organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 4-oxo-2,3,4,9-tetrahydro-1*H*-carbazole-3-carboxylate

Cevher Gündoğdu,^a Mustafa Göçmentürk,^a Yavuz Ergün,^a Barış Tercan^b and Tuncer Hökelek^c*

^aDepartment of Chemistry, Faculty of Arts and Sciences, Dokuz Eylül University, Tinaztepe, 35160 Buca, Izmir, Turkey, ^bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 13 May 2011; accepted 17 May 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.102; data-to-parameter ratio = 16.9.

In the title compound, $C_{15}H_{15}NO_3$, the carbazole skeleton includes an ethoxycarbonyl group at the 3-position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 0.89 (4)°. The cyclohexenone ring has an envelope conformation. In the crystal, intermolecular N-H···O and C-H···O hydrogen bonds link the molecules into a three dimensional network. A weak C-H··· π interaction is also observed.

Related literature

For background to tetrahydrocarbazole systems present in indole-type alkaloids, see: Saxton (1983). For related structures, see: Hökelek *et al.* (1994, 1998, 1999, 2009); Patır *et al.* (1997); Hökelek & Patır (1999); Çaylak *et al.* (2007); Uludağ *et al.* (2009). For the use of 4-oxo-tetrahydrocarbazole in the syntheses of biologically active species, see: Kumar *et al.* (2008); Ergün *et al.* (2002); Li & Vince (2006). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $C_{15}H_{15}NO_3$ $M_r = 257.28$ Orthorhombic, *Pbca* a = 9.1057 (3) Å b = 12.7031 (4) Å c = 21.3874 (5) Å $V = 2473.89 (13) \text{ Å}^{3}$ Z = 8 Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.960, T_{max} = 0.981$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.102 & \text{independent and constrained} \\ S &= 1.04 & \text{refinement} \\ 2993 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.28 \text{ e } \text{\AA}^{-3} \\ 177 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.25 \text{ e } \text{\AA}^{-3} \end{split}$$

T = 100 K

 $R_{\rm int} = 0.033$

 $0.43 \times 0.26 \times 0.20 \text{ mm}$

12029 measured reflections

2993 independent reflections

2258 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C5A/C5-C8,C8A ring.

16) 2.044 (16)) 2.9103 (15)	166.0 (15)
2.41	3.4053 (17)	173
2.86	3.7358 (15)	148
	$\begin{array}{c} 16) & 2.044 \ (16) \\ 2.41 \\ 2.86 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffract-ometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5881).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913– o3914.
- Ergün, Y., Patır, S. & Okay, G. (2002). J. Heterocycl. Chem., 39, 315-317.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702–o1703.
- Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297– 1299.
- Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.
- Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.
- Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116. Kumar, A., Singh, D., Jadhav, A., Pandya, N. D., Panmand, S. D. & Thakur,
- R. G. (2008). US Patent Appl. US 2008/0009635 A1.
- Li, X. & Vince, R. (2006). Bioorg. Med. Chem. 14, 2942-2955.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239-1242.
- Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, 0595–0596.

supporting information

Acta Cryst. (2011). E67, 01470–01471 [doi:10.1107/S1600536811018678]

Ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate

Cevher Gündoğdu, Mustafa Göçmentürk, Yavuz Ergün, Barış Tercan and Tuncer Hökelek

S1. Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek *et al.*, 1994; Patır *et al.*, 1997; Hökelek *et al.*, 1998; Hökelek *et al.*, 1999; Hökelek & Patır, 1999). Although 4-oxo-tetrahydrocarbazoles rarely occur in nature, they have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, 4-oxo-tetrahydrocarbazole was used in the syntheses of antiemetic drugs, central nervous system active drugs and NPY-1 antagonists (Kumar *et al.*, 2008). They have also been used in the syntheses of indole alkaloids (Ergün *et al.*, 2002). Tetrahydrocarbazolene based antitumor active compounds and inhibitors of HIV integrase were synthesized from 4-oxo-tetrahydrocarbazoles (Li & Vince, 2006). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position, (Fig. 1), where the bond lengths are close to standard values (Allen *et al.*, 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5-C8/C8a) are nearly coplanar [with a maximum deviation of -0.012 (1) Å for atom C5a] with dihedral angle of B/C = 0.89 (4)°. Ring A (C1-C4/C4a/C9a) adopts envelope conformation with atom C2 displaced by -0.632 (2) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak *et al.*, 2007), 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ *et al.*, 2009) and ethyl 1-oxo-1,2,3,4-tetrahydro-9*H*-carbazole-3-carboxylate (Hökelek *et al.*, 2009).

In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 1 and Fig. 2). There also exists a weak C—H··· π interaction (Table 1).

S2. Experimental

A solution of 2,3-dichloro -5,6-dicyano-p-benzoquinone (9.36 g, 41.20 mmol) in tetrahydrofuran (20 ml, 90%) was added dropwise to a solution of ethyl 2,3,4,9-tetrahydro-1*H* -carbazole-3-carboxylate (5.00 g, 20.60 mmol) in tetrahydrofuran (50 ml, 90%) at 268 K. The reaction mixture was stirred for 10 min at 268 K, and then the solution was poured into sodium hydroxide (500 ml, 10%) and extracted with ethyl acetate. The organic layer was dried with anhydrous magnesium sulfate, and the solvent was removed. The residue was purified by chromatography using silica gel and ethyl acetate. After the solvent was evaporated, the product was crystallized from ether to yield colourless blocks of (I) (yield; 0.58 g, 11%, m.p. 396 K).

S3. Refinement

H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A view of the crystal packing of the title compound. The N—H…O and C—H…O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].

Ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate

Crystal data

C₁₅H₁₅NO₃ $M_r = 257.28$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 9.1057 (3) Å b = 12.7031 (4) Å c = 21.3874 (5) Å V = 2473.89 (13) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.960, T_{\max} = 0.981$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.102$ S = 1.042993 reflections F(000) = 1088 $D_x = 1.382 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3293 reflections $\theta = 2.9-28.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.43 \times 0.26 \times 0.20 \text{ mm}$

12029 measured reflections 2993 independent reflections 2258 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -11 \rightarrow 9$ $k = -16 \rightarrow 8$ $l = -20 \rightarrow 28$

177 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.044P)^2 + 0.6029P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.27325 (11)	0.49989 (7)	0.23207 (4)	0.0234 (2)
O2	0.13644 (11)	0.53475 (7)	0.37765 (4)	0.0226 (2)
O3	0.31033 (11)	0.40993 (7)	0.36958 (4)	0.0220 (2)
C1	0.01764 (17)	0.22360 (9)	0.25890 (6)	0.0217 (3)
H1A	0.0260	0.1466	0.2651	0.026*
H1B	-0.0879	0.2422	0.2578	0.026*
C2	0.09311 (17)	0.28148 (9)	0.31263 (7)	0.0218 (3)
H2A	0.1906	0.2495	0.3202	0.026*
H2B	0.0340	0.2730	0.3511	0.026*
C3	0.11251 (16)	0.39973 (9)	0.29874 (6)	0.0196 (3)
H3	0.0122	0.4306	0.2936	0.024*
C4	0.19696 (16)	0.42026 (9)	0.23804 (6)	0.0191 (3)
C4A	0.17494 (15)	0.34286 (9)	0.18970 (6)	0.0178 (3)
C5	0.30954 (16)	0.40632 (10)	0.08810 (6)	0.0200 (3)
Н5	0.3511	0.4689	0.1048	0.024*
C5A	0.22407 (15)	0.34016 (9)	0.12551 (6)	0.0176 (3)
C6	0.33239 (17)	0.37872 (11)	0.02632 (7)	0.0231 (3)
H6	0.3903	0.4232	0.0005	0.028*
C7	0.27209 (17)	0.28667 (10)	0.00100 (7)	0.0244 (3)
H7	0.2901	0.2697	-0.0416	0.029*
C8	0.18676 (17)	0.22010 (10)	0.03698 (7)	0.0229 (3)
H8	0.1457	0.1576	0.0200	0.027*
C8A	0.16323 (15)	0.24812 (10)	0.09904 (7)	0.0192 (3)
N9	0.08119 (13)	0.19804 (9)	0.14526 (5)	0.0202 (3)
H9	0.0272 (18)	0.1408 (13)	0.1399 (7)	0.029 (4)*
C9A	0.08866 (15)	0.25402 (9)	0.19910 (6)	0.0181 (3)
C10	0.18566 (16)	0.45682 (10)	0.35239 (6)	0.0187 (3)
C11	0.39176 (16)	0.45682 (10)	0.42153 (7)	0.0212 (3)
H11A	0.4609	0.4042	0.4388	0.025*
H11B	0.3222	0.4767	0.4551	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C12	0.47603 (17)	0.55264 (10)	0.40117 (7)	0.0246 (3)	
H12A	0.5356	0.5785	0.4361	0.037*	
H12B	0.4071	0.6076	0.3881	0.037*	
H12C	0.5403	0.5342	0.3661	0.037*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0268 (6)	0.0194 (4)	0.0241 (6)	-0.0053 (4)	0.0006 (5)	-0.0008 (4)
O2	0.0235 (6)	0.0223 (4)	0.0220 (6)	0.0049 (4)	-0.0009 (4)	-0.0027 (4)
03	0.0217 (6)	0.0210 (4)	0.0233 (5)	0.0045 (4)	-0.0023 (4)	-0.0024 (4)
C1	0.0210 (8)	0.0174 (6)	0.0265 (8)	-0.0011 (5)	0.0036 (6)	-0.0004 (5)
C2	0.0251 (8)	0.0185 (6)	0.0216 (8)	-0.0003 (5)	0.0050 (6)	0.0007 (5)
C3	0.0213 (8)	0.0171 (6)	0.0204 (7)	0.0022 (5)	-0.0005 (6)	-0.0008 (5)
C4	0.0188 (8)	0.0172 (6)	0.0212 (8)	0.0027 (5)	-0.0041 (6)	0.0012 (5)
C4A	0.0171 (8)	0.0177 (6)	0.0186 (7)	0.0003 (5)	-0.0022 (6)	0.0015 (5)
C5	0.0199 (8)	0.0201 (6)	0.0199 (8)	-0.0003 (5)	-0.0031 (6)	0.0019 (5)
C5A	0.0171 (8)	0.0172 (6)	0.0184 (7)	0.0030 (5)	-0.0034 (6)	0.0005 (5)
C6	0.0227 (8)	0.0261 (7)	0.0206 (8)	0.0027 (6)	-0.0006 (6)	0.0047 (5)
C7	0.0268 (9)	0.0283 (7)	0.0179 (7)	0.0057 (6)	-0.0011 (6)	-0.0012 (6)
C8	0.0245 (8)	0.0210 (6)	0.0231 (8)	0.0026 (5)	-0.0036 (6)	-0.0036 (5)
C8A	0.0183 (8)	0.0184 (6)	0.0207 (8)	0.0031 (5)	-0.0017 (6)	0.0009 (5)
N9	0.0205 (7)	0.0164 (5)	0.0236 (7)	-0.0011 (5)	0.0009 (5)	-0.0028 (4)
C9A	0.0157 (7)	0.0165 (5)	0.0222 (7)	0.0029 (5)	-0.0014 (6)	-0.0007 (5)
C10	0.0187 (8)	0.0185 (6)	0.0190 (7)	0.0005 (5)	0.0026 (6)	0.0040 (5)
C11	0.0218 (8)	0.0241 (6)	0.0178 (7)	0.0035 (5)	-0.0026 (6)	0.0012 (5)
C12	0.0246 (9)	0.0249 (6)	0.0243 (8)	0.0008 (6)	-0.0021 (7)	0.0003 (5)

Geometric parameters (Å, °)

1.2338 (15)	C5A—C5	1.3972 (19)
1.2136 (15)	C5A—C8A	1.4123 (17)
1.3336 (17)	C6—C7	1.4008 (19)
1.4626 (16)	С6—Н6	0.9500
1.4844 (19)	C7—C8	1.382 (2)
0.9900	С7—Н7	0.9500
0.9900	C8—H8	0.9500
1.5276 (19)	C8A—C8	1.391 (2)
0.9900	N9—C8A	1.3928 (18)
0.9900	N9—C9A	1.3550 (17)
1.5413 (17)	N9—H9	0.886 (17)
1.531 (2)	C10—C3	1.5121 (19)
1.0000	C11—H11A	0.9900
1.4409 (18)	C11—H11B	0.9900
1.4442 (19)	C12—C11	1.5033 (19)
1.3897 (17)	C12—H12A	0.9800
1.383 (2)	C12—H12B	0.9800
0.9500	C12—H12C	0.9800
	$\begin{array}{c} 1.2338(15)\\ 1.2136(15)\\ 1.3336(17)\\ 1.4626(16)\\ 1.4844(19)\\ 0.9900\\ 0.9900\\ 0.9900\\ 1.5276(19)\\ 0.9900\\ 0.9900\\ 1.5413(17)\\ 1.531(2)\\ 1.0000\\ 1.4409(18)\\ 1.4442(19)\\ 1.3897(17)\\ 1.383(2)\\ 0.9500\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C10—O3—C11	117.33 (10)	С5—С6—Н6	119.3
C2—C1—H1A	109.9	С7—С6—Н6	119.3
C2—C1—H1B	109.9	С6—С7—Н7	119.5
C9A—C1—C2	109.08 (11)	C8—C7—C6	121.04 (14)
C9A—C1—H1A	109.9	С8—С7—Н7	119.5
C9A—C1—H1B	109.9	C7—C8—C8A	117.48 (13)
H1A—C1—H1B	108.3	С7—С8—Н8	121.3
C1—C2—C3	112.07 (11)	C8A—C8—H8	121.3
C1—C2—H2A	109.2	N9—C8A—C5A	107.69 (12)
C1—C2—H2B	109.2	C8—C8A—N9	130.03 (12)
C3—C2—H2A	109.2	C8—C8A—C5A	122.28 (13)
C3—C2—H2B	109.2	C8A—N9—H9	125.5 (10)
H2A—C2—H2B	107.9	C9A—N9—C8A	109.67 (11)
С2—С3—Н3	107.4	C9A—N9—H9	124.7 (10)
C4—C3—C2	112.77 (11)	N9—C9A—C1	125.01 (12)
С4—С3—Н3	107.4	N9—C9A—C4A	109.36 (12)
C10—C3—C2	111.82 (11)	C4A—C9A—C1	125.62 (12)
C10—C3—C4	109.90 (11)	O2—C10—O3	123.78 (13)
С10—С3—Н3	107.4	O2—C10—C3	124.50 (13)
O1—C4—C3	120.68 (12)	O3—C10—C3	111.71 (11)
O1—C4—C4A	124.31 (13)	O3—C11—C12	111.62 (11)
C4A—C4—C3	114.98 (11)	O3—C11—H11A	109.3
C4—C4A—C5A	130.93 (12)	O3—C11—H11B	109.3
C9A—C4A—C4	121.94 (12)	C12—C11—H11A	109.3
C9A—C4A—C5A	107.06 (11)	C12—C11—H11B	109.3
С5А—С5—Н5	120.7	H11A—C11—H11B	108.0
C6—C5—C5A	118.59 (13)	C11—C12—H12A	109.5
С6—С5—Н5	120.7	C11—C12—H12B	109.5
C5—C5A—C4A	134.64 (12)	C11—C12—H12C	109.5
C5—C5A—C8A	119.13 (12)	H12A—C12—H12B	109.5
C8A—C5A—C4A	106.21 (11)	H12A—C12—H12C	109.5
C5—C6—C7	121.47 (14)	H12B—C12—H12C	109.5
C10-03-C11-C12	-77.69 (15)	C5A—C4A—C9A—C1	178.62 (12)
C11—O3—C10—O2	-0.64 (19)	C5A—C4A—C9A—N9	-0.36 (15)
C11—O3—C10—C3	-179.50 (10)	C5A—C5—C6—C7	-0.1 (2)
C2-C1-C9A-N9	159.90 (13)	C4A—C5A—C5—C6	-178.78 (14)
C2—C1—C9A—C4A	-18.93 (18)	C8A—C5A—C5—C6	-0.4 (2)
C3—C2—C1—C9A	47.43 (15)	C4A—C5A—C8A—N9	0.09 (14)
C4—C3—C2—C1	-56.21 (16)	C4A—C5A—C8A—C8	179.53 (13)
C10—C3—C2—C1	179.34 (12)	C5—C5A—C8A—N9	-178.68 (12)
C2—C3—C4—O1	-149.89 (13)	C5—C5A—C8A—C8	0.8 (2)
C2—C3—C4—C4A	32.36 (16)	C5—C6—C7—C8	0.3 (2)
C10—C3—C4—O1	-24.40 (17)	C6—C7—C8—C8A	0.0 (2)
C10—C3—C4—C4A	157.85 (11)	N9—C8A—C8—C7	178.76 (13)
O1—C4—C4A—C5A	-3.9 (2)	C5A—C8A—C8—C7	-0.5 (2)
O1—C4—C4A—C9A	179.48 (13)	C8A—N9—C9A—C1	-178.57 (12)

supporting information

C3—C4—C4A—C5A	173.73 (13)	C8A—N9—C9A—C4A	0.42 (15)
C3—C4—C4A—C9A	-2.87 (18)	C9A—N9—C8A—C5A	-0.31 (15)
C4—C4A—C5A—C8A	-176.82 (14)	C9A—N9—C8A—C8	-179.70 (14)
C4—C4A—C5A—C5	1.7 (3)	O2—C10—C3—C2	-126.61 (14)
C9A—C4A—C5A—C5	178.65 (15)	O2—C10—C3—C4	107.35 (15)
C9A—C4A—C5A—C8A	0.16 (14)	O3—C10—C3—C2	52.23 (15)
C4—C4A—C9A—N9	176.95 (12)	O3—C10—C3—C4	-73.80 (13)
C4—C4A—C9A—C1	-4.1 (2)		

Hydrogen-bond geometry (Å, °) Cg3 is the centroid of the C5A/C5–C8,C8A ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N9—H9…O2 ⁱ	0.885 (16)	2.044 (16)	2.9103 (15)	166.0 (15)
C3—H3…O1 ⁱⁱ	1.00	2.41	3.4053 (17)	173
C11—H11 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.99	2.86	3.7358 (15)	148

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+1/2; (ii) *x*-1/2, *y*, -*z*+1/2; (iii) -*x*-1/2, *y*-1/2, *z*.