Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fraxinellone

Hong-Mei Gu, Hao Xu, Zhao-Zhao Zhong, Hai-Liang Zhu and Qing-Shan Li*

Jiangsu Chiatai Tianqing Pharmaceutical Co. Ltd, Nanjing 210042, People's Repulic of China, and, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: benbenshell@yahoo.com.cn

Received 27 April 2011; accepted 15 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.113; data-to-parameter ratio = 11.1.

In the title compound, $C_{14}H_{16}O_3$ [systematic name: $(3R^*,3aR^*)$ -3-(3-furanyl)-3a,7-dimethyl-3a,4,5,6-tetrahydro-2benzofuran-1(3H)-one], the pendant methyl and furan groups attached to the stereogenic centres lie to the same side of the fused ring system. The dihedral angle between the fivemembered rings is 74.8 $(2)^\circ$; the fused five-membered ring adopts a twisted conformation. In the crystal, molecules are linked by weak C–H···O interactions, which generate [100] chains.

Related literature

For background to fraxinellone and its biological activity, see: Kim *et al.* (2009); Sun *et al.* (2009); Liu *et al.* (2009). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

$C_{14}H_{16}O_3$	V = 1197.3 (9) Å ³
$M_r = 232.27$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 5.940 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 12.661 (6) Å	T = 298 K
c = 15.921 (7) Å	$0.20 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD	10397 measured reflections
diffractometer	1733 independent reflections
Absorption correction: multi-scan	1331 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.049$
$T_{\min} = 0.982, \ T_{\max} = 0.984$	

Refinement

156 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
C8−H8···O1 ⁱ	0.98	2.58	3.510 (3)	158
Symmetry code: (i)	r _ 1 _ v _ 7			

Symmetry code: (i) x - 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXL97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5863).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Kim, J. H., Park, Y. M., Shin, J. S., Park, S. J., Choi, J. H., Jung, H. J., Park, H. J. & Lee, K. T. (2009). *Biol. Pharm. Bull.* pp. 1062–1068.
- Liu, Z. L., Ho, S. H. & Goh, S. H. (2009). Insect Sci., pp. 147-155.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, Y., Qin, Y., Gong, F. Y., Wu, X. F., Hua, Z. C., Chen, T. & Xu, Q. (2009). Biochem. Pharmacol. pp. 1717–1724.

supporting information

Acta Cryst. (2011). E67, o1472 [doi:10.1107/S1600536811018393]

Fraxinellone

Hong-Mei Gu, Hao Xu, Zhao-Zhao Zhong, Hai-Liang Zhu and Qing-Shan Li

S1. Comment

There has been much research interest in fraxinellone due to its biological activities (Kim *et al.* (2009); Sun *et al.* (2009); Liu *et al.* (2009)). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). The dihedral angle between the C1—C2—C7—C8—O2 and C12—C11—C14—C13—O3 rings is 74.8 (2)°.

S2. Experimental

In order to extract the fraxinellone with bioactivity containing in Dictamnus dasycarpus Turks, 100 g/L milk of lime wetting plant material, was extracted by using refluent extract method with petroleum ether as a solvent. The residue was separated with methanol and petroleum ether, and recrystallized in methanol. It was further purified on a silica gel column. Crystals suitable for X-ray structure analysis were obtained by slow evaporation of a solution in methanol at room temperature.

S3. Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.2U_{eq}(N)$.

The molecular structure of (I) showing 30% probability displacement ellipsoids.

(3R*,3aR*)-3-(3-furanyl)-3a,4,5,6- tetrahydro-3a,7-dimethyl-2-benzofuran-1(3H)-one

Crystal data

C₁₄H₁₆O₃ $M_r = 232.27$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.940 (3) Å b = 12.661 (6) Å c = 15.921 (7) Å V = 1197.3 (9) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.982, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.113$ S = 1.07 F(000) = 496 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.20 \times 0.20 \times 0.18 \text{ mm}$

10397 measured reflections 1733 independent reflections 1331 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -7 \rightarrow 7$ $k = -17 \rightarrow 16$ $l = -19 \rightarrow 21$

1733 reflections156 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 0.1558P]$ where $P = (F_o^2 + 2F_o^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \sigma_{\text{max}} = 0.12 \text{ g} \text{Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}^{*}/U_{\rm eq}$
01	0.5425 (3)	-0.10394 (15)	0.61505 (12)	0.0558 (5)
O2	0.2594 (3)	0.00000 (13)	0.65310 (9)	0.0423 (4)
O3	-0.2584 (5)	0.24662 (18)	0.72681 (14)	0.0806 (8)
C1	0.3749 (4)	-0.05682 (18)	0.59460 (15)	0.0391 (5)
C2	0.2628 (4)	-0.04409 (17)	0.51292 (14)	0.0377 (5)
C3	0.2806 (5)	-0.10573 (18)	0.44505 (15)	0.0428 (6)
C4	0.1270 (5)	-0.0894 (2)	0.37091 (17)	0.0571 (7)
H4A	0.0334	-0.1517	0.3649	0.069*
H4B	0.2190	-0.0840	0.3208	0.069*
C5	-0.0254 (5)	0.0067 (2)	0.37495 (17)	0.0583 (7)
H5A	-0.1572	-0.0058	0.3404	0.070*
H5B	0.0539	0.0671	0.3520	0.070*
C6	-0.1009 (4)	0.0323 (2)	0.46465 (16)	0.0488 (6)
H6A	-0.1916	0.0960	0.4645	0.059*
H6B	-0.1925	-0.0251	0.4862	0.059*
C7	0.1041 (4)	0.04793 (17)	0.52105 (13)	0.0355 (5)
C8	0.0486 (4)	0.03908 (17)	0.61578 (14)	0.0364 (5)
H8	-0.0667	-0.0156	0.6228	0.044*
C9	0.4404 (5)	-0.1978 (2)	0.4381 (2)	0.0599 (8)
H9A	0.5589	-0.1806	0.3995	0.090*
H9B	0.3603	-0.2587	0.4181	0.090*
H9C	0.5037	-0.2127	0.4923	0.090*
C10	0.2300 (5)	0.15067 (19)	0.50129 (15)	0.0466 (6)
H10A	0.3577	0.1572	0.5379	0.070*
H10B	0.1311	0.2097	0.5096	0.070*
H10C	0.2802	0.1495	0.4440	0.070*
C11	-0.0265 (4)	0.13529 (19)	0.66193 (14)	0.0416 (6)
C12	-0.2403 (6)	0.1508 (2)	0.68932 (16)	0.0563 (7)
H12	-0.3574	0.1026	0.6833	0.068*
C13	-0.0487 (6)	0.2921 (2)	0.72441 (18)	0.0579 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H13	-0.0116	0.3577	0.7467	0.069*
C14	0.0930 (6)	0.2275 (2)	0.68509 (17)	0.0542 (7)
H14	0.2445	0.2406	0.6746	0.065*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0482 (11)	0.0579 (10)	0.0612 (11)	0.0135 (10)	-0.0039 (10)	0.0022 (9)
O2	0.0457 (9)	0.0438 (8)	0.0372 (8)	0.0068 (8)	0.0002 (8)	0.0015 (7)
03	0.101 (2)	0.0835 (16)	0.0576 (12)	0.0376 (17)	0.0124 (14)	-0.0099 (11)
C1	0.0405 (13)	0.0328 (11)	0.0441 (13)	-0.0013 (11)	0.0046 (11)	0.0044 (10)
C2	0.0383 (13)	0.0356 (11)	0.0391 (12)	-0.0052 (11)	0.0047 (11)	0.0025 (9)
C3	0.0415 (14)	0.0389 (12)	0.0480 (14)	-0.0062 (11)	0.0090 (12)	-0.0047 (10)
C4	0.0623 (18)	0.0652 (16)	0.0438 (15)	-0.0026 (16)	0.0025 (14)	-0.0105 (13)
C5	0.0666 (19)	0.0645 (16)	0.0438 (14)	0.0014 (16)	-0.0078 (14)	-0.0009 (13)
C6	0.0476 (15)	0.0539 (15)	0.0449 (14)	0.0050 (13)	-0.0071 (12)	-0.0008 (12)
C7	0.0375 (12)	0.0348 (11)	0.0342 (11)	0.0006 (10)	0.0034 (10)	0.0013 (9)
C8	0.0351 (12)	0.0373 (11)	0.0369 (11)	0.0000 (10)	0.0024 (10)	0.0023 (9)
C9	0.0583 (19)	0.0508 (15)	0.0708 (19)	0.0022 (15)	0.0055 (16)	-0.0183 (14)
C10	0.0561 (16)	0.0385 (11)	0.0451 (13)	-0.0066 (13)	0.0066 (14)	0.0048 (10)
C11	0.0467 (15)	0.0454 (13)	0.0326 (11)	0.0058 (12)	0.0009 (11)	0.0024 (10)
C12	0.0607 (18)	0.0642 (16)	0.0439 (14)	0.0099 (16)	0.0075 (16)	-0.0036 (13)
C13	0.082 (2)	0.0455 (14)	0.0465 (15)	0.0112 (16)	-0.0031 (16)	-0.0107 (12)
C14	0.0634 (19)	0.0508 (14)	0.0485 (15)	-0.0008 (15)	-0.0041 (15)	-0.0052 (12)

Geometric parameters (Å, °)

01—C1	1.205 (3)	C6—H6B	0.9700
O2—C1	1.362 (3)	C7—C10	1.533 (3)
O2—C8	1.471 (3)	C7—C8	1.548 (3)
O3—C12	1.357 (3)	C8—C11	1.491 (3)
O3—C13	1.373 (4)	C8—H8	0.9800
C1—C2	1.470 (3)	С9—Н9А	0.9600
С2—С3	1.337 (3)	С9—Н9В	0.9600
C2—C7	1.504 (3)	С9—Н9С	0.9600
C3—C4	1.506 (4)	C10—H10A	0.9600
С3—С9	1.507 (4)	C10—H10B	0.9600
C4—C5	1.518 (4)	C10—H10C	0.9600
C4—H4A	0.9700	C11—C12	1.357 (4)
C4—H4B	0.9700	C11—C14	1.415 (4)
С5—С6	1.531 (4)	C12—H12	0.9300
С5—Н5А	0.9700	C13—C14	1.331 (4)
С5—Н5В	0.9700	C13—H13	0.9300
C6—C7	1.526 (3)	C14—H14	0.9300
С6—Н6А	0.9700		
C1—O2—C8	109.29 (17)	C6—C7—C8	113.2 (2)
C12—O3—C13	106.9 (3)	C10—C7—C8	111.41 (18)

O1—C1—O2	119.5 (2)	O2—C8—C11	109.30 (19)
O1—C1—C2	131.9 (2)	O2—C8—C7	103.70 (17)
O2—C1—C2	108.6 (2)	C11—C8—C7	119.00 (18)
C3—C2—C1	128.0 (2)	O2—C8—H8	108.1
C3—C2—C7	124.8 (2)	С11—С8—Н8	108.1
C1—C2—C7	107.02 (18)	С7—С8—Н8	108.1
C2—C3—C4	120.4 (2)	С3—С9—Н9А	109.5
C2—C3—C9	124.1 (3)	С3—С9—Н9В	109.5
C4—C3—C9	115.5 (2)	H9A—C9—H9B	109.5
C3—C4—C5	116.0 (2)	С3—С9—Н9С	109.5
C3—C4—H4A	108.3	Н9А—С9—Н9С	109.5
C5—C4—H4A	108.3	Н9В—С9—Н9С	109.5
C3—C4—H4B	108.3	C7—C10—H10A	109.5
C5—C4—H4B	108.3	C7—C10—H10B	109.5
H4A—C4—H4B	107.4	H10A-C10-H10B	109.5
C4—C5—C6	112.6 (2)	C7—C10—H10C	109.5
С4—С5—Н5А	109.1	H10A—C10—H10C	109.5
С6—С5—Н5А	109.1	H10B-C10-H10C	109.5
C4—C5—H5B	109.1	C12—C11—C14	105.5 (2)
C6—C5—H5B	109.1	C12—C11—C8	123.8 (3)
H5A—C5—H5B	107.8	C14—C11—C8	130.7 (2)
C7—C6—C5	110.0 (2)	C11—C12—O3	110.2 (3)
С7—С6—Н6А	109.7	C11—C12—H12	124.9
С5—С6—Н6А	109.7	O3—C12—H12	124.9
С7—С6—Н6В	109.7	C14—C13—O3	109.2 (2)
С5—С6—Н6В	109.7	C14—C13—H13	125.4
H6A—C6—H6B	108.2	O3—C13—H13	125.4
C2—C7—C6	110.41 (19)	C13—C14—C11	108.2 (3)
C2C7C10	109.49 (19)	C13—C14—H14	125.9
C6—C7—C10	112.3 (2)	C11—C14—H14	125.9
C2—C7—C8	99.28 (17)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H····A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8…Oli	0.98	2.58	3.510 (3)	158

Symmetry code: (i) x-1, y, z.