metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m769-m770

Bis(2,6-di­amino­pyridinium) bis­­(pyridine-2,6-di­carboxyl­ato)zincate(II) monohydrate

aDepartment of Chemistry,Yazd Branch, Islamic Azad University, Yazd, Iran, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 10 May 2011; accepted 13 May 2011; online 20 May 2011)

In the title hydrated mol­ecular salt, (C5H8N3)2[Zn(C7H3NO4)2]·H2O, the ZnII atom is coordinated by two O,N,O′-tridentate pyridine-2,6-dicarboxyl­ate dianions, generating a slightly distorted trans-ZnN2O4 octa­hedral coordination geometry for the metal ion. In the crystal, a network of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving the cations, anions and water mol­ecules results in a three-dimensional network.

Related literature

For isostructural mol­ecular salts with Co and Ni, see: Moghimi et al. (2002a[Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, K. K. (2002a). J. Chem. Res. pp. 477-479.],b[Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, K. K. (2002b). Can. J. Chem. 80, 1687-1696.]). For related sturctures, see: Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]); Ranjbar et al. (2002[Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci. (Jpn), 18, 219-220.]); Moghimi et al. (2005[Moghimi, A., Sharif, M. A., Shokrollahic, A., Shamsipurc, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H8N3)2[Zn(C7H3NO4)2]·H2O

  • Mr = 633.9

  • Monoclinic, P 21 /c

  • a = 8.2940 (3) Å

  • b = 13.2368 (4) Å

  • c = 23.8063 (7) Å

  • β = 104.995 (3)°

  • V = 2524.60 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 120 K

  • 0.26 × 0.19 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Oxfordshire, England.]) Tmin = 0.142, Tmax = 1

  • 66673 measured reflections

  • 4502 independent reflections

  • 4175 reflections with I > 3σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.077

  • S = 1.61

  • 4502 reflections

  • 415 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.1725 (10)
Zn1—O3 2.1886 (11)
Zn1—O5 2.2595 (9)
Zn1—O7 2.2372 (8)
Zn1—N1 2.0107 (11)
Zn1—N2 2.0001 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.96 2.49 3.1769 (16) 129
C18—H18⋯O4 0.96 2.59 3.3556 (16) 137
C22—H22⋯O3ii 0.96 2.59 3.3789 (17) 139
N3—H3n⋯O8ii 0.854 (13) 1.948 (13) 2.7845 (13) 166.0 (16)
N4—H4n⋯O4iii 0.845 (17) 2.096 (17) 2.9287 (16) 168.4 (14)
N4—H4m⋯O7ii 0.838 (14) 2.357 (14) 3.1874 (14) 171.0 (17)
N5—H5n⋯O4 0.878 (15) 2.206 (14) 3.0600 (14) 164.2 (15)
N5—H5m⋯O9iv 0.872 (15) 2.066 (15) 2.9203 (15) 166.3 (17)
N6—H6n⋯O6v 0.884 (14) 1.763 (14) 2.6381 (13) 169.9 (15)
N7—H7n⋯O2vi 0.866 (15) 2.032 (15) 2.8818 (15) 166.8 (17)
N8—H8n⋯O2vii 0.840 (18) 2.085 (18) 2.9206 (17) 172.4 (17)
O9—H9o⋯O1v 0.83 (2) 2.06 (2) 2.8936 (14) 174 (2)
O9—H9p⋯O8viii 0.866 (19) 1.928 (19) 2.7462 (14) 157.1 (18)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) -x+2, -y+1, -z+1; (viii) x-1, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2007)[Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.]; molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006[Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.].

Supporting information


Comment top

The title compound, (I), consists of a [Zn(pydc)2]2- dianion, two (pydaH)+ cations and one uncoordinated water molecule (Fig. 1) (pydcH2 = pyridine-2,6-dicarboxylic acid; pyda = 2,6-diaminopyridine), and is isostructural with Co (Moghimi et al. 2002a) and Ni (Moghimi et al. 2002b) compounds. ZnII atom in the title compound is six-coordinated by two (pydc)2– anions and the geometry of the resulting ZnN2O4 coordination can be described as distorted octahedral. The N atoms occupy the axial positions. The N1—Zn1—N2 angle (175.74 (5)°) deviates from linearity. The dihedral angle between the mean planes of the pyridine rings (A1 and A2, defined in Fig. 1) is 75.24 (6)°. Zn—N distances of (2.0011 (16) and 2.0107 (11) Å and Zn—O distances (Zn1—O1: 2.1725 (10), Zn1—O3: 2.1886 (11), Zn1—O5: 2.2595 (9) and Zn1—O7: 2.2372 (8) Å) are consistent with those found in (acrH)[Zn(pydc)(pydcH)].5H2O (Tabatabaee et al. 2009), (pydaH)[Zn(pydc)(pydcH)]. 3H2O (Ranjbar et al.. 2002) and(creatH)[Zn(pydc)(pydcH)]. 4H2O (Moghimi et al. 2005). There are some hydrogen bonding interactions such as O—H···O, N—H···O and C—H···O between cations, anions and uncoordinated water molecule (Fig 2, Table 1). As it is seen in Fig. 3, there are also π-π stacking interactions between the aromatic rings with centroid-centroiddistances of 3.5813 (8) Åfor Cg6···Cg6 (defined by atoms N2/C8 /C12, symmetry code: (2 - x,-y,1 - z) and 3.6421 (8) Å for Cg7···Cg8 (Cg7: N3/C15—C19 and Cg8:N6/ C20—C24, symmetry code: x, y, z).Ion pairing, hydrogen bonding, ππ stacking and van der Waals interactions are also effective for packingof the crystal structure. These interactions lead to formation of a three-dimensional supramolecular structure.

Related literature top

For isostructural molecular salts with Co and Ni, see: Moghimi et al. (2002a,b). For related sturctures, see: Tabatabaee et al. (2009); Ranjbar et al. (2002); Moghimi et al. (2005).

Experimental top

An aqueous solution of ZnSO4.7H2O, (0.288 g, 1 mmol) in water (10 ml) was added to a stirring solution of (20 ml)pyridine-2,6-dicarboxylic acid (0.167 g, 1 mmol) and 2,6-diaminopyridine (0.11 g, 1 mmol). The reaction mixture was stirred at 298 K for 3 h. Colorless blocks of (I) were obtained after few days at 277 K.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms attached to carbon atoms were kept in ideal positions with C–H distance 0.96 Å during the refinement. The position of hydrogen atoms of N atoms were refined with a restrictionon the N—H bond length 0.87 Å with σ of 0.02. The O–H distances were restrained to 0.84 Å with σ of 0.02. All H atoms were refined as riding with thermal displacement coefficients Uiso(H) set to 1.5Ueq(O) for the water molecule and to to 1.2Ueq(C,N) for the CH–, NH– and NH2-groups.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2007); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2007).

Figures top
[Figure 1] Fig. 1. A view of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. fragment of crystal packing. The strongest N—H···O and O—H···O interactions(with H···A distance up to 2.1 Å) interconnect all molecules of the structureinto three-dimensional network.
[Figure 3] Fig. 3. Representation π-π stacking between aromatic rings.
Bis(2,6-diaminopyridinium) bis(pyridine-2,6-dicarboxylato)zincate(II) monohydrate top
Crystal data top
(C5H8N3)2[Zn(C7H3NO4)2]·H2OF(000) = 1304
Mr = 633.9Dx = 1.667 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 46751 reflections
a = 8.2940 (3) Åθ = 3.3–67.0°
b = 13.2368 (4) ŵ = 1.99 mm1
c = 23.8063 (7) ÅT = 120 K
β = 104.995 (3)°Block, colourless
V = 2524.60 (14) Å30.26 × 0.19 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
4502 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4175 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 3.8°
Rotation method data acquisition using ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.142, Tmax = 1l = 2828
66673 measured reflections
Refinement top
Refinement on F260 constraints
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 1.61(Δ/σ)max = 0.002
4502 reflectionsΔρmax = 0.20 e Å3
415 parametersΔρmin = 0.32 e Å3
12 restraints
Crystal data top
(C5H8N3)2[Zn(C7H3NO4)2]·H2OV = 2524.60 (14) Å3
Mr = 633.9Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.2940 (3) ŵ = 1.99 mm1
b = 13.2368 (4) ÅT = 120 K
c = 23.8063 (7) Å0.26 × 0.19 × 0.10 mm
β = 104.995 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
4502 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4175 reflections with I > 3σ(I)
Tmin = 0.142, Tmax = 1Rint = 0.031
66673 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.61Δρmax = 0.20 e Å3
4502 reflectionsΔρmin = 0.32 e Å3
415 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction (2009), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73417 (2)0.251250 (11)0.490469 (7)0.01551 (8)
O10.85536 (12)0.30784 (7)0.42606 (4)0.0190 (3)
O20.90680 (12)0.45264 (7)0.38497 (4)0.0203 (3)
O30.61404 (12)0.27022 (7)0.56153 (4)0.0175 (3)
O40.56144 (12)0.38883 (7)0.62210 (4)0.0185 (3)
O50.49822 (12)0.22838 (7)0.41879 (4)0.0194 (3)
O60.38232 (13)0.10376 (7)0.35720 (4)0.0266 (3)
O70.96377 (11)0.19455 (7)0.55438 (4)0.0182 (3)
O81.05526 (12)0.05147 (7)0.60233 (4)0.0213 (3)
N10.73813 (13)0.40157 (8)0.50291 (5)0.0140 (3)
N20.71778 (13)0.10107 (8)0.48158 (4)0.0141 (3)
N30.69954 (14)0.60578 (8)0.79837 (5)0.0165 (3)
N40.67598 (16)0.73531 (9)0.86105 (5)0.0197 (4)
N50.74582 (15)0.47174 (9)0.74142 (5)0.0222 (4)
N60.84303 (14)0.80163 (8)0.72445 (5)0.0165 (3)
N70.78444 (15)0.93207 (9)0.77987 (5)0.0230 (4)
N80.87253 (16)0.67785 (9)0.66049 (5)0.0229 (4)
C10.79561 (15)0.46127 (9)0.46716 (5)0.0149 (4)
C20.79764 (16)0.56544 (10)0.47355 (5)0.0174 (4)
C30.73738 (16)0.60625 (10)0.51793 (6)0.0179 (4)
C40.67565 (15)0.54303 (10)0.55434 (5)0.0165 (4)
C50.67867 (15)0.44000 (9)0.54554 (5)0.0143 (4)
C60.85813 (15)0.40324 (10)0.42179 (5)0.0163 (4)
C70.61279 (15)0.35991 (9)0.58001 (5)0.0145 (4)
C80.59296 (16)0.06081 (9)0.44044 (5)0.0151 (4)
C90.56638 (16)0.04242 (10)0.43691 (5)0.0170 (4)
C100.66832 (16)0.10379 (10)0.47856 (6)0.0180 (4)
C110.79717 (16)0.06116 (10)0.52144 (6)0.0169 (4)
C120.82002 (16)0.04249 (10)0.52096 (5)0.0145 (4)
C130.48221 (16)0.13793 (10)0.40166 (5)0.0173 (4)
C140.95791 (16)0.10108 (10)0.56312 (5)0.0162 (4)
C150.62074 (16)0.69111 (10)0.80890 (5)0.0169 (4)
C160.48878 (17)0.72880 (11)0.76506 (6)0.0204 (4)
C170.44414 (17)0.67788 (10)0.71250 (6)0.0222 (4)
C180.52517 (17)0.59131 (10)0.70276 (6)0.0200 (4)
C190.65634 (16)0.55427 (10)0.74686 (5)0.0170 (4)
C200.88001 (16)0.85182 (10)0.77596 (5)0.0170 (4)
C211.01211 (17)0.81712 (10)0.82058 (6)0.0197 (4)
C221.09920 (18)0.73294 (11)0.81063 (6)0.0219 (4)
C231.05885 (17)0.68247 (10)0.75763 (6)0.0214 (4)
C240.92679 (17)0.71923 (11)0.71358 (6)0.0179 (4)
O90.13470 (16)0.86262 (8)0.64907 (5)0.0345 (4)
H20.8395840.6082250.4479890.0209*
H30.7382560.6780950.5235160.0215*
H40.6321370.5704230.5847680.0198*
H90.4793640.0709430.4063310.0204*
H100.650060.1754460.4778240.0216*
H110.8685030.1026030.5506460.0203*
H160.4302280.7886610.7711810.0245*
H170.3541280.7036440.6819510.0266*
H180.4915510.5570350.6660370.024*
H211.042040.8509640.8574910.0236*
H221.1903560.7085680.8412360.0263*
H231.1203250.6238480.7515280.0257*
H3n0.7811 (18)0.5828 (12)0.8249 (6)0.0199*
H4n0.619 (2)0.7832 (12)0.8695 (7)0.0237*
H4m0.7661 (19)0.7184 (14)0.8843 (7)0.0237*
H5n0.711 (2)0.4411 (13)0.7078 (6)0.0267*
H5m0.798 (2)0.4391 (13)0.7727 (7)0.0267*
H6n0.7610 (18)0.8265 (12)0.6964 (6)0.0198*
H7n0.805 (2)0.9661 (13)0.8120 (6)0.0276*
H7m0.701 (2)0.9456 (14)0.7516 (7)0.0276*
H8n0.933 (2)0.6358 (12)0.6492 (7)0.0275*
H8m0.787 (2)0.7089 (14)0.6359 (7)0.0275*
H9o0.130 (3)0.8128 (14)0.6273 (9)0.0517*
H9p0.100 (3)0.9126 (14)0.6256 (9)0.0517*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02022 (13)0.00980 (13)0.01659 (13)0.00032 (6)0.00492 (9)0.00079 (5)
O10.0250 (5)0.0150 (4)0.0187 (4)0.0002 (4)0.0087 (4)0.0008 (3)
O20.0226 (5)0.0217 (5)0.0178 (4)0.0023 (4)0.0075 (4)0.0046 (4)
O30.0208 (5)0.0134 (4)0.0190 (5)0.0020 (4)0.0066 (4)0.0013 (3)
O40.0212 (5)0.0190 (5)0.0163 (4)0.0019 (4)0.0066 (4)0.0023 (3)
O50.0217 (5)0.0151 (4)0.0191 (5)0.0023 (4)0.0013 (4)0.0006 (4)
O60.0279 (5)0.0220 (5)0.0223 (5)0.0004 (4)0.0070 (4)0.0007 (4)
O70.0189 (5)0.0142 (4)0.0196 (4)0.0009 (3)0.0018 (3)0.0017 (3)
O80.0203 (5)0.0185 (5)0.0204 (5)0.0008 (4)0.0033 (4)0.0003 (4)
N10.0143 (5)0.0125 (6)0.0141 (5)0.0004 (4)0.0017 (4)0.0007 (4)
N20.0156 (5)0.0123 (5)0.0146 (5)0.0007 (4)0.0044 (4)0.0004 (4)
N30.0164 (6)0.0170 (5)0.0153 (5)0.0016 (4)0.0025 (4)0.0005 (4)
N40.0209 (6)0.0189 (5)0.0190 (6)0.0047 (5)0.0044 (5)0.0023 (4)
N50.0288 (7)0.0187 (6)0.0184 (6)0.0038 (5)0.0045 (5)0.0021 (4)
N60.0173 (6)0.0170 (5)0.0142 (5)0.0004 (4)0.0024 (4)0.0006 (4)
N70.0262 (7)0.0201 (6)0.0207 (6)0.0027 (5)0.0024 (5)0.0064 (5)
N80.0235 (7)0.0246 (6)0.0206 (6)0.0001 (5)0.0055 (5)0.0076 (5)
C10.0131 (6)0.0156 (6)0.0146 (6)0.0002 (5)0.0012 (5)0.0022 (5)
C20.0165 (6)0.0160 (6)0.0179 (6)0.0003 (5)0.0009 (5)0.0037 (5)
C30.0180 (6)0.0114 (6)0.0210 (6)0.0005 (5)0.0009 (5)0.0009 (5)
C40.0149 (6)0.0166 (6)0.0161 (6)0.0006 (5)0.0007 (5)0.0021 (5)
C50.0119 (6)0.0162 (6)0.0131 (6)0.0003 (5)0.0000 (4)0.0015 (5)
C60.0146 (6)0.0182 (6)0.0147 (6)0.0009 (5)0.0015 (5)0.0012 (5)
C70.0129 (6)0.0155 (6)0.0136 (6)0.0012 (5)0.0004 (5)0.0014 (5)
C80.0151 (6)0.0167 (6)0.0135 (5)0.0008 (5)0.0037 (5)0.0014 (4)
C90.0167 (6)0.0169 (6)0.0169 (6)0.0023 (5)0.0035 (5)0.0033 (5)
C100.0204 (7)0.0118 (6)0.0226 (6)0.0015 (5)0.0071 (5)0.0006 (5)
C110.0171 (7)0.0161 (6)0.0174 (6)0.0016 (5)0.0041 (5)0.0015 (5)
C120.0142 (6)0.0156 (6)0.0137 (6)0.0014 (5)0.0036 (5)0.0001 (5)
C130.0175 (7)0.0174 (6)0.0168 (6)0.0005 (5)0.0040 (5)0.0006 (5)
C140.0164 (6)0.0164 (6)0.0162 (6)0.0000 (5)0.0050 (5)0.0012 (5)
C150.0168 (7)0.0169 (6)0.0189 (6)0.0015 (5)0.0082 (5)0.0010 (5)
C160.0182 (7)0.0201 (6)0.0231 (7)0.0035 (6)0.0058 (5)0.0006 (5)
C170.0174 (7)0.0270 (8)0.0206 (6)0.0006 (5)0.0021 (5)0.0029 (5)
C180.0202 (7)0.0243 (7)0.0155 (6)0.0022 (5)0.0045 (5)0.0007 (5)
C190.0183 (6)0.0171 (6)0.0172 (6)0.0034 (5)0.0073 (5)0.0010 (5)
C200.0184 (7)0.0165 (6)0.0174 (6)0.0035 (5)0.0071 (5)0.0014 (5)
C210.0199 (7)0.0232 (7)0.0150 (6)0.0038 (5)0.0028 (5)0.0018 (5)
C220.0172 (7)0.0251 (7)0.0219 (7)0.0007 (6)0.0020 (5)0.0037 (5)
C230.0185 (7)0.0214 (7)0.0245 (7)0.0020 (5)0.0061 (5)0.0004 (5)
C240.0173 (7)0.0188 (6)0.0194 (6)0.0038 (5)0.0082 (5)0.0016 (5)
O90.0590 (8)0.0185 (5)0.0210 (5)0.0045 (5)0.0017 (5)0.0002 (4)
Geometric parameters (Å, º) top
Zn1—O12.1725 (10)N8—H8m0.895 (15)
Zn1—O32.1886 (11)C1—C21.3868 (18)
Zn1—O52.2595 (9)C1—C61.5216 (19)
Zn1—O72.2372 (8)C2—C31.390 (2)
Zn1—N12.0107 (11)C2—H20.96
Zn1—N22.0001 (11)C3—C41.394 (2)
O1—C61.2676 (16)C3—H30.96
O2—C61.2418 (17)C4—C51.3810 (18)
O3—C71.2671 (16)C4—H40.96
O4—C71.2460 (16)C5—C71.5256 (18)
O5—C131.2607 (16)C8—C91.3832 (18)
O6—C131.2481 (15)C8—C131.5163 (17)
O7—C141.2577 (15)C9—C101.3871 (17)
O8—C141.2508 (14)C9—H90.96
N1—C11.3364 (18)C10—C111.3920 (17)
N1—C51.3383 (18)C10—H100.96
N2—C81.3380 (15)C11—C121.3855 (18)
N2—C121.3370 (15)C11—H110.96
N3—C151.3604 (18)C12—C141.5240 (16)
N3—C191.3672 (16)C15—C161.3945 (17)
N3—H3n0.854 (13)C16—C171.3846 (19)
N4—C151.3413 (17)C16—H160.96
N4—H4n0.845 (17)C17—C181.378 (2)
N4—H4m0.838 (14)C17—H170.96
N5—C191.3457 (18)C18—C191.3912 (17)
N5—H5n0.878 (15)C18—H180.96
N5—H5m0.872 (15)C20—C211.3920 (17)
N6—C201.3581 (16)C21—C221.381 (2)
N6—C241.3536 (18)C21—H210.96
N6—H6n0.884 (14)C22—C231.390 (2)
N7—C201.3429 (18)C22—H220.96
N7—H7n0.866 (15)C23—C241.3934 (17)
N7—H7m0.850 (14)C23—H230.96
N8—C241.3437 (17)O9—H9o0.83 (2)
N8—H8n0.840 (18)O9—H9p0.866 (19)
O1—Zn1—O3153.16 (4)O1—C6—O2126.67 (13)
O1—Zn1—O588.95 (4)O1—C6—C1115.43 (12)
O1—Zn1—O797.34 (4)O2—C6—C1117.90 (11)
O1—Zn1—N176.69 (4)O3—C7—O4127.03 (12)
O1—Zn1—N2107.41 (4)O3—C7—C5115.34 (11)
O3—Zn1—O596.92 (4)O4—C7—C5117.62 (11)
O3—Zn1—O789.46 (3)N2—C8—C9121.25 (11)
O3—Zn1—N176.46 (4)N2—C8—C13114.18 (11)
O3—Zn1—N299.43 (4)C9—C8—C13124.49 (10)
O5—Zn1—O7152.52 (3)C8—C9—C10118.50 (11)
O5—Zn1—N1102.81 (4)C8—C9—H9120.7524
O5—Zn1—N276.41 (4)C10—C9—H9120.7525
O7—Zn1—N1104.67 (3)C9—C10—C11119.81 (12)
O7—Zn1—N276.18 (3)C9—C10—H10120.0969
N1—Zn1—N2175.74 (5)C11—C10—H10120.0967
Zn1—O1—C6114.92 (9)C10—C11—C12118.43 (11)
Zn1—O3—C7114.97 (9)C10—C11—H11120.7863
Zn1—O5—C13111.69 (7)C12—C11—H11120.7859
Zn1—O7—C14112.33 (7)N2—C12—C11121.11 (10)
Zn1—N1—C1119.10 (9)N2—C12—C14113.48 (11)
Zn1—N1—C5119.51 (9)C11—C12—C14125.41 (10)
C1—N1—C5121.36 (11)O5—C13—O6127.57 (11)
Zn1—N2—C8119.46 (8)O5—C13—C8116.49 (10)
Zn1—N2—C12119.26 (8)O6—C13—C8115.91 (11)
C8—N2—C12120.83 (11)O7—C14—O8126.50 (11)
C15—N3—C19123.53 (10)O7—C14—C12116.50 (10)
C15—N3—H3n119.1 (11)O8—C14—C12116.99 (11)
C19—N3—H3n117.4 (11)N3—C15—N4117.86 (11)
C15—N4—H4n118.0 (10)N3—C15—C16118.72 (12)
C15—N4—H4m121.9 (12)N4—C15—C16123.41 (13)
H4n—N4—H4m120.0 (16)C15—C16—C17118.47 (13)
C19—N5—H5n113.8 (11)C15—C16—H16120.7643
C19—N5—H5m118.9 (12)C17—C16—H16120.7632
H5n—N5—H5m121.5 (15)C16—C17—C18121.93 (12)
C20—N6—C24124.03 (10)C16—C17—H17119.0364
C20—N6—H6n116.7 (10)C18—C17—H17119.0372
C24—N6—H6n119.3 (10)C17—C18—C19119.09 (12)
C20—N7—H7n119.2 (11)C17—C18—H18120.4552
C20—N7—H7m119.1 (12)C19—C18—H18120.4557
H7n—N7—H7m121.5 (16)N3—C19—N5117.91 (10)
C24—N8—H8n119.2 (10)N3—C19—C18118.26 (12)
C24—N8—H8m116.3 (11)N5—C19—C18123.81 (12)
H8n—N8—H8m122.5 (16)N6—C20—N7116.75 (11)
N1—C1—C2120.95 (12)N6—C20—C21118.49 (12)
N1—C1—C6113.37 (11)N7—C20—C21124.76 (12)
C2—C1—C6125.67 (12)C20—C21—C22118.59 (12)
C1—C2—C3118.25 (13)C20—C21—H21120.7048
C1—C2—H2120.8742C22—C21—H21120.7055
C3—C2—H2120.873C21—C22—C23121.98 (12)
C2—C3—C4120.10 (12)C21—C22—H22119.0091
C2—C3—H3119.9475C23—C22—H22119.0085
C4—C3—H3119.949C22—C23—C24118.24 (13)
C3—C4—C5118.32 (13)C22—C23—H23120.8827
C3—C4—H4120.8394C24—C23—H23120.881
C5—C4—H4120.8387N6—C24—N8116.41 (11)
N1—C5—C4121.00 (12)N6—C24—C23118.68 (12)
N1—C5—C7113.41 (11)N8—C24—C23124.90 (13)
C4—C5—C7125.55 (12)H9o—O9—H9p104.4 (19)
O3—Zn1—O1—C66.33 (14)Zn1—N1—C1—C2178.80 (9)
O5—Zn1—O1—C697.02 (9)Zn1—N1—C1—C62.24 (14)
O7—Zn1—O1—C6109.82 (9)C5—N1—C1—C20.87 (19)
N1—Zn1—O1—C66.41 (9)C5—N1—C1—C6179.83 (11)
N2—Zn1—O1—C6172.42 (9)Zn1—N1—C5—C4178.36 (9)
O1—Zn1—O3—C74.88 (14)Zn1—N1—C5—C70.20 (14)
O5—Zn1—O3—C7106.37 (9)C1—N1—C5—C40.43 (19)
O7—Zn1—O3—C7100.44 (9)C1—N1—C5—C7177.72 (11)
N1—Zn1—O3—C74.80 (9)Zn1—N2—C8—C9172.85 (10)
N2—Zn1—O3—C7176.33 (9)Zn1—N2—C8—C134.06 (14)
O1—Zn1—O5—C1398.37 (9)C12—N2—C8—C90.59 (19)
O3—Zn1—O5—C13107.90 (9)C12—N2—C8—C13176.32 (11)
O7—Zn1—O5—C135.62 (13)Zn1—N2—C12—C11170.43 (10)
N1—Zn1—O5—C13174.47 (9)Zn1—N2—C12—C149.58 (14)
N2—Zn1—O5—C139.83 (9)C8—N2—C12—C111.85 (19)
O1—Zn1—O7—C14119.53 (9)C8—N2—C12—C14178.14 (11)
O3—Zn1—O7—C1486.52 (9)N1—C1—C2—C30.37 (19)
O5—Zn1—O7—C1417.54 (13)C6—C1—C2—C3179.19 (12)
N1—Zn1—O7—C14162.37 (9)N1—C1—C6—O13.56 (16)
N2—Zn1—O7—C1413.33 (8)N1—C1—C6—O2176.76 (11)
O1—Zn1—N1—C14.42 (9)C2—C1—C6—O1175.34 (12)
O1—Zn1—N1—C5177.61 (10)C2—C1—C6—O24.34 (19)
O3—Zn1—N1—C1175.54 (10)C1—C2—C3—C40.54 (19)
O3—Zn1—N1—C52.43 (9)C2—C3—C4—C50.96 (19)
O5—Zn1—N1—C181.39 (10)C3—C4—C5—N10.48 (19)
O5—Zn1—N1—C596.58 (10)C3—C4—C5—C7178.40 (12)
O7—Zn1—N1—C198.66 (10)N1—C5—C7—O34.10 (16)
O7—Zn1—N1—C583.38 (10)N1—C5—C7—O4177.08 (11)
O1—Zn1—N2—C882.06 (10)C4—C5—C7—O3173.95 (12)
O1—Zn1—N2—C12105.56 (10)C4—C5—C7—O44.86 (19)
O3—Zn1—N2—C897.37 (10)N2—C8—C9—C102.52 (19)
O3—Zn1—N2—C1275.02 (10)C13—C8—C9—C10174.06 (12)
O5—Zn1—N2—C82.46 (9)N2—C8—C13—O513.36 (17)
O5—Zn1—N2—C12169.93 (10)N2—C8—C13—O6168.57 (12)
O7—Zn1—N2—C8175.54 (10)C9—C8—C13—O5163.43 (13)
O7—Zn1—N2—C1212.07 (9)C9—C8—C13—O614.64 (19)
Zn1—O1—C6—O2173.25 (11)C8—C9—C10—C112.1 (2)
Zn1—O1—C6—C17.10 (14)C9—C10—C11—C120.2 (2)
Zn1—O3—C7—O4175.28 (11)C10—C11—C12—N22.2 (2)
Zn1—O3—C7—C56.04 (14)C10—C11—C12—C14177.76 (12)
Zn1—O5—C13—O6167.46 (12)N2—C12—C14—O73.18 (17)
Zn1—O5—C13—C814.74 (14)N2—C12—C14—O8177.85 (11)
Zn1—O7—C14—O8168.70 (11)C11—C12—C14—O7176.81 (13)
Zn1—O7—C14—C1212.44 (14)C11—C12—C14—O82.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.962.493.1769 (16)129
C18—H18···O40.962.593.3556 (16)137
C22—H22···O3ii0.962.593.3789 (17)139
N3—H3n···O8ii0.854 (13)1.948 (13)2.7845 (13)166.0 (16)
N4—H4n···O4iii0.845 (17)2.096 (17)2.9287 (16)168.4 (14)
N4—H4m···O7ii0.838 (14)2.357 (14)3.1874 (14)171.0 (17)
N5—H5n···O40.878 (15)2.206 (14)3.0600 (14)164.2 (15)
N5—H5m···O9iv0.872 (15)2.066 (15)2.9203 (15)166.3 (17)
N6—H6n···O6v0.884 (14)1.763 (14)2.6381 (13)169.9 (15)
N7—H7n···O2vi0.866 (15)2.032 (15)2.8818 (15)166.8 (17)
N8—H8n···O2vii0.840 (18)2.085 (18)2.9206 (17)172.4 (17)
O9—H9o···O1v0.83 (2)2.06 (2)2.8936 (14)174 (2)
O9—H9p···O8viii0.866 (19)1.928 (19)2.7462 (14)157.1 (18)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z+1/2; (vii) x+2, y+1, z+1; (viii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H8N3)2[Zn(C7H3NO4)2]·H2O
Mr633.9
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.2940 (3), 13.2368 (4), 23.8063 (7)
β (°) 104.995 (3)
V3)2524.60 (14)
Z4
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.26 × 0.19 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.142, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
66673, 4502, 4175
Rint0.031
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.077, 1.61
No. of reflections4502
No. of parameters415
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2007), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) top
Zn1—O12.1725 (10)Zn1—O72.2372 (8)
Zn1—O32.1886 (11)Zn1—N12.0107 (11)
Zn1—O52.2595 (9)Zn1—N22.0001 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.962.493.1769 (16)129
C18—H18···O40.962.593.3556 (16)137
C22—H22···O3ii0.962.593.3789 (17)139
N3—H3n···O8ii0.854 (13)1.948 (13)2.7845 (13)166.0 (16)
N4—H4n···O4iii0.845 (17)2.096 (17)2.9287 (16)168.4 (14)
N4—H4m···O7ii0.838 (14)2.357 (14)3.1874 (14)171.0 (17)
N5—H5n···O40.878 (15)2.206 (14)3.0600 (14)164.2 (15)
N5—H5m···O9iv0.872 (15)2.066 (15)2.9203 (15)166.3 (17)
N6—H6n···O6v0.884 (14)1.763 (14)2.6381 (13)169.9 (15)
N7—H7n···O2vi0.866 (15)2.032 (15)2.8818 (15)166.8 (17)
N8—H8n···O2vii0.840 (18)2.085 (18)2.9206 (17)172.4 (17)
O9—H9o···O1v0.83 (2)2.06 (2)2.8936 (14)174 (2)
O9—H9p···O8viii0.866 (19)1.928 (19)2.7462 (14)157.1 (18)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z+1/2; (vii) x+2, y+1, z+1; (viii) x1, y+1, z.
 

Acknowledgements

This research was supported by the Islamic Azad University, Yazd Branch (grant title: Synthesis and characterization of new complexes of zinc, nickel and cadmium with polynitro­gen-containing ligands) and the project Praemium Academiae of the Academy of Sciences of the Czech Republic.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationMoghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, K. K. (2002a). J. Chem. Res. pp. 477–479.  CrossRef Google Scholar
First citationMoghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, K. K. (2002b). Can. J. Chem. 80, 1687–1696.  CrossRef CAS Google Scholar
First citationMoghimi, A., Sharif, M. A., Shokrollahic, A., Shamsipurc, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Oxfordshire, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRanjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci. (Jpn), 18, 219–220.  CrossRef CAS Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m769-m770
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds