Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Diagua(2,2'-bipyridine-6,6'-dicarboxylato)nickel(II)

#### Shui Hu,<sup>a</sup> ShiPeng Wen,<sup>a</sup> Huai-Ming Hu<sup>b\*</sup> and Li Liu<sup>a\*</sup>

<sup>a</sup>Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China, and <sup>b</sup>College of Chemistry and Materials Science, Northwest University, Xi'an 710069, People's Republic of China

Correspondence e-mail: chemhu1@nwu.edu.cn, liul2001@yahoo.com.cn

Received 28 April 2011; accepted 30 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.082; data-to-parameter ratio = 12.5.

In the title compound,  $[Ni(C_{12}H_6N_2O_4)(H_2O_2)]$ , the Ni<sup>II</sup> atom (site symmetry 2) displays a distorted *cis*-NiN<sub>2</sub>O<sub>4</sub> octahedral coordination geometry with two N atoms and two O atoms of the tetradentate 2,2'-bipyridine-6,6'-dicarboxylate ligand in the equatorial plane and two water molecules in axial positions. The complete dianionic ligand is generated by crystallographic twofold symmetry. In the crystal, a twodimensional supramolecular structure parallel to (001) is formed through  $O-H \cdots O$  hydrogen-bond interactions between the coordinated water molecules and the O atoms of nearby carboxylate groups.

#### **Related literature**

For transition metal complexes with the title ligand, see: Knight et al. (2006); Duan et al. (2009); Wang et al. (2009). For lanthanide metal complexes with the title ligand, see: Bunzli et al. (2000); Wang et al. (2010).



# **Experimental**

#### Crystal data

| $[Ni(C_{12}H_6N_2O_4)(H_2O)_2]$ | $V = 1237.8 (3) \text{ Å}^3$              |
|---------------------------------|-------------------------------------------|
| $M_r = 336.93$                  | Z = 4                                     |
| Orthorhombic, <i>Pccn</i>       | Mo $K\alpha$ radiation                    |
| a = 7.1056 (9)  Å               | $\mu = 1.60 \text{ mm}^{-1}$              |
| b = 11.3008 (13)  Å             | I = 290  K                                |
| c = 15.3334 (19)  Å             | $0.24 \times 0.16 \times 0.10 \text{ mm}$ |

#### Data collection

| Bruker APEXII CCD                      | 6269 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1274 independent reflections           |
| Absorption correction: multi-scan      | 1098 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2005)                 | $R_{\rm int} = 0.036$                  |
| $T_{\min} = 0.766, \ T_{\max} = 0.857$ |                                        |

#### Refinement

| H atoms treated by a mixture of                          |
|----------------------------------------------------------|
| independent and constrained                              |
| refinement                                               |
| $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ |
|                                                          |
|                                                          |

#### Table 1

Selected bond lengths (Å).

| Ni1-N1 | 1.9975 (19) | Ni1-O1 | 2.1335 (16) |
|--------|-------------|--------|-------------|
| Ni1-O3 | 2.0553 (18) |        |             |

#### Table 2

Hydrogen-bond geometry (Å, °).

| , , ,                                           |                                            | <i>'</i>                   |                         |                           |
|-------------------------------------------------|--------------------------------------------|----------------------------|-------------------------|---------------------------|
| $D - H \cdot \cdot \cdot A$                     | D-H                                        | $H \cdots A$               | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdots A$ |
| $O3-H3A\cdots O2^{i}$<br>$O3-H3B\cdots O2^{ii}$ | 0.81(2)<br>0.83(2)                         | 1.90(2)<br>1.95(2)         | 2.708 (2)               | 176 (3)<br>172 (3)        |
| Symmetry codes: (i) -                           | $-r = \frac{1}{2} - v \pm \frac{3}{2} = 7$ | $(ii) = r y = \frac{1}{2}$ | 2.772 (3)               | 172 (5)                   |

metry codes: (i)  $-x - \frac{1}{2}, -y + \frac{3}{2}, z$ ; (ii)  $-x, y - \frac{1}{2}, -z + \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5864).

#### References

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bunzli, J.-C. G., Charbonniere, L. J. & Ziessel, R. F. (2000). J. Chem. Soc. Dalton Trans. pp. 1917-1923.

Duan, L., Fischer, A., Xu, Y. & Sun, L. (2009). J. Am. Chem. Soc. 131, 10397-10399.

Knight, J., Amoroso, A. J., Edwards, P. G. & Ooi, L.-L. (2006). Acta Cryst. E62, m3306-m3308.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352-m353. Wang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92-100.

# supporting information

Acta Cryst. (2011). E67, m718 [doi:10.1107/S1600536811016400]

# Diaqua(2,2'-bipyridine-6,6'-dicarboxylato)nickel(II)

# Shui Hu, ShiPeng Wen, Huai-Ming Hu and Li Liu

## S1. Comment

Pyridyl carboxylic acid is an important class of organic ligands and has been widely used in coordination chemistry. 2,2'-Bipyridine-6,6'-dicarboxylate ligand is coordinated woth transition metal (Duan *et al.*, 2009; Knight *et al.*, 2006 and Wang *et al.*, 2009) and lanthanide metal ions (Bunzli *et al.*, 2000 and Wang *et al.*, 2010). Herein, we report crystal structure of a new nickel complex with 2,2'-bipyridine-6,6'-dicarboxylate ligand.

The atom-numbering scheme of (I) is shown in Fig. 1. The Ni<sup>II</sup> atom displays a distorted octahedral coordination geometry with two N atoms and two O atoms of 2,2'-bipyridine-6,6'-dicarboxylate in equatorial plane and two water molecules in apical positions. A two-dimensional supramolecular structure is formed through hydrogen interactions between the oxygen atoms of coordination water molecules and the oxygen atoms of carboxylate groups [O3—H3A···O2<sup>i</sup>, 2.708 (3) Å, 176 (3) °, symmetric code i: (-*x* - 1/2, -*y* + 3/2, *z*); O3—H3B···O2<sup>ii</sup>, 2.772 (3) Å, 172 (3) °, symmetric code ii: (-*x*, *y* - 1/2, -*z* + 1/2)].

#### **S2.** Experimental

The title compound was prepared by the reaction of Ni(NO<sub>3</sub>)<sub>2</sub> with 2,2'-bipyridine-6,6'-dicarboxylic acid (H<sub>2</sub>bpdc) in a water solution. Ni(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O (0.2 mmol) and H<sub>2</sub>bpdc (0.2 mmol) were dissolved in 25 ml deionized water and adjusted the pH to 7 with 0.05 mol  $L^{-1}$  NaOH aqueous solution. After one week, green blocks were obtained. Elmental analysis for C<sub>12</sub>H<sub>10</sub>N<sub>2</sub>NiO<sub>6</sub> calculated: C 42.78, H 2.99, N 8.32%; found: C 42.57, H 2.89, N 8.46%.

## **S3. Refinement**

The water H atoms were located in a difference Fourier map and refined with restrained O—H bond lengths [0.85 (2) Å] and fixed isotropic displancement parameters ( $U_{iso}(H) = 1.2 U_{eq}(O)$ ). The carbon H atoms were placed at calculated positions (C—H = 0.93–0.96 Å) and refined as riding model with  $U_{iso}(H) = 1.2 U_{eq}(carrier)$ .



# Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids. Atoms labelled with the suffix A are at the symmetry position (-x + 1/2, -y + 3/2, z).



## Figure 2

View of a two-dimensional supramolecular structure constructed through hydrogen bonding interactions in (I). Hydrogen atoms of carbon atoms have been omitted for clarity.

## Diaqua(2,2'-bipyridine-6,6'-dicarboxylato)nickel(II)

#### Crystal data

 $\begin{bmatrix} \text{Ni}(\text{C}_{12}\text{H}_6\text{N}_2\text{O}_4)(\text{H}_2\text{O})_2 \end{bmatrix}$   $M_r = 336.93$ Orthorhombic, *Pccn* Hall symbol: -P 2ab 2ac a = 7.1056 (9) Å b = 11.3608 (15) Å c = 15.3334 (19) Å  $V = 1237.8 (3) \text{ Å}^3$ Z = 4

#### Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005)  $T_{\min} = 0.766, T_{\max} = 0.857$ 

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.082$                               | neighbouring sites                                         |
| S = 1.06                                        | H atoms treated by a mixture of independent                |
| 1274 reflections                                | and constrained refinement                                 |
| 102 parameters                                  | $w = 1/[\sigma^2(F_o^2) + (0.0405P)^2 + 0.5888P]$          |
| 2 restraints                                    | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Primary atom site location: structure-invariant | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| direct methods                                  | $\Delta \rho_{\rm max} = 0.48 \ { m e} \ { m \AA}^{-3}$    |
|                                                 | $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F(000) = 688

 $\theta = 3.2 - 25.2^{\circ}$  $\mu = 1.60 \text{ mm}^{-1}$ 

T = 296 K

Block, green

 $R_{\rm int} = 0.036$ 

 $h = -8 \rightarrow 8$ 

 $k = -13 \rightarrow 14$ 

 $l = -10 \rightarrow 19$ 

 $0.24 \times 0.16 \times 0.10 \text{ mm}$ 

6269 measured reflections 1274 independent reflections

 $\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 2.7^\circ$ 

1098 reflections with  $I > 2\sigma(I)$ 

 $D_{\rm x} = 1.808 {\rm Mg} {\rm m}^{-3}$ 

Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 1650 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| Ni1         0.2500         0.7500         0.16327 (3)         0.02540 (16)           N1         0.0931 (3)         0.80137 (16)         0.06211 (12)         0.0285 (4)           O1         0.0167 (2)         0.83346 (15)         0.22531 (11)         0.0360 (4)           O2         0.2446 (2)         0.02409 (18)         0.15555 (16)         0.0517 (6) |     | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--------------|--------------|-----------------------------|
| N1         0.0931 (3)         0.80137 (16)         0.06211 (12)         0.0285 (4)           O1         0.0167 (2)         0.83346 (15)         0.22531 (11)         0.0360 (4)           O2         0.2446 (2)         0.02408 (18)         0.10505 (16)         0.0517 (6)                                                                                      | Ni1 | 0.2500      | 0.7500       | 0.16327 (3)  | 0.02540 (16)                |
| O1         0.0167 (2)         0.83346 (15)         0.22531 (11)         0.0360 (4)           O2         0.2446 (2)         0.02408 (18)         0.10505 (16)         0.0517 (6)                                                                                                                                                                                   | N1  | 0.0931 (3)  | 0.80137 (16) | 0.06211 (12) | 0.0285 (4)                  |
| 02 0.244((2) 0.02409(19) 0.10505(1() 0.0517(()                                                                                                                                                                                                                                                                                                                    | 01  | 0.0167 (2)  | 0.83346 (15) | 0.22531 (11) | 0.0360 (4)                  |
| 0.19595 (16) 0.0517 (6)                                                                                                                                                                                                                                                                                                                                           | 02  | -0.2446 (2) | 0.93408 (18) | 0.19595 (16) | 0.0517 (6)                  |

| C1  | -0.1035 (3) | 0.8756 (2)   | 0.17424 (18)  | 0.0348 (6) |
|-----|-------------|--------------|---------------|------------|
| C2  | -0.0683 (4) | 0.8569 (2)   | 0.07707 (17)  | 0.0332 (6) |
| C3  | -0.1808 (4) | 0.8936 (2)   | 0.0083 (2)    | 0.0464 (7) |
| H3  | -0.2934     | 0.9332       | 0.0182        | 0.056*     |
| C4  | -0.1204 (5) | 0.8695 (3)   | -0.0750 (2)   | 0.0563 (9) |
| H4  | -0.1951     | 0.8915       | -0.1221       | 0.068*     |
| C5  | 0.0486 (5)  | 0.8132 (2)   | -0.09017 (18) | 0.0506 (8) |
| H5  | 0.0894      | 0.7982       | -0.1467       | 0.061*     |
| C6  | 0.1564 (4)  | 0.7796 (2)   | -0.01856 (16) | 0.0348 (6) |
| O3  | 0.1216 (2)  | 0.58888 (16) | 0.17647 (13)  | 0.0380 (5) |
| H3A | 0.009 (3)   | 0.584 (3)    | 0.1803 (18)   | 0.046*     |
| H3B | 0.169 (4)   | 0.545 (2)    | 0.2135 (15)   | 0.046*     |
|     |             |              |               |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Ni1 | 0.0254 (3)  | 0.0293 (3)  | 0.0215 (2)  | 0.00250 (16) | 0.000        | 0.000        |
| N1  | 0.0341 (11) | 0.0256 (10) | 0.0260 (11) | -0.0004 (9)  | -0.0053 (9)  | -0.0005 (8)  |
| O1  | 0.0336 (9)  | 0.0402 (10) | 0.0343 (10) | 0.0040 (8)   | 0.0046 (8)   | -0.0040(8)   |
| O2  | 0.0263 (10) | 0.0466 (12) | 0.0821 (15) | 0.0055 (8)   | -0.0004 (9)  | -0.0232 (11) |
| C1  | 0.0248 (12) | 0.0269 (12) | 0.0526 (17) | -0.0047 (10) | 0.0005 (12)  | -0.0078 (11) |
| C2  | 0.0316 (13) | 0.0217 (12) | 0.0464 (16) | -0.0021 (10) | -0.0109 (11) | -0.0021 (10) |
| C3  | 0.0437 (15) | 0.0291 (14) | 0.067 (2)   | -0.0016 (11) | -0.0276 (15) | 0.0050 (13)  |
| C4  | 0.073 (2)   | 0.0378 (16) | 0.059 (2)   | -0.0073 (15) | -0.0407 (18) | 0.0134 (14)  |
| C5  | 0.085 (2)   | 0.0380 (16) | 0.0289 (15) | -0.0094 (16) | -0.0177 (15) | 0.0061 (11)  |
| C6  | 0.0530 (17) | 0.0261 (12) | 0.0252 (12) | -0.0045 (11) | -0.0073 (12) | 0.0018 (9)   |
| 03  | 0.0259 (9)  | 0.0364 (10) | 0.0519 (12) | 0.0001 (8)   | 0.0044 (9)   | 0.0117 (8)   |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| Ni1—N1 <sup>i</sup>                  | 1.9975 (19) | C2—C3              | 1.387 (4)  |  |
|--------------------------------------|-------------|--------------------|------------|--|
| Ni1—N1                               | 1.9975 (19) | C3—C4              | 1.375 (5)  |  |
| Ni1—O3 <sup>i</sup>                  | 2.0553 (18) | С3—Н3              | 0.9300     |  |
| Ni1—O3                               | 2.0553 (18) | C4—C5              | 1.381 (5)  |  |
| Ni1—O1 <sup>i</sup>                  | 2.1335 (16) | C4—H4              | 0.9300     |  |
| Ni1-01                               | 2.1335 (16) | C5—C6              | 1.392 (4)  |  |
| N1—C2                                | 1.329 (3)   | С5—Н5              | 0.9300     |  |
| N1—C6                                | 1.339 (3)   | C6—C6 <sup>i</sup> | 1.491 (5)  |  |
| 01—C1                                | 1.254 (3)   | O3—H3A             | 0.806 (18) |  |
| O2—C1                                | 1.247 (3)   | O3—H3B             | 0.827 (17) |  |
| C1—C2                                | 1.526 (4)   |                    |            |  |
| N1 <sup>i</sup> —Ni1—N1              | 78.11 (11)  | O2—C1—C2           | 117.8 (2)  |  |
| N1 <sup>i</sup> —Ni1—O3 <sup>i</sup> | 95.10 (8)   | O1—C1—C2           | 116.4 (2)  |  |
| N1—Ni1—O3 <sup>i</sup>               | 93.67 (8)   | N1—C2—C3           | 120.6 (3)  |  |
| N1 <sup>i</sup> —Ni1—O3              | 93.67 (8)   | N1-C2-C1           | 112.1 (2)  |  |
| N1—Ni1—O3                            | 95.10 (8)   | C3—C2—C1           | 127.3 (3)  |  |
| O3 <sup>i</sup> —Ni1—O3              | 168.70 (11) | C4—C3—C2           | 117.8 (3)  |  |

| N1 <sup>i</sup> —Ni1—O1 <sup>i</sup> | 77.45 (7)    | C4—C3—H3                  | 121.1        |
|--------------------------------------|--------------|---------------------------|--------------|
| N1—Ni1—O1 <sup>i</sup>               | 155.48 (8)   | С2—С3—Н3                  | 121.1        |
| O3 <sup>i</sup> —Ni1—O1 <sup>i</sup> | 90.40 (7)    | C3—C4—C5                  | 121.4 (3)    |
| O3—Ni1—O1 <sup>i</sup>               | 84.56 (7)    | C3—C4—H4                  | 119.3        |
| N1 <sup>i</sup> —Ni1—O1              | 155.48 (8)   | C5—C4—H4                  | 119.3        |
| N1—Ni1—O1                            | 77.45 (7)    | C4—C5—C6                  | 118.2 (3)    |
| O3 <sup>i</sup> —Ni1—O1              | 84.56 (7)    | C4—C5—H5                  | 120.9        |
| O3—Ni1—O1                            | 90.40 (7)    | С6—С5—Н5                  | 120.9        |
| O1 <sup>i</sup> —Ni1—O1              | 127.04 (9)   | N1—C6—C5                  | 119.5 (3)    |
| C2—N1—C6                             | 122.5 (2)    | N1-C6-C6 <sup>i</sup>     | 112.53 (14)  |
| C2—N1—Ni1                            | 119.11 (17)  | C5-C6-C6 <sup>i</sup>     | 127.93 (19)  |
| C6—N1—Ni1                            | 118.41 (17)  | Ni1—O3—H3A                | 121 (2)      |
| C1-O1-Ni1                            | 114.88 (15)  | Ni1—O3—H3B                | 115 (2)      |
| 02—C1—O1                             | 125.7 (3)    | H3A—O3—H3B                | 108 (3)      |
|                                      |              |                           |              |
| N1 <sup>i</sup> —Ni1—N1—C2           | -178.6 (2)   | Ni1—N1—C2—C3              | -179.86 (17) |
| O3 <sup>i</sup> —Ni1—N1—C2           | -84.19 (18)  | C6—N1—C2—C1               | -177.4 (2)   |
| O3—Ni1—N1—C2                         | 88.68 (18)   | Ni1—N1—C2—C1              | 1.8 (3)      |
| O1 <sup>i</sup> —Ni1—N1—C2           | 176.75 (16)  | O2—C1—C2—N1               | 175.2 (2)    |
| O1—Ni1—N1—C2                         | -0.59 (17)   | O1—C1—C2—N1               | -2.6 (3)     |
| N1 <sup>i</sup> —Ni1—N1—C6           | 0.53 (13)    | O2—C1—C2—C3               | -3.1 (4)     |
| O3 <sup>i</sup> —Ni1—N1—C6           | 94.98 (18)   | O1—C1—C2—C3               | 179.2 (2)    |
| O3—Ni1—N1—C6                         | -92.15 (18)  | N1-C2-C3-C4               | 0.6 (4)      |
| O1 <sup>i</sup> —Ni1—N1—C6           | -4.1 (3)     | C1—C2—C3—C4               | 178.7 (2)    |
| O1—Ni1—N1—C6                         | 178.57 (19)  | C2—C3—C4—C5               | -1.5 (4)     |
| N1 <sup>i</sup> —Ni1—O1—C1           | 3.7 (3)      | C3—C4—C5—C6               | 1.0 (4)      |
| N1-Ni1-O1-C1                         | -0.96 (16)   | C2—N1—C6—C5               | -1.6 (4)     |
| O3 <sup>i</sup> —Ni1—O1—C1           | 94.04 (17)   | Ni1—N1—C6—C5              | 179.24 (19)  |
| O3—Ni1—O1—C1                         | -96.09 (17)  | C2-N1-C6-C6 <sup>i</sup>  | 177.8 (2)    |
| 01 <sup>i</sup> -Ni1-01-C1           | -179.58 (17) | Ni1—N1—C6—C6 <sup>i</sup> | -1.4 (3)     |
| Nil-01-C1-02                         | -175.4 (2)   | C4—C5—C6—N1               | 0.6 (4)      |
| Nil-01-C1-C2                         | 2.1 (3)      | C4—C5—C6—C6 <sup>i</sup>  | -178.7 (3)   |
| C6—N1—C2—C3                          | 1.0 (4)      |                           |              |

Symmetry code: (i) -x+1/2, -y+3/2, z.

# Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H      | Н…А      | $D \cdots A$ | D—H···A |
|-------------------------------------|----------|----------|--------------|---------|
| O3—H3A…O2 <sup>ii</sup>             | 0.81 (2) | 1.90 (2) | 2.708 (2)    | 176 (3) |
| O3—H3 <i>B</i> ···O2 <sup>iii</sup> | 0.83 (2) | 1.95 (2) | 2.772 (3)    | 172 (3) |

Symmetry codes: (ii) -*x*-1/2, -*y*+3/2, *z*; (iii) -*x*, *y*-1/2, -*z*+1/2.