organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-1-(Benzyl­oxyimino)­eth­yl]-7-(3-methyl­but-2-en­yl­oxy)-2H-chromen-2-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
*Correspondence e-mail: huiwang@scnu.edu.cn

(Received 7 May 2011; accepted 19 May 2011; online 25 May 2011)

In the title compound, C23H23NO4, the dihedral angle beween the chromen-2-one ring system and the benzene ring is 69.73 (10)° and the mol­ecule adopts an E conformation with respect to the C=N double bond. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur, generating R22(12) loops.

Related literature

For background to the use of Schiff bases as chemosensors, see: Li et al. (2009[Li, H. Y., Gao, S. & Xi, Z. (2009). Inorg. Chem. Commun. 12, 300-303.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23NO4

  • Mr = 377.42

  • Triclinic, [P \overline 1]

  • a = 7.3038 (19) Å

  • b = 11.467 (3) Å

  • c = 12.184 (3) Å

  • α = 92.368 (3)°

  • β = 92.067 (3)°

  • γ = 102.340 (3)°

  • V = 995.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.26 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.978, Tmax = 0.986

  • 5604 measured reflections

  • 3912 independent reflections

  • 2341 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.155

  • S = 1.01

  • 3912 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.43 3.338 (3) 167
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004)[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2004)[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coumarin-derived Schiff bases have attracted attention as colorimetric chemosensors (Li et al., 2009). Herein, we report the crystal structure of the title compound, (I), Fig. 1, obtained by the reaction of 3-acetyl-7-(3-methylbut-2-enyloxy)-2H- chromen-2-one with benzyloxy-amine. Inversion dimers occur in the crystal, being linked by pairs of C—H···O hydrogen bonds (Table 1).

Related literature top

For background to the use of Schiff bases as chemosensors, see: Li et al. (2009).

Experimental top

A mixture of 3-acetyl-7-(3-methylbut-2-enyloxy)-2H-chromen-2-one (1 mmol) and benzyloxy- amine hydrochloride (1.2 mmol) in ethanol (15 ml) was heated at 313 K for 0.5 h, the solution pH was then maintained at a value of 7 by the addition of sodium carbonate(0.5 mmol). The reaction mixture was refluxed for 10 h at 333 K (monitored by TLC). After completion of the reaction, the solvent was removed under a vacuum. The crude product was purified by chromatography (ethyl acetate: petroleum ether = 3:1). The eluate was evaporated to give the title compound as colourless blocks (279 mg, 74%; m. p. 372–374 K). ESI-MS (m / z): [(M+Na)+] 400, [(M+H)+] 378; IR (KBr, cm-1) 3065, 2971, 2877, 1722, 1603, 1491, 1458, 1357, 1259, 1216, 1129, 981, 923, 772; 1H NMR(400 MHz, CDCl3, TMS) delta 7.79 (s, 1H), 7.40 (d, 1H, J = 8.4 Hz), 7.31–7.36 (m, 5H), 6.83 (dd, 1H, J = 2.8, 8.4 Hz), 6.79(d 1H, J = 2.8 Hz), 5.45–5.50 (m, 1H), 5.23 (s, 2H), 4.56(d, 2H, J = 6.8 Hz), 2.27 (s, 3H), 1.80 (s, 3H), 1.76 (s, 3H); 13 C NMR (100 MHz, CDCl3) delta 162.45, 160.08, 155.90, 154.33, 141.40, 137.72, 129.49, 128.96, 128.41, 128.33, 127.97, 127.84,127.42, 121.30, 118.59, 113.57, 112.43, 101.08, 76.21, 65.46, 25.83,18.30,14.61.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing in the title compound.
[Figure 3] Fig. 3. Part of the crystal structure of the title compound showing weak C—H···O hydrogen bonds as dashed lines.
[Figure 4] Fig. 4. The formation of the title compound.
3-[(E)-1-(Benzyloxyimino)ethyl]-7-(3-methylbut-2-enyloxy)- 2H-chromen-2-one top
Crystal data top
C23H23NO4Z = 2
Mr = 377.42F(000) = 430.0
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3038 (19) ÅCell parameters from 1391 reflections
b = 11.467 (3) Åθ = 2.4–24.9°
c = 12.184 (3) ŵ = 0.09 mm1
α = 92.368 (3)°T = 273 K
β = 92.067 (3)°Block, colorless
γ = 102.340 (3)°0.26 × 0.18 × 0.16 mm
V = 995.0 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3912 independent reflections
Radiation source: fine-focus sealed tube2341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 98
Tmin = 0.978, Tmax = 0.986k = 1014
5604 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.1016P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.028
3912 reflectionsΔρmax = 0.18 e Å3
257 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (5)
Crystal data top
C23H23NO4γ = 102.340 (3)°
Mr = 377.42V = 995.0 (5) Å3
Triclinic, P1Z = 2
a = 7.3038 (19) ÅMo Kα radiation
b = 11.467 (3) ŵ = 0.09 mm1
c = 12.184 (3) ÅT = 273 K
α = 92.368 (3)°0.26 × 0.18 × 0.16 mm
β = 92.067 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2341 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.986Rint = 0.032
5604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
3912 reflectionsΔρmin = 0.19 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4410 (2)0.43803 (16)0.26381 (14)0.0548 (5)
O30.59306 (19)0.46642 (13)0.19438 (12)0.0611 (4)
O20.3010 (2)0.10766 (13)0.38943 (12)0.0622 (4)
O10.04470 (18)0.14660 (12)0.45666 (10)0.0492 (4)
O40.50894 (19)0.21552 (13)0.61925 (11)0.0558 (4)
C190.9868 (3)0.6503 (2)0.19649 (18)0.0627 (6)
H190.98210.64830.27260.075*
C181.1555 (3)0.6776 (2)0.1505 (2)0.0776 (8)
H181.26480.69340.19520.093*
C171.1667 (4)0.6820 (3)0.0413 (3)0.0852 (9)
H171.28350.70110.01070.102*
C161.0072 (5)0.6584 (3)0.0255 (2)0.0898 (9)
H161.01490.66160.10140.108*
C150.8327 (4)0.6296 (2)0.0215 (2)0.0743 (7)
H150.72350.61320.02320.089*
C140.8222 (3)0.62545 (18)0.13341 (18)0.0539 (6)
C130.6388 (4)0.5931 (2)0.1861 (3)0.0872 (9)
H13B0.64710.63250.25870.105*
H13A0.54220.61840.14230.105*
C110.3842 (3)0.32488 (19)0.26814 (16)0.0485 (5)
C120.4680 (4)0.2348 (2)0.2070 (2)0.0742 (7)
H12C0.50630.26420.13690.111*
H12A0.37650.16110.19610.111*
H12B0.57500.22140.24860.111*
C30.2208 (3)0.28938 (17)0.33767 (15)0.0449 (5)
C20.1984 (3)0.17731 (18)0.39329 (15)0.0462 (5)
C90.0825 (3)0.21796 (17)0.47168 (14)0.0418 (5)
C40.0943 (3)0.35857 (18)0.35299 (15)0.0481 (5)
H40.10910.43000.31750.058*
C100.0610 (3)0.32596 (17)0.42160 (15)0.0437 (5)
C50.1943 (3)0.39482 (19)0.44254 (17)0.0530 (5)
H50.18390.46800.41040.064*
C60.3389 (3)0.35666 (19)0.50912 (17)0.0529 (5)
H60.42460.40420.52310.064*
C80.2289 (3)0.17562 (18)0.53828 (15)0.0460 (5)
H80.24000.10220.56990.055*
C70.3581 (3)0.24560 (18)0.55642 (15)0.0458 (5)
C200.5503 (3)0.0961 (2)0.65844 (17)0.0564 (6)
H20B0.45760.08780.71500.068*
H20A0.54810.03810.59850.068*
C210.7401 (3)0.07576 (19)0.70411 (16)0.0536 (5)
H210.83900.07940.65500.064*
C220.7839 (3)0.05328 (19)0.80605 (16)0.0516 (5)
C240.6452 (4)0.0473 (3)0.89720 (19)0.0908 (9)
H24C0.52130.06170.86960.136*
H24A0.67380.03040.92680.136*
H24B0.65100.10690.95390.136*
C230.9843 (3)0.0309 (2)0.8392 (2)0.0740 (7)
H23B1.06430.03900.77700.111*
H23C0.99650.08790.89690.111*
H23A1.02000.04840.86480.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0458 (10)0.0545 (12)0.0642 (11)0.0066 (9)0.0195 (8)0.0119 (9)
O30.0547 (9)0.0495 (10)0.0799 (10)0.0063 (7)0.0285 (8)0.0151 (7)
O20.0598 (9)0.0552 (10)0.0791 (10)0.0235 (8)0.0188 (8)0.0198 (8)
O10.0493 (8)0.0467 (9)0.0545 (8)0.0125 (7)0.0135 (6)0.0161 (6)
O40.0584 (9)0.0500 (9)0.0602 (9)0.0102 (7)0.0212 (7)0.0094 (7)
C190.0675 (15)0.0652 (16)0.0569 (13)0.0157 (13)0.0105 (11)0.0086 (11)
C180.0535 (15)0.089 (2)0.0876 (19)0.0105 (14)0.0042 (13)0.0007 (15)
C170.0681 (18)0.089 (2)0.096 (2)0.0059 (15)0.0369 (16)0.0044 (16)
C160.122 (3)0.093 (2)0.0524 (15)0.0134 (19)0.0287 (17)0.0138 (14)
C150.0760 (18)0.0710 (18)0.0716 (16)0.0083 (14)0.0149 (13)0.0084 (13)
C140.0487 (13)0.0434 (13)0.0715 (14)0.0097 (10)0.0176 (11)0.0137 (10)
C130.0692 (17)0.0507 (16)0.150 (3)0.0176 (13)0.0500 (17)0.0331 (16)
C110.0480 (12)0.0480 (13)0.0491 (11)0.0080 (10)0.0081 (9)0.0058 (9)
C120.0839 (18)0.0575 (16)0.0832 (17)0.0131 (13)0.0391 (14)0.0051 (13)
C30.0458 (11)0.0430 (12)0.0453 (10)0.0064 (9)0.0075 (8)0.0072 (9)
C20.0449 (11)0.0469 (13)0.0467 (11)0.0082 (10)0.0057 (9)0.0072 (9)
C90.0435 (11)0.0416 (12)0.0412 (10)0.0108 (9)0.0031 (8)0.0047 (8)
C40.0508 (12)0.0435 (12)0.0489 (11)0.0060 (10)0.0046 (9)0.0111 (9)
C100.0431 (11)0.0433 (12)0.0436 (10)0.0059 (9)0.0032 (8)0.0075 (9)
C50.0536 (13)0.0454 (13)0.0616 (13)0.0110 (10)0.0085 (10)0.0146 (10)
C60.0519 (12)0.0448 (13)0.0649 (13)0.0144 (10)0.0097 (10)0.0085 (10)
C80.0511 (12)0.0427 (12)0.0436 (10)0.0069 (10)0.0064 (9)0.0084 (9)
C70.0465 (11)0.0465 (12)0.0425 (10)0.0042 (9)0.0101 (8)0.0046 (9)
C200.0637 (14)0.0540 (14)0.0522 (12)0.0108 (11)0.0156 (10)0.0106 (10)
C210.0486 (12)0.0603 (14)0.0501 (12)0.0054 (10)0.0072 (9)0.0111 (10)
C220.0539 (13)0.0507 (13)0.0490 (11)0.0066 (10)0.0091 (9)0.0062 (9)
C240.0810 (19)0.136 (3)0.0548 (14)0.0192 (18)0.0014 (13)0.0171 (15)
C230.0656 (16)0.0839 (19)0.0709 (16)0.0066 (14)0.0209 (12)0.0184 (13)
Geometric parameters (Å, º) top
N1—C111.279 (3)C3—C41.354 (3)
N1—O31.4111 (19)C3—C21.459 (3)
O3—C131.428 (3)C9—C81.382 (2)
O2—C21.207 (2)C9—C101.385 (3)
O1—C91.375 (2)C4—C101.428 (3)
O1—C21.377 (2)C4—H40.9300
O4—C71.356 (2)C10—C51.402 (3)
O4—C201.443 (2)C5—C61.363 (3)
C19—C181.353 (3)C5—H50.9300
C19—C141.373 (3)C6—C71.401 (3)
C19—H190.9300C6—H60.9300
C18—C171.338 (3)C8—C71.381 (3)
C18—H180.9300C8—H80.9300
C17—C161.368 (4)C20—C211.488 (3)
C17—H170.9300C20—H20B0.9700
C16—C151.396 (4)C20—H20A0.9700
C16—H160.9300C21—C221.316 (3)
C15—C141.371 (3)C21—H210.9300
C15—H150.9300C22—C241.490 (3)
C14—C131.488 (3)C22—C231.504 (3)
C13—H13B0.9700C24—H24C0.9600
C13—H13A0.9700C24—H24A0.9600
C11—C31.483 (3)C24—H24B0.9600
C11—C121.495 (3)C23—H23B0.9600
C12—H12C0.9600C23—H23C0.9600
C12—H12A0.9600C23—H23A0.9600
C12—H12B0.9600
C11—N1—O3111.18 (16)O1—C9—C10120.44 (16)
N1—O3—C13108.13 (15)C8—C9—C10123.15 (18)
C9—O1—C2123.03 (15)C3—C4—C10122.46 (18)
C7—O4—C20117.49 (15)C3—C4—H4118.8
C18—C19—C14121.5 (2)C10—C4—H4118.8
C18—C19—H19119.2C9—C10—C5117.12 (17)
C14—C19—H19119.2C9—C10—C4117.73 (18)
C17—C18—C19120.6 (3)C5—C10—C4125.15 (18)
C17—C18—H18119.7C6—C5—C10121.29 (19)
C19—C18—H18119.7C6—C5—H5119.4
C18—C17—C16120.4 (2)C10—C5—H5119.4
C18—C17—H17119.8C5—C6—C7119.89 (19)
C16—C17—H17119.8C5—C6—H6120.1
C17—C16—C15119.2 (2)C7—C6—H6120.1
C17—C16—H16120.4C7—C8—C9118.06 (18)
C15—C16—H16120.4C7—C8—H8121.0
C14—C15—C16120.1 (2)C9—C8—H8121.0
C14—C15—H15119.9O4—C7—C8124.63 (18)
C16—C15—H15119.9O4—C7—C6114.90 (17)
C15—C14—C19118.1 (2)C8—C7—C6120.47 (18)
C15—C14—C13121.5 (2)O4—C20—C21107.58 (17)
C19—C14—C13120.3 (2)O4—C20—H20B110.2
O3—C13—C14108.12 (18)C21—C20—H20B110.2
O3—C13—H13B110.1O4—C20—H20A110.2
C14—C13—H13B110.1C21—C20—H20A110.2
O3—C13—H13A110.1H20B—C20—H20A108.5
C14—C13—H13A110.1C22—C21—C20127.4 (2)
H13B—C13—H13A108.4C22—C21—H21116.3
N1—C11—C3113.69 (18)C20—C21—H21116.3
N1—C11—C12124.18 (19)C21—C22—C24124.4 (2)
C3—C11—C12122.1 (2)C21—C22—C23121.23 (19)
C11—C12—H12C109.5C24—C22—C23114.42 (18)
C11—C12—H12A109.5C22—C24—H24C109.5
H12C—C12—H12A109.5C22—C24—H24A109.5
C11—C12—H12B109.5H24C—C24—H24A109.5
H12C—C12—H12B109.5C22—C24—H24B109.5
H12A—C12—H12B109.5H24C—C24—H24B109.5
C4—C3—C2118.98 (17)H24A—C24—H24B109.5
C4—C3—C11122.25 (18)C22—C23—H23B109.5
C2—C3—C11118.75 (17)C22—C23—H23C109.5
O2—C2—O1116.02 (17)H23B—C23—H23C109.5
O2—C2—C3126.66 (18)C22—C23—H23A109.5
O1—C2—C3117.31 (17)H23B—C23—H23A109.5
O1—C9—C8116.41 (16)H23C—C23—H23A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.433.338 (3)167
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H23NO4
Mr377.42
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.3038 (19), 11.467 (3), 12.184 (3)
α, β, γ (°)92.368 (3), 92.067 (3), 102.340 (3)
V3)995.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.978, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5604, 3912, 2341
Rint0.032
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.01
No. of reflections3912
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.433.338 (3)167
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We are grateful to the Science and Technology Plan Project of Guangdong Province (No. 2008B010600008) for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H. Y., Gao, S. & Xi, Z. (2009). Inorg. Chem. Commun. 12, 300–303.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds