*
C45	0.3601 (2)	0.6431 (2)	0.6105 (3)	0.0499 (10)
H45A	0.3673	0.7008	0.6089	0.060*
H45B	0.3160	0.6303	0.5680	0.060*
C46	0.2954 (3)	-0.0014 (2)	0.4472 (3)	0.0524 (11)
H46A	0.3470	-0.0124	0.4319	0.063*
H46B	0.2817	-0.0373	0.5009	0.063*
C47	0.5774 (2)	0.0703 (3)	1.0867 (3)	0.0518 (11)
H47A	0.5591	0.0811	1.1540	0.062*
C48	0.2070 (2)	0.1033 (3)	0.5065 (3)	0.0502 (10)
H48A	0.2021	0.1590	0.5269	0.060*

U/9D	0 1027	0.0604	0 5610	0.060*
C51	0.1927 0.5954 (3)	-0.0193(3)	1.0770(3)	0.000 0.0564 (12)
U51 A	0.5954 (5)	-0.0346	1.0770 (3)	0.0504 (12)
H51R	0.5507	-0.0508	1.1205	0.068*
C54	0.2659 (3)	0.0384(2)	0.2604(3)	0.008 (12)
U54A	0.2039 (3)	0.0384 (2)	0.2094 (3)	0.0588 (12)
H54R	0.3172	0.0281	0.2097	0.071*
C55	0.34004(18)	0.0278 0.1055(2)	0.232) 0.5728 (2)	0.071 0.0310(7)
C56	0.40623 (18)	0.1055(2) 0.4824(2)	0.5720(2) 0.6804(3)	0.0373(8)
06	0.40023(17)	0.4024(2) 0.17504(18)	0.0004(3)	0.0573(7)
H6A	0.2791	0.2226	0.2353	0.086*
C59	0.2751 0.4852(2)	0.2220 0.5973 (2)	0.2333 0.7440(4)	0.0578 (13)
Н594	0.5291	0.5775 (2)	0.7871	0.0578 (15)
C67	0.67741 (19)	0.1016 (2)	0.9682 (3)	0.0409 (9)
C4	0.07741(19) 0.4164(2)	0.1010(2) 0.6388(2)	0.7831(3)	0.0409(9)
Н4А	0.4092	0.6224	0.8521	0.0504 (11)
H4R	0.4235	0.6966	0.7822	0.060*
C5	0.4235 0.4746 (2)	0.5069 (3)	0.7476 (4)	0.0523 (11)
Н5А	0.4675	0.4901	0.8166	0.063*
H5R	0.5190	0.4901	0.7245	0.063*
C18	0.5170 0.4279(3)	0.6016 (3)	0.5697 (4)	0.0606 (12)
H18A	0.4347	0.6191	0.5002	0.073*
C21	0.6240(2)	-0.0364(2)	0.9738 (3)	0.0519(10)
H21A	0.6355	-0.0938	0.9681	0.062*
C12	0.0333 0.4973(3)	0 6246 (3)	0.6368 (5)	0.002 0.0763 (17)
H12A	0.5415	0.5990	0.6119	0.092*
H12B	0 5047	0.6824	0.6353	0.092*
C22	0.1556(2)	0.0865 (3)	0.4123 (4)	0.0629 (13)
H22A	0.1035	0.0969	0.4279	0.075*
N2	0.80564 (18)	0.26537 (18)	0.3092 (2)	0.0287 (7)
C11	0.7389 (3)	0.2465 (3)	0.2685(4)	0.0477(12)
HIIA	0.7347	0.2358	0.1996	0.057*
03	0.28231 (15)	0.65761 (16)	0.7492 (2)	0.0498 (7)
H3A	0.2777	0.6498	0.8096	0.075*
C27	0.48627(19)	0.1019 (2)	0.8201 (3)	0.0324 (8)
07	0.46364 (17)	0.04954 (18)	0.7576 (2)	0.0600 (8)
C2	0.8096 (2)	0.2832 (2)	0.4060 (3)	0.0346 (9)
H2A	0.8560	0.2977	0.4351	0.041*
O1W	0.4470 (4)	0.1457 (5)	0.2261 (7)	0.208 (3)
H1WA	0.4019	0.1602	0.2137	0.312*
H1WB	0.4517	0.0953	0.2344	0.312*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02855 (17)	0.03075 (18)	0.03260 (18)	0.0000 (2)	0.00535 (12)	-0.0010 (2)
N1	0.0286 (19)	0.0376 (19)	0.0367 (19)	-0.0029 (14)	0.0051 (11)	-0.0037 (14)
O4	0.0350 (15)	0.0427 (17)	0.0420 (15)	0.0039 (13)	-0.0075 (12)	-0.0146 (13)

01	0.0441 (16)	0.0421 (16)	0.078 (2)	-0.0102 (13)	-0.0111 (14)	-0.0143 (15)
C6	0.038 (2)	0.0271 (19)	0.030 (2)	-0.0022 (15)	0.0033 (17)	-0.0004 (15)
C7	0.028 (2)	0.076 (3)	0.031 (2)	0.0024 (18)	-0.0029 (16)	0.0126 (19)
C8	0.026 (2)	0.032 (2)	0.028 (2)	0.0012 (15)	0.0053 (16)	0.0020 (14)
C9	0.0324 (19)	0.032 (2)	0.045 (2)	0.0044 (15)	-0.0072 (16)	-0.0033 (16)
C10	0.032 (2)	0.049 (2)	0.0253 (18)	0.0004 (17)	-0.0025(15)	0.0017 (16)
C13	0.040 (3)	0.076 (3)	0.024 (2)	-0.013 (2)	0.0011 (18)	-0.0085 (19)
C14	0.0260 (17)	0.0367 (19)	0.0321 (17)	-0.0032 (14)	-0.0049 (14)	0.0056 (14)
C15	0.0301 (19)	0.040 (2)	0.040 (2)	0.0002 (15)	-0.0053(15)	0.0010 (16)
C16	0.045 (2)	0.052 (3)	0.041 (2)	-0.0021 (19)	-0.0161 (18)	-0.0019 (19)
09	0.0358 (15)	0.079 (2)	0.0625 (18)	-0.0204(14)	-0.0140(13)	0.0203 (15)
02	0.0511 (17)	0.0302 (14)	0.0541 (17)	0.0002 (12)	0.0042 (13)	0.0011 (13)
C19	0.029 (2)	0.090 (4)	0.034 (2)	-0.021(2)	0.0011 (19)	-0.012(2)
05	0.0559 (16)	0.0543 (17)	0.0440 (15)	0.0203 (13)	-0.0290(12)	-0.0091(13)
C23	0.0284 (18)	0.037 (2)	0.059 (3)	0.0026 (17)	0.0120 (18)	-0.0052(18)
C24	0.0297 (18)	0.042 (2)	0.0355 (19)	-0.0047(15)	-0.0045(14)	0.0057 (16)
C25	0.039 (2)	0.038 (2)	0.0338 (18)	0.0016 (16)	-0.0054(15)	-0.0026(15)
C26	0.088 (4)	0.029 (2)	0.065 (3)	-0.002(2)	-0.046 (3)	-0.006(2)
08	0.0407 (17)	0.049 (2)	0.0394 (15)	0.0108 (13)	0.0000 (11)	0.0060 (12)
C31	0.028 (2)	0.077 (3)	0.034 (2)	-0.015 (2)	0.0000 (18)	-0.013 (2)
C32	0.050 (2)	0.033 (2)	0.049 (2)	-0.0037 (16)	-0.0169 (18)	0.0032 (16)
C33	0.028 (2)	0.076 (3)	0.0282 (19)	0.0044 (18)	0.0003 (15)	0.0115 (18)
C34	0.0327 (18)	0.035 (2)	0.0344 (19)	0.0031 (15)	-0.0096 (15)	-0.0009 (16)
C35	0.050 (2)	0.037 (2)	0.0350 (19)	-0.0001 (17)	-0.0116 (16)	0.0002 (15)
C36	0.0321 (19)	0.063 (3)	0.034 (2)	-0.0002 (18)	-0.0014 (16)	0.0060 (19)
C37	0.040 (2)	0.051 (2)	0.045 (2)	0.0116 (17)	-0.0165 (17)	0.0024 (18)
C38	0.050 (2)	0.047 (2)	0.050 (2)	0.0072 (19)	-0.0202 (19)	0.0004 (19)
C42	0.082 (4)	0.065 (3)	0.081 (3)	-0.039 (3)	-0.051 (3)	0.022 (3)
C43	0.055 (2)	0.053 (3)	0.055 (2)	0.004 (2)	0.017 (2)	-0.003 (2)
C45	0.058 (3)	0.039 (2)	0.052 (2)	0.0048 (19)	-0.0014 (19)	0.0067 (19)
C46	0.071 (3)	0.030 (2)	0.053 (2)	0.0039 (18)	-0.034 (2)	0.0004 (17)
C47	0.047 (2)	0.082 (3)	0.0253 (18)	-0.002(2)	-0.0054 (16)	0.0063 (19)
C48	0.036 (2)	0.071 (3)	0.043 (2)	-0.006 (2)	-0.0040 (17)	0.013 (2)
C51	0.049 (2)	0.065 (3)	0.054 (3)	-0.007(2)	-0.017 (2)	0.030(2)
C54	0.081 (3)	0.047 (2)	0.045 (2)	0.014 (2)	-0.032 (2)	-0.0174 (19)
C55	0.0309 (18)	0.039 (2)	0.0232 (17)	-0.0029 (15)	0.0012 (14)	0.0022 (15)
C56	0.0292 (19)	0.0337 (19)	0.049 (2)	0.0010 (14)	-0.0008 (16)	-0.0007 (15)
06	0.080(2)	0.0559 (17)	0.0351 (14)	-0.0023 (15)	-0.0072 (13)	0.0070 (13)
C59	0.034 (2)	0.034 (2)	0.104 (4)	-0.0015 (18)	-0.018 (2)	-0.008 (2)
C67	0.0300 (18)	0.050(2)	0.042 (2)	-0.0058 (16)	-0.0042 (16)	0.0049 (18)
C4	0.049 (2)	0.031 (2)	0.069 (3)	0.0017 (18)	-0.019 (2)	-0.003 (2)
C5	0.033 (2)	0.040 (2)	0.083 (3)	0.0045 (17)	-0.013 (2)	-0.005 (2)
C18	0.072 (3)	0.044 (2)	0.068 (3)	0.003 (2)	0.025 (2)	0.012 (2)
C21	0.058 (3)	0.036 (2)	0.059 (3)	0.0014 (19)	-0.022 (2)	0.0099 (19)
C12	0.048 (3)	0.044 (3)	0.139 (5)	-0.008 (2)	0.026 (3)	0.014 (3)
C22	0.034 (2)	0.089 (4)	0.063 (3)	-0.014 (2)	-0.018 (2)	0.014 (3)
N2	0.0252 (18)	0.0339 (18)	0.0274 (17)	-0.0012 (13)	0.0046 (12)	-0.0020 (13)
C11	0.038 (3)	0.077 (3)	0.029 (2)	-0.016 (2)	0.0085 (19)	-0.0156 (19)

supporting information

O3	0.0445 (15)	0.0465 (16)	0.0580 (17)	0.0159 (13)	0.0004 (12)	-0.0042 (13)
C27	0.0278 (18)	0.040 (2)	0.0298 (18)	0.0000 (15)	0.0022 (14)	0.0055 (15)
07	0.0702 (19)	0.0553 (18)	0.0512 (17)	0.0053 (15)	-0.0338 (15)	-0.0030 (14)
C2	0.0252 (18)	0.048 (2)	0.0304 (19)	-0.0002 (16)	-0.0010 (15)	0.0030 (17)
O1W	0.178 (6)	0.206 (8)	0.245 (9)	0.019 (5)	0.065 (6)	-0.016 (6)

Geometric parameters (Å, °)

Zn1—O2	2.016 (3)	C34—C46	1.530 (5)
Zn1—08	2.036 (3)	C35—O6	1.435 (4)
Zn1—O4	2.065 (3)	C35—C38	1.504 (5)
Zn1-N2 ⁱ	2.138 (3)	C35—C54	1.531 (5)
Zn1—N1	2.174 (4)	C36—C47	1.533 (5)
N1—C7	1.329 (6)	С36—Н36А	0.9700
N1-C13	1.332 (6)	C36—H36B	0.9700
O4—C55	1.227 (4)	C37—C21	1.510 (6)
O1—C23	1.240 (5)	C37—C67	1.525 (5)
C6—C19	1.381 (7)	С37—Н37А	0.9700
C6—C33	1.381 (6)	С37—Н37В	0.9700
С6—С8	1.489 (4)	C38—C22	1.531 (6)
С7—С33	1.377 (6)	C38—H38A	0.9700
С7—Н7А	0.9300	C38—H38B	0.9700
C8—C10	1.374 (6)	C42—C22	1.513 (8)
C8—C31	1.379 (6)	C42—H42A	0.9700
С9—ОЗ	1.438 (4)	C42—H42B	0.9700
C9—C45	1.508 (6)	C43—C56	1.525 (5)
С9—С4	1.515 (5)	C43—C18	1.533 (6)
C9—C15	1.529 (5)	C43—H43A	0.9700
C10—C2	1.383 (5)	C43—H43B	0.9700
C10—H10A	0.9300	C45—C18	1.516 (6)
C13—C19	1.353 (7)	C45—H45A	0.9700
C13—H13A	0.9300	C45—H45B	0.9700
C14—C27	1.533 (4)	C46—H46A	0.9700
C14—C36	1.534 (5)	C46—H46B	0.9700
C14—C32	1.534 (5)	C47—C51	1.532 (7)
C14—C24	1.543 (4)	C47—H47A	0.9800
C15—C56	1.537 (5)	C48—C22	1.543 (6)
C15—H15A	0.9700	C48—H48A	0.9700
C15—H15B	0.9700	C48—H48B	0.9700
C16—C67	1.521 (5)	C51—C21	1.511 (6)
C16—C47	1.525 (6)	C51—H51A	0.9700
C16—H16A	0.9700	C51—H51B	0.9700
C16—H16B	0.9700	C54—H54A	0.9700
O9—C67	1.441 (4)	C54—H54B	0.9700
О9—Н9А	0.8200	C56—C5	1.535 (5)
O2—C23	1.267 (4)	O6—H6A	0.8200
С19—Н19А	0.9300	C59—C5	1.517 (6)
O5—C55	1.272 (4)	C59—C12	1.518 (7)

O5—H5C	0.8499	C59—C4	1.522 (6)	
C23—C56	1.536 (5)	С59—Н59А	0.9800	
C24—C67	1.532 (5)	C4—H4A	0.9700	
C24—H24A	0.9700	C4—H4B	0.9700	
C24—H24B	0.9700	C5—H5A	0.9700	
C25—C35	1.524 (5)	С5—Н5В	0.9700	
C25—C34	1.546 (5)	C18—C12	1.541 (7)	
C25—H25A	0.9700	C18—H18A	0.9800	
C25—H25B	0.9700	C21—H21A	0.9800	
C26—C54	1.498 (7)	C12—H12A	0.9700	
C26—C42	1.518 (8)	C12—H12B	0.9700	
C26—C46	1.529 (5)	C22—H22A	0.9800	
C26—H26A	0.9800	N2—C2	1.316 (5)	
O8—C27	1.248 (5)	N2—C11	1.324 (6)	
C31—C11	1.397 (7)	N2—Zn1 ⁱⁱ	2.138 (3)	
C31—H31A	0.9300	С11—Н11А	0.9300	
C32—C21	1.533 (5)	03—H3A	0.8200	
C32—H32A	0.9700	C27—O7	1.257 (4)	
С32—Н32В	0.9700	C2—H2A	0.9300	
С33—Н33А	0.9300	O1W—H1WA	0.8499	
C34—C55	1.527 (4)	O1W—H1WB	0.8499	
C34—C48	1.527 (5)			
O2—Zn1—O8	102.42 (12)	H38A—C38—H38B	108.2	
O2—Zn1—O4	140.19 (12)	C22—C42—C26	109.4 (4)	
O8—Zn1—O4	117.37 (9)	C22—C42—H42A	109.8	
O2—Zn1—N2 ⁱ	93.50 (11)	C26—C42—H42A	109.8	
O8—Zn1—N2 ⁱ	92.77 (11)	C22—C42—H42B	109.8	
O4—Zn1—N2 ⁱ	86.13 (11)	C26—C42—H42B	109.8	
O2—Zn1—N1	88.14 (11)	H42A—C42—H42B	108.2	
O8—Zn1—N1	91.03 (12)	C56—C43—C18	110.2 (3)	
O4—Zn1—N1	89.88 (12)	C56—C43—H43A	109.6	
N2 ⁱ —Zn1—N1	175.44 (16)	C18—C43—H43A	109.6	
C7—N1—C13	116.3 (4)	C56—C43—H43B	109.6	
C7—N1—Zn1	125.3 (3)	C18—C43—H43B	109.6	
C13—N1—Zn1	118.2 (3)	H43A—C43—H43B	108.1	
C55—O4—Zn1	135.3 (2)	C9—C45—C18	110.7 (3)	
C19—C6—C33	115.1 (4)	C9—C45—H45A	109.5	
C19—C6—C8	121.5 (4)	C18—C45—H45A	109.5	
C33—C6—C8	123.3 (3)	C9—C45—H45B	109.5	
N1—C7—C33	123.3 (4)	C18—C45—H45B	109.5	
N1—C7—H7A	118.4	H45A—C45—H45B	108.1	
С33—С7—Н7А	118.4	C26—C46—C34	109.5 (3)	
C10—C8—C31	117.4 (4)	C26—C46—H46A	109.8	
C10—C8—C6	121.2 (3)	C34—C46—H46A	109.8	
C31—C8—C6	121.4 (3)	C26—C46—H46B	109.8	
O3—C9—C45	107.0 (3)	C34—C46—H46B	109.8	
O3—C9—C4	111.3 (3)	H46A—C46—H46B	108.2	
	× /			

C45—C9—C4	108.9 (4)	C16—C47—C51	109.3 (4)
O3—C9—C15	111.1 (3)	C16—C47—C36	109.2 (3)
C45—C9—C15	109.5 (3)	C51—C47—C36	109.7 (3)
C4—C9—C15	109.1 (3)	С16—С47—Н47А	109.5
C8—C10—C2	119.4 (3)	С51—С47—Н47А	109.5
C8—C10—H10A	120.3	С36—С47—Н47А	109.5
C2-C10-H10A	120.3	C34—C48—C22	109.0 (4)
N1—C13—C19	123.4 (5)	C34—C48—H48A	109.9
N1—C13—H13A	118.3	C22—C48—H48A	109.9
C19—C13—H13A	118.3	C34—C48—H48B	109.9
C27—C14—C36	109.8 (3)	C22—C48—H48B	109.9
C27—C14—C32	111.2 (3)	H48A—C48—H48B	108.3
C36—C14—C32	109.4 (3)	C21—C51—C47	110.0 (3)
C27—C14—C24	108.9 (3)	С21—С51—Н51А	109.7
C36—C14—C24	108.7 (3)	С47—С51—Н51А	109.7
C32—C14—C24	108.8 (3)	C21—C51—H51B	109.7
C9—C15—C56	110.7 (3)	C47—C51—H51B	109.7
C9—C15—H15A	109.5	H51A—C51—H51B	108.2
C56—C15—H15A	109.5	C26—C54—C35	109.6 (3)
C9-C15-H15B	109.5	C26—C54—H54A	109.8
C56—C15—H15B	109.5	C35—C54—H54A	109.8
H15A—C15—H15B	108.1	C26—C54—H54B	109.8
C67—C16—C47	109.7 (3)	C35—C54—H54B	109.8
C67—C16—H16A	109.7	H54A—C54—H54B	108.2
C47—C16—H16A	109.7	04	124.7 (3)
С67—С16—Н16В	109.7	04	119.1 (3)
C47—C16—H16B	109.7	05	116.2 (3)
H16A—C16—H16B	108.2	C43—C56—C5	109.0(3)
С67—О9—Н9А	109.5	C43—C56—C23	110.6 (3)
$C_{23} = O_{2} = Z_{n1}$	103.4 (2)	C5—C56—C23	112.1 (3)
C13—C19—C6	121.4 (4)	C43—C56—C15	108.8 (3)
С13—С19—Н19А	119.3	C5—C56—C15	107.9 (3)
С6—С19—Н19А	119.3	C23—C56—C15	108.3 (3)
С55—О5—Н5С	120.7	С35—О6—Н6А	109.5
01-C23-O2	121.6 (4)	C5-C59-C12	110.5 (4)
O1—C23—C56	120.9 (4)	C5—C59—C4	109.6 (4)
O2—C23—C56	117.4 (3)	C12—C59—C4	109.6 (4)
C67—C24—C14	109.9 (3)	С5—С59—Н59А	109.1
C67—C24—H24A	109.7	С12—С59—Н59А	109.1
C14—C24—H24A	109.7	C4—C59—H59A	109.1
C67—C24—H24B	109.7	O9—C67—C16	111.4 (3)
C14—C24—H24B	109.7	O9—C67—C37	110.3 (3)
H24A—C24—H24B	108.2	C16—C67—C37	110.2 (3)
C35—C25—C34	109.9 (3)	O9—C67—C24	107.1 (3)
C35—C25—H25A	109.7	C16—C67—C24	109.0 (3)
C34—C25—H25A	109.7	C37—C67—C24	108.7 (3)
C35—C25—H25B	109.7	C9—C4—C59	109.7 (3)
C34—C25—H25B	109.7	С9—С4—Н4А	109.7

H25A—C25—H25B	108.2	C59—C4—H4A	109.7
C54—C26—C42	110.3 (4)	C9—C4—H4B	109.7
C54—C26—C46	110.3 (4)	C59—C4—H4B	109.7
C42—C26—C46	109.0 (4)	H4A—C4—H4B	108.2
С54—С26—Н26А	109.1	C59—C5—C56	110.0 (3)
C42—C26—H26A	109.1	С59—С5—Н5А	109.7
C46—C26—H26A	109.1	С56—С5—Н5А	109.7
C27—O8—Zn1	131.1 (3)	С59—С5—Н5В	109.7
C8—C31—C11	119.2 (4)	С56—С5—Н5В	109.7
C8—C31—H31A	120.4	H5A—C5—H5B	108.2
C11—C31—H31A	120.4	C45—C18—C43	110.2 (3)
C21—C32—C14	109.8 (3)	C45—C18—C12	108.5 (4)
C21—C32—H32A	109.7	C43—C18—C12	108.9 (4)
C14—C32—H32A	109.7	C45—C18—H18A	109.7
C21—C32—H32B	109.7	C43—C18—H18A	109.7
С14—С32—Н32В	109.7	C12—C18—H18A	109.7
H32A—C32—H32B	108.2	C37—C21—C51	109.9 (3)
C7—C33—C6	120.5 (4)	C37—C21—C32	109.3 (3)
С7—С33—Н33А	119.8	C51—C21—C32	109.2 (4)
C6—C33—H33A	119.8	C37—C21—H21A	109.5
C55—C34—C48	109.7 (3)	C51—C21—H21A	109.5
C55—C34—C46	112.3 (3)	C32—C21—H21A	109.5
C48 - C34 - C46	109.9(3)	C_{59} C_{12} C_{18}	108.8 (4)
C_{55} C_{34} C_{25}	107.6 (3)	C59—C12—H12A	109.9
C48 - C34 - C25	108.8 (3)	C18 - C12 - H12A	109.9
$C_{46} = C_{34} = C_{25}$	108.4(3)	C59—C12—H12B	109.9
06-C35-C38	112.0(3)	C18—C12—H12B	109.9
06-C35-C25	109.7(3)	H12A— $C12$ — $H12B$	109.9
$C_{38} = C_{35} = C_{25}$	109.7(3) 109.8(3)	C42 - C22 - C38	100.5 109.4(4)
06-C35-C54	107.1(3)	$C_{42} = C_{22} = C_{48}$	109.1(1) 110.1(4)
C_{38} C_{35} C_{54}	109.1(3) 109.4(3)	$C_{12}^{38} = C_{22}^{22} = C_{10}^{48}$	108.9(4)
$C_{25} = C_{35} = C_{54}$	109.4(3) 108.8(3)	C_{42} C_{22} C_{40} C_{40}	100.5 (4)
$C_{47} = C_{36} = C_{14}$	109.4(3)	C_{38} C_{22} H_{22A}	109.5
C47 - C36 - H36A	109.4 (3)	C_{48} C_{22} H_{22A}	109.5
C14-C36-H36A	109.8	$C_{10} = C_{22} = C_{11}$	107.3 117.3(4)
C47 - C36 - H36B	109.8	$C_2 = N_2 = C_{11}^{11}$	117.5(+) 123.6(3)
C14 $C36$ H36B	109.8	$C_{11} = N_{2} = Z_{11}$	125.0(3) 1101(3)
H36A C36 H36B	109.0	$N_2 = C_{11} = C_{31}$	119.1(3) 122.0(4)
C_{21} C_{27} C_{67}	100.2	$N_2 = C_{11} = C_{31}$	122.9 (4)
$C_{21} = C_{37} = C_{07}$	100.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.5
$C_{21} = C_{37} = H_{37A}$	109.0	$C_{0} = C_{1} = H_{1}$	100.5
$C_0/-C_3/-H_3/A$	109.0	C9-03-03A	109.3 124.7(2)
$C_{21} = C_{37} = H_{37B}$	109.0	08 - 027 - 014	124.7(3) 117.8(3)
$C_0/-C_3/-R_3/B$	109.0	03 - 027 - 014	117.0(3)
$\Pi J/A = \bigcup J = \Pi J/B$	100.1	$U_1 = U_2 = U_1 = U_1 = U_1$	117.3(3) 122.7(4)
$C_{3} = C_{3} = C_{2} = C_{2$	110.0 (5)	N2 = C2 = U2A	123.7 (4)
$C_{22} = C_{28} = H_{28} A$	109.7	$N_2 = U_2 = H_2 A$	118.1
C_{22} — C_{38} —H38A	109.7	$U_1U - U_2 - H_2A$	118.1
C35-C38-H38B	109./	HIWA—UIW—HIWB	113.0

С22—С38—Н38В	109.7		
O2—Zn1—N1—C7	-104.9 (3)	C42—C26—C54—C35	59.7 (4)
O8—Zn1—N1—C7	152.7 (3)	C46—C26—C54—C35	-60.7 (5)
O4—Zn1—N1—C7	35.3 (3)	O6—C35—C54—C26	179.0 (3)
O2—Zn1—N1—C13	69.4 (3)	C38—C35—C54—C26	-59.5 (4)
O8—Zn1—N1—C13	-33.0 (3)	C25—C35—C54—C26	60.5 (4)
O4—Zn1—N1—C13	-150.4 (3)	Zn1—O4—C55—O5	13.2 (6)
O2—Zn1—O4—C55	148.0 (3)	Zn1—O4—C55—C34	-166.1(3)
O8—Zn1—O4—C55	-30.1(4)	C48—C34—C55—O4	-51.1 (4)
N2 ⁱ —Zn1—O4—C55	-121.2(4)	C46—C34—C55—O4	-173.6(3)
N1—Zn1—O4—C55	61.0 (3)	C25—C34—C55—O4	67.1 (4)
C13—N1—C7—C33	0.2 (6)	C48—C34—C55—O5	129.6 (3)
Zn1-N1-C7-C33	174.7(3)	C46-C34-C55-O5	7.0 (5)
C19 - C6 - C8 - C10	-186(5)	$C^{25} - C^{34} - C^{55} - C^{5}$	-1122(3)
C_{33} $-C_{6}$ $-C_{8}$ $-C_{10}$	164.7(4)	$C_{18} - C_{43} - C_{56} - C_{5}$	-59.3(4)
C19 - C6 - C8 - C31	161.2(5)	C18 - C43 - C56 - C23	1770(3)
C_{33} C_{6} C_{8} C_{31}	-156(5)	C18 - C43 - C56 - C15	58 1 (4)
C_{31} C_{8} C_{10} C_{2}	-21(6)	$01 - C^{23} - C^{56} - C^{43}$	-439(5)
$C_{6} = C_{8} = C_{10} = C_{2}$	2.1(0) 177.7(3)	$O_1 = C_{23} = C_{50} = C_{43}$	135 1 (3)
$C_{0} = C_{0} = C_{10} = C_{2}$	1/7.7(5)	02 - 023 - 050 - 043	-165.8(4)
7 - N1 - C13 - C19	-174.9(4)	01 - 023 - 050 - 05	13.2(5)
2111 - 111 - 013 - 013	174.9(4)	02 - 023 - 056 - 015	15.2(3)
$C_{45} = C_{15} = C_{56}$	1/7.1(3)	01 - 023 - 056 - 015	105.2 (4)
C45 - C9 - C15 - C56	59.2 (4)	02-023-050-015	-105.8 (4)
C4 - C9 - C13 - C36	-59.9 (4)	C9 - C15 - C56 - C43	-58.9 (4)
08 - 2n1 - 02 - 023	1/4.5(2)	C_{9} C_{15} C_{56} C_{5}	59.2 (4)
04-2n1-02-023	-3.7(3)	C9—C15—C56—C23	-1/9.2(3)
N2 ⁴ —Zn1—O2—C23	-91.9 (2)	C47 - C16 - C67 - O9	178.7 (3)
NI—ZnI—O2—C23	83.9 (2)	C4/C16C6/C3/	-58.5 (4)
N1—C13—C19—C6	0.6 (8)	C47—C16—C67—C24	60.7 (4)
C33—C6—C19—C13	-1.3 (7)	C21—C37—C67—O9	-178.1 (3)
C8—C6—C19—C13	-178.3 (4)	C21—C37—C67—C16	58.5 (4)
Zn1—O2—C23—O1	5.4 (4)	C21—C37—C67—C24	-60.9 (4)
Zn1—O2—C23—C56	-173.6 (2)	C14—C24—C67—O9	179.3 (3)
C27—C14—C24—C67	179.3 (3)	C14—C24—C67—C16	-60.1 (4)
C36—C14—C24—C67	59.6 (4)	C14—C24—C67—C37	60.0 (4)
C32—C14—C24—C67	-59.4 (4)	O3—C9—C4—C59	-177.4 (3)
O2—Zn1—O8—C27	-160.3 (3)	C45—C9—C4—C59	-59.8 (4)
O4—Zn1—O8—C27	18.4 (4)	C15—C9—C4—C59	59.7 (5)
N2 ⁱ —Zn1—O8—C27	105.5 (3)	C5—C59—C4—C9	-60.6 (5)
N1—Zn1—O8—C27	-72.0 (3)	C12—C59—C4—C9	60.7 (5)
C10-C8-C31-C11	1.0 (6)	C12—C59—C5—C56	-60.0 (5)
C6—C8—C31—C11	-178.8 (4)	C4—C59—C5—C56	60.8 (5)
C27—C14—C32—C21	178.9 (3)	C43—C56—C5—C59	58.5 (5)
C36—C14—C32—C21	-59.7 (4)	C23—C56—C5—C59	-178.6 (4)
C24—C14—C32—C21	59.0 (4)	C15—C56—C5—C59	-59.5 (5)
N1-C7-C33-C6	-1.0 (7)	C9—C45—C18—C43	58.6 (5)
C19—C6—C33—C7	1.5 (6)	C9—C45—C18—C12	-60.6 (5)

C8—C6—C33—C7	178.4 (4)	C56—C43—C18—C45	-58.4 (5)
C35—C25—C34—C55	-178.3 (3)	C56—C43—C18—C12	60.5 (4)
C35—C25—C34—C48	-59.5 (4)	C67—C37—C21—C51	-58.9 (4)
C35—C25—C34—C46	59.9 (4)	C67—C37—C21—C32	60.9 (4)
C34—C25—C35—O6	-177.2 (3)	C47—C51—C21—C37	59.7 (4)
C34—C25—C35—C38	59.3 (4)	C47—C51—C21—C32	-60.2 (4)
C34—C25—C35—C54	-60.3 (4)	C14—C32—C21—C37	-60.1 (4)
C27—C14—C36—C47	-178.7 (3)	C14—C32—C21—C51	60.3 (4)
C32—C14—C36—C47	59.0 (4)	C5-C59-C12-C18	60.4 (5)
C24—C14—C36—C47	-59.7 (4)	C4—C59—C12—C18	-60.4 (5)
O6—C35—C38—C22	177.8 (3)	C45—C18—C12—C59	59.9 (5)
C25—C35—C38—C22	-60.1 (4)	C43—C18—C12—C59	-60.1 (5)
C54—C35—C38—C22	59.3 (4)	C26—C42—C22—C38	58.9 (4)
C54—C26—C42—C22	-59.9 (5)	C26—C42—C22—C48	-60.7 (5)
C46—C26—C42—C22	61.3 (5)	C35—C38—C22—C42	-59.5 (4)
O3—C9—C45—C18	-179.1 (3)	C35—C38—C22—C48	60.8 (5)
C4—C9—C45—C18	60.5 (4)	C34—C48—C22—C42	59.0 (5)
C15—C9—C45—C18	-58.7 (4)	C34—C48—C22—C38	-61.0 (5)
C54—C26—C46—C34	60.5 (5)	C2—N2—C11—C31	-2.5 (7)
C42—C26—C46—C34	-60.8 (5)	Zn1 ⁱⁱ —N2—C11—C31	176.4 (4)
C55—C34—C46—C26	-177.8 (3)	C8—C31—C11—N2	1.4 (8)
C48—C34—C46—C26	59.8 (5)	Zn108C2707	-8.5 (6)
C25—C34—C46—C26	-59.0 (4)	Zn1-08-C27-C14	170.1 (2)
C67—C16—C47—C51	58.8 (4)	C36—C14—C27—O8	57.2 (4)
C67—C16—C47—C36	-61.2 (4)	C32—C14—C27—O8	178.4 (3)
C14—C36—C47—C16	60.7 (5)	C24—C14—C27—O8	-61.7 (4)
C14—C36—C47—C51	-59.1 (4)	C36—C14—C27—O7	-124.1 (4)
C55—C34—C48—C22	177.8 (3)	C32—C14—C27—O7	-2.9 (5)
C46—C34—C48—C22	-58.3 (4)	C24—C14—C27—O7	117.0 (4)
C25—C34—C48—C22	60.3 (4)	C11—N2—C2—C10	1.4 (6)
C16—C47—C51—C21	-59.6 (4)	$Zn1^{ii}$ —N2—C2—C10	-177.5 (3)
C36—C47—C51—C21	60.1 (4)	C8—C10—C2—N2	0.9 (6)

Symmetry codes: (i) x-1/2, -y+1/2, z+1/2; (ii) x+1/2, -y+1/2, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
09—H9A…O1 ⁱⁱⁱ	0.82	2.05	2.872 (4)	178	
O6—H6A···O3 ^{iv}	0.82	2.00	2.812 (4)	169	
O3—H3 <i>A</i> ···O9 ^v	0.82	1.99	2.790 (4)	165	
O1 <i>W</i> —H1 <i>WA</i> ···O6	0.85	2.19	3.013 (9)	163	
O5—H5 <i>C</i> ···O7	0.85	1.67	2.447 (3)	151	
O1 <i>W</i> —H1 <i>WB</i> ···O7 ^{vi}	0.85	2.44	3.287 (9)	179	

Symmetry codes: (iii) *x*+1/2, *-y*+1/2, *z*+1/2; (iv) *x*, *-y*+1, *z*-1/2; (v) *x*-1/2, *y*+1/2, *z*; (vi) *x*, *-y*, *z*-1/2.