

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-4-(2-iodobenzenesulfonamido)benzoic acid

Muhammad Nadeem Arshad,^a*‡ Islam Ullah Khan,^b H. M. Rafigue,^a Abdullah M. Asiri^c and Muhammad Shafig^b

^aX-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, ^bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ^cThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia Correspondence e-mail: mnachemist@hotmail.com

Received 28 April 2011; accepted 30 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.010 Å; R factor = 0.054; wR factor = 0.129; data-to-parameter ratio = 19.2.

In the title compound, $C_{13}H_9CIINO_4S$, the dihedral angle between the aromatic rings is 81.04 (17)°. The disposition of the I and Cl atoms attached to the two rings is *anti*. In the crystal, molecules are connected *via* O–H···O and N– H···O hydrogen bonds.

Related literature

For background to thiazine heterocycles, see: Arshad *et al.* (2008, 2011). For their biological activity, see: Medina *et al.* (1999). For related structures, see: Arshad *et al.* (2009a,b,c).

Experimental

Crystal data $C_{13}H_9CIINO_4S$ M = 437.62

 $M_r = 437.02$ Monoclinic, $P2_1/n$ a = 14.1522 (8) Å b = 7.3203 (4) Å c = 14.7193 (8) Å $\beta = 104.892$ (2)°

16645 measured reflections

 $R_{\rm int} = 0.058$

3668 independent reflections

1876 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
T_{min} = 0.661, T_{max} = 0.806
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	191 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 1.24 \text{ e } \text{\AA}^{-3}$
3668 reflections	$\Delta \rho_{\rm min} = -1.30 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$M1 - H1 \cdots O2^{i}$	0.86	2.38	3.214 (6)	162
$O1-H1O\cdots O2^{ii}$	0.82	2.09	2.771 (6)	140
	1 . 1	1 (**) . 3	. 1 . 1	

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University, Lahore, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5865).

References

- Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Sharif, H. M. A. (2009b). *Acta Cryst.* E65, 0831.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009a). Acta Cryst. E65, 0281.
- Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009c). Acta Cryst. E65, 0230.
- Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. & Jaen, J. C. (1999). *Bioorg. Med. Chem. Lett.* 9, 1843–1846. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan.

supporting information

Acta Cryst. (2011). E67, o1327 [doi:10.1107/S1600536811016412]

2-Chloro-4-(2-iodobenzenesulfonamido)benzoic acid

Muhammad Nadeem Arshad, Islam Ullah Khan, H. M. Rafique, Abdullah M. Asiri and Muhammad Shafiq

S1. Comment

The title compound, (I), is an example of a halogenated sulfonamide, which are reported as inhibitors for the growth of multidrug resistant MCF-7/ADR cancer cells (Medina *et al.*, 1999). In continuation to our researches with sulfonamides (Arshad *et al.*, 2009*a*), the title compound has been prepared, as an intermediate for the preparation of thiazine related heterocycles (Arshad *et al.*, 2008, 2011).

The crystal structure of (I) being reported here as an isomer of previously reported compound 2-chloro-5-(2-iodobenzenesulfonamido)benzoic acid (II), (Arshad, *et al.*, 2009*a*). The bond lengths and bond angles are also compareable with the 5-benzenesulfonamido-2-chlorobenzoic acid (III), (Arshad, *et al.*, 2009*b*) and 4-(2-Iodobenzenesulfonamido)benzoic acid monohydrate (IV) (Arshad, *et al.*, 2009*c*). The two aromatic rings A (C1-C6) and B (C7-C12) are oriented at dihedral angle of 81.04 (17)° which is lower than in (IV i.e. 87.07 (6)°) and greater than in (II i.e. 74.46 (9)°) and (III i.e. 74.18 (17)°). No intramolecular hydrogen bonding interaction have been observed in the molecule. The intermolecular interaction of O—H…O and N—H…O forms three dimentional network to stabilize structure of molecule (Fig. 2 and Tab. 1).

S2. Experimental

The title compound was prepared following the method of Arshad *et al.* (2009*a*). Red needles were recrystallised from methanol.

S3. Refinement

All the H-atoms were positioned with idealized geometry with C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å and were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}$ for aromatic C and N atoms and with $U_{iso}(H) = 1.5 U_{eq}$ for O atom.

Unit cell packing for (I) with hydrogen bonding shown as dashed lines.

2-Chloro-4-(2-iodobenzenesulfonamido)benzoic acid

Crystal data

C₁₃H₉ClINO₄S $M_r = 437.62$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.1522 (8) Å b = 7.3203 (4) Å c = 14.7193 (8) Å $\beta = 104.892$ (2)° V = 1473.68 (14) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 848 $D_x = 1.972 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2692 reflections $\theta = 2.9-22.2^{\circ}$ $\mu = 2.51 \text{ mm}^{-1}$ T = 296 KNeedle, red $0.18 \times 0.15 \times 0.09 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.661, T_{max} = 0.806$ 16645 measured reflections 3668 independent reflections

1876 reflections with $I > 2\sigma(I)$	$h = -18 \rightarrow 18$
$R_{\rm int} = 0.058$	$k = -9 \rightarrow 5$
$\theta_{\max} = 28.3^{\circ}, \ \theta_{\min} = 2.9^{\circ}$	$l = -19 \rightarrow 18$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3668 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0383P)^2 + 3.6338P]$
191 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.24 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.09820 (4)	0.29186 (7)	-0.02615 (4)	0.0813 (2)
Cl1	0.57812 (11)	-0.0907 (2)	0.24047 (12)	0.0606 (5)
S1	0.22376 (11)	-0.1302 (2)	-0.02876 (11)	0.0446 (4)
O2	0.6990 (3)	0.2380 (5)	0.2686 (3)	0.0522 (11)
O3	0.1453 (3)	-0.1280 (6)	-0.1113 (3)	0.0608 (12)
O4	0.2813 (3)	-0.2894 (6)	-0.0053 (4)	0.0685 (13)
01	0.6486 (3)	0.4890 (5)	0.1868 (3)	0.0587 (12)
H1O	0.6958	0.5337	0.2247	0.088*
N1	0.2946 (3)	0.0364 (6)	-0.0429 (3)	0.0415 (12)
H1	0.2808	0.0897	-0.0967	0.050*
C1	0.1801 (4)	-0.0725 (8)	0.0698 (4)	0.0443 (14)
C2	0.1285 (4)	0.0854 (10)	0.0765 (5)	0.0549 (17)
C3	0.0945 (5)	0.1169 (14)	0.1543 (6)	0.082 (3)
Н3	0.0604	0.2237	0.1588	0.099*
C4	0.1104 (8)	-0.005 (2)	0.2231 (8)	0.116 (4)
H4	0.0860	0.0174	0.2749	0.140*
C5	0.1625 (7)	-0.1670 (17)	0.2205 (6)	0.102 (4)
Н5	0.1740	-0.2503	0.2698	0.122*
C6	0.1957 (5)	-0.1974 (11)	0.1423 (6)	0.070 (2)
Н6	0.2295	-0.3047	0.1380	0.085*
C7	0.3765 (4)	0.1009 (7)	0.0255 (4)	0.0315 (12)
C8	0.4328 (4)	-0.0092 (7)	0.0936 (4)	0.0372 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H8	0.4155	-0.1309	0.0976	0.045*	
C9	0.5151 (4)	0.0594 (7)	0.1565 (4)	0.0350 (13)	
C10	0.5457 (4)	0.2393 (6)	0.1501 (4)	0.0297 (11)	
C11	0.4845 (4)	0.3480 (7)	0.0827 (4)	0.0390 (13)	
H11	0.5006	0.4704	0.0788	0.047*	
C12	0.4019 (4)	0.2832 (7)	0.0222 (4)	0.0384 (13)	
H12	0.3625	0.3611	-0.0214	0.046*	
C13	0.6385 (4)	0.3173 (7)	0.2090 (4)	0.0364 (13)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0650 (3)	0.0593 (3)	0.1146 (5)	0.0148 (2)	0.0143 (3)	-0.0042 (3)
Cl1	0.0512 (9)	0.0458 (8)	0.0741 (12)	0.0036 (7)	-0.0037 (8)	0.0291 (8)
S1	0.0403 (8)	0.0417 (8)	0.0510 (10)	-0.0072 (6)	0.0103 (8)	-0.0130 (7)
O2	0.038 (2)	0.048 (2)	0.059 (3)	0.0023 (18)	-0.010 (2)	0.007 (2)
O3	0.055 (3)	0.071 (3)	0.051 (3)	-0.018 (2)	0.003 (2)	-0.023 (2)
O4	0.060 (3)	0.039 (2)	0.105 (4)	-0.004 (2)	0.020 (3)	-0.013 (2)
01	0.069 (3)	0.044 (2)	0.045 (3)	-0.019 (2)	-0.017 (2)	0.006 (2)
N1	0.037 (3)	0.058 (3)	0.027 (3)	-0.008 (2)	0.005 (2)	0.001 (2)
C1	0.034 (3)	0.057 (4)	0.041 (4)	-0.013 (3)	0.006 (3)	0.001 (3)
C2	0.034 (3)	0.077 (5)	0.053 (4)	-0.020 (3)	0.010 (3)	-0.020 (4)
C3	0.062 (5)	0.125 (7)	0.075 (6)	-0.020 (5)	0.045 (5)	-0.039 (6)
C4	0.091 (8)	0.201 (13)	0.070 (7)	-0.062 (8)	0.045 (6)	-0.020 (8)
C5	0.082 (7)	0.160 (10)	0.057 (6)	-0.047 (7)	0.009 (5)	0.040 (7)
C6	0.053 (4)	0.085 (5)	0.070 (5)	-0.016 (4)	0.009 (4)	0.016 (4)
C7	0.030 (3)	0.041 (3)	0.026 (3)	-0.002 (2)	0.013 (2)	-0.001 (2)
C8	0.037 (3)	0.035 (3)	0.042 (4)	0.000 (2)	0.013 (3)	0.003 (3)
C9	0.036 (3)	0.036 (3)	0.034 (3)	0.010(2)	0.012 (3)	0.011 (2)
C10	0.029 (3)	0.031 (3)	0.031 (3)	0.002 (2)	0.011 (2)	0.000(2)
C11	0.042 (3)	0.037 (3)	0.036 (3)	-0.002 (2)	0.006 (3)	0.005 (2)
C12	0.036 (3)	0.040 (3)	0.036 (3)	0.000 (2)	0.002 (3)	0.012 (3)
C13	0.041 (3)	0.038 (3)	0.031 (3)	-0.001 (2)	0.012 (3)	0.001 (2)

Geometric parameters (Å, °)

I1—C2	2.102 (7)	C4—C5	1.401 (14)
Cl1—C9	1.722 (5)	C4—H4	0.9300
S1—O4	1.413 (4)	C5—C6	1.368 (12)
S1—O3	1.420 (4)	С5—Н5	0.9300
S1—N1	1.626 (5)	С6—Н6	0.9300
S1—C1	1.767 (6)	C7—C8	1.371 (7)
O2—C13	1.206 (6)	C7—C12	1.386 (7)
O1—C13	1.315 (6)	C8—C9	1.383 (7)
01—H10	0.8200	C8—H8	0.9300
N1—C7	1.407 (6)	C9—C10	1.396 (7)
N1—H1	0.8600	C10—C11	1.388 (7)
C1—C6	1.380 (9)	C10—C13	1.489 (7)

C1—C2	1.384 (9)	C11—C12	1.360 (7)
C2—C3	1.371 (9)	C11—H11	0.9300
C3—C4	1.326 (14)	C12—H12	0.9300
С3—Н3	0.9300		
O4—S1—O3	119.6 (3)	C5—C6—C1	121.5 (8)
O4—S1—N1	108.3 (3)	С5—С6—Н6	119.3
O3—S1—N1	104.7 (3)	С1—С6—Н6	119.3
O4—S1—C1	107.3 (3)	C8—C7—C12	119.0 (5)
O3—S1—C1	109.8 (3)	C8—C7—N1	122.9 (5)
N1—S1—C1	106.4 (2)	C12—C7—N1	118.1 (5)
C13—O1—H1O	109.5	C7—C8—C9	120.5 (5)
C7—N1—S1	125.6 (4)	С7—С8—Н8	119.7
C7—N1—H1	117.2	С9—С8—Н8	119.7
S1—N1—H1	117.2	C8—C9—C10	121.3 (5)
C6—C1—C2	118.7 (6)	C8—C9—Cl1	116.1 (4)
C6—C1—S1	117.2 (6)	C10—C9—Cl1	122.5 (4)
C2—C1—S1	124.1 (5)	C11—C10—C9	116.2 (5)
C3—C2—C1	120.3 (7)	C11—C10—C13	119.4 (4)
C3—C2—I1	115.4 (6)	C9—C10—C13	124.4 (5)
C1—C2—I1	124.3 (5)	C12—C11—C10	122.8 (5)
C4—C3—C2	119.8 (9)	C12—C11—H11	118.6
С4—С3—Н3	120.1	C10—C11—H11	118.6
С2—С3—Н3	120.1	C11—C12—C7	120.0 (5)
C3—C4—C5	122.4 (9)	C11—C12—H12	120.0
C3—C4—H4	118.8	C7—C12—H12	120.0
C5—C4—H4	118.8	O2—C13—O1	122.6 (5)
C6—C5—C4	117.2 (9)	O2—C13—C10	126.4 (5)
С6—С5—Н5	121.4	O1—C13—C10	111.0 (5)
C4—C5—H5	121.4		
O4—S1—N1—C7	-58.9 (5)	S1—N1—C7—C8	30.4 (7)
O3—S1—N1—C7	172.4 (4)	S1—N1—C7—C12	-150.9(4)
C1—S1—N1—C7	56.2 (5)	C12—C7—C8—C9	-1.7(8)
O4—S1—C1—C6	-8.9 (5)	N1—C7—C8—C9	177.0 (5)
O3—S1—C1—C6	122.5 (5)	C7—C8—C9—C10	-2.8(8)
N1—S1—C1—C6	-124.7 (5)	C7—C8—C9—Cl1	178.5 (4)
O4—S1—C1—C2	173.7 (5)	C8—C9—C10—C11	5.3 (7)
O3—S1—C1—C2	-54.9 (5)	Cl1—C9—C10—C11	-176.1 (4)
N1—S1—C1—C2	57.9 (5)	C8—C9—C10—C13	-173.7 (5)
C6—C1—C2—C3	0.5 (9)	Cl1—C9—C10—C13	4.9 (7)
S1—C1—C2—C3	177.9 (5)	C9-C10-C11-C12	-3.6(8)
C6-C1-C2-I1	179.7 (4)	C13—C10—C11—C12	175.5 (5)
\$1—C1—C2—I1	-3.0 (7)	C10-C11-C12-C7	-0.7 (8)
C1—C2—C3—C4	-0.6 (11)	C8—C7—C12—C11	3.4 (8)
I1—C2—C3—C4	-179.8 (6)	N1-C7-C12-C11	-175.3 (5)
C2—C3—C4—C5	0.9 (14)	C11—C10—C13—O2	-178.6 (5)
C3—C4—C5—C6	-1.2 (14)	C9—C10—C13—O2	0.3 (9)
	× ,		··· (·)

C4—C5—C6—C1	1.1 (12)	C11—C10—C13—O1	0.3 (7)
C2—C1—C6—C5	-0.9 (10)	C9-C10-C13-O1	179.2 (5)
S1—C1—C6—C5	-178.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1···O2 ⁱ	0.86	2.38	3.214 (6)	162
01—H1 <i>O</i> ···O2 ⁱⁱ	0.82	2.09	2.771 (6)	140

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) -*x*+3/2, *y*+1/2, -*z*+1/2.