

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato]- $\kappa^2 N, N'; \kappa N$ -aquabis-(dimethylformamide- κO)cadmium(II) monohydrate

G. M. Golzar Hossain

Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh Correspondence e-mail: acsbd@yahoo.com

Received 21 May 2011; accepted 24 May 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.099; data-to-parameter ratio = 15.9.

In the title compound, $[Cd(C_{10}H_9N_4O_2S)_2(C_3H_7NO)_2(H_2O)]$. H₂O, the Cd^{II} ion displays a grossly distorted octahedral (or irregular) mer-CdN₃O₃ coodination polyhdron arising from its coordination by one N.N'-bidentate sulfadiazinate anion, one monodentate sulfadiazinate anion, two O-bonded dimethylformamide molecules and one water molecule. A short $Cd \cdots N$ contact [2.890 (3) Å] to the monodentate sulfadiazinate ion also occurs. The dihedral angles between the planes of the aromatic rings of the anions are 86.81 (14) and 68.65 (14)°. The crystal structure features intermolecular $N-H\cdots O$, $O-H\cdots O$ and $O-H\cdots N$ hydrogen bonds.

Related literature

For the geometric analysis of related structures, see: Heren et al. (2006); Hossain & Amoroso (2007); Paşaoğlu et al. (2008); Hossain (2011).

Experimental

Crystal data [Cd(C10H9N4O2S)2(C3H7NO)2- $(H_2O)]\cdot H_2O$ $M_r = 793.17$ Monoclinic, $P2_1/n$ a = 13.9012 (3) Å b = 9.9763 (2) Å c = 23.8147(5) Å

 $\beta = 103.203 \ (1)^{\circ}$ V = 3215.38 (12) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.87 \text{ mm}^{-1}$ $T=150~{\rm K}$ $0.10 \times 0.10 \times 0.04~\mathrm{mm}$ $R_{\rm int} = 0.080$

24302 measured reflections

7313 independent reflections

5720 reflections with $I > 2\sigma(I)$

Data collection

```
Nonius KappaCCD diffractometer
Absorption correction: multi-scan
  (SORTAV; Blessing, 1995)
  T_{\min} = 0.918, T_{\max} = 0.966
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.03	refinement
7313 reflections	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
460 parameters	$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$
12 restraints	

Table 1

Selected bond lengths (Å).

Cd1-O1	2.284 (2)	Cd1-N12	2.361 (2)
Cd1-O2	2.343 (2)	Cd1-N21	2.257 (2)
Cd1-O3	2.334 (2)	Cd1-N22	2.890 (3)
Cd1-N11	2.473 (2)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N14 $-$ H14 B ···O12 ⁱ	0.82 (2)	2.39 (3)	3.104 (4)	146 (4)
N14 $-$ H14 A ···O21 ⁱⁱ	0.81 (2)	2.47 (2)	3.267 (4)	167 (4)
N24 $-$ H24 B ···O4 ⁱⁱⁱ	0.84(2)	2.27 (2)	3.061 (4)	157 (3)
N24 $-$ H24 A ···O3 ⁱⁱⁱ	0.79 (2)	2.52 (2)	3.272 (4)	160 (3)
O3−H3E···O11	0.79 (2)	1.97 (2)	2.754 (3)	172 (4)
$O3-H3D\cdots O11^{iv}$	0.81(2)	2.04(3)	2.810 (3)	159 (3)
O4−H4B···O21	0.85 (3)	2.02 (4)	2.855 (3)	166 (12)
$O4-H4A\cdots N23^{v}$	0.85 (3)	2.30 (5)	3.051 (4)	148 (7)

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z - \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) x, y - 1, z; (iv) $-x + 1, -y + 1, -z; (v) - x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The author is grateful to the Ministry of Science and Information & Communication Technology for financial support and to the School of Chemistry, Cardiff University, Wales, for the crystallographic services.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5888).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838. Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, 03437-03439. Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Hossain, G. M. G. (2011). Acta Cryst. E67, m505-m506. Hossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759-m760.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Paşaoğlu, H., Kaştaş, G., Heren, Z. & Büyükgüngör, O. (2008). Acta Cryst. E64, m1192.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2011). E67, m805-m806 [doi:10.1107/S1600536811019635]

Bis[4-amino-*N*-(pyrimidin-2-yl)benzenesulfonamidato]- $\kappa^2 N, N'; \kappa N$ -aquabis(dimethylformamide- κO)cadmium(II) monohydrate

G. M. Golzar Hossain

S1. Comment

The Cd ion in the title compound, (I), is attached with two sulfadiazine, two dimethylformamide and one water molecules. In addition there is one more solvated water molecule in the lattice. The Cd ion displays a hepta-coordinated complex but one of the pyrimido nitrogen atoms from the second sulfadiazinate anion has weak interaction with Cd(II) ion.

The hepta-coordinated cadmium complex is monocapped trigonal prismatic rather than the pentagonal bipyramidal structure as the angles around the cadmium centre are very much reduced from the ideal behavior since there exist different types of coordinated molecules.

The bond angles around the S atom correspond to a distorted tetrahedral geometry. The bond distance C—N (Terminal amino group) of 1.369 (4) and 1.375 (4)Å and the torsion angle C–S–N–C of 66.2 (3)° and -54.7 (3)° are comparable to those observed in the related structures (Heren *et al.*, 2006; Hossain & Amoroso, 2007; Hossain, 2011).

The dihedral angle between the aromatic rings of the chelated anion of 88.82 (7)° is larger than value of 68.66 (9)° of the non-chelated anion. The later one is comparable with the value of 71.10 (14)° (Hossain & Amoroso, 2007) in the sulfadiazinate anion. The packing of (I) (Fig. 2) is stabilized by intermolecular N—H…O, O—H…O and O—H…N hydrogen bonds (Table 2) and exists among sdz anions, coordinated and solvated water molecules (Hossain, 2011).

S2. Experimental

The sodium salt of sulfadiazine (Nasdz, 5.446 g, 2 mmol) was dissolved in hot methanol (50 ml) and a methanol solution (10 ml) of $(CH_3COO)_2Cd.2H_2O$ (2.6647 g, 1 mmol) was added slowly with constant stirring on a hot plate. A white precipitate was formed and the mixture was stirred for a further 2 h. The precipitate was filtered off and dried over silica gel; it was then dissolved in dimethylformamide solution (50 ml), and the mixture stirred for 10 min., filtered and left for crystallisaton. A week later, white block-shaped crystals of (I) were filtered off and dried over silica gel.

S3. Refinement

The H atoms were positioned geometrically and refined using a riding model [except that for terminal amino groups N14 and N24 and water molecules which were located from the difference map and fixed to 0.79 (2)–0.85 (3) Å], with C—H = 0.95–0.98 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The packing of (I), viewed down the *a*-axis, showing one layer of molecules connected by N—H…N, N—H…O and O—H…O hydrogen bonds (dashed lines).

Bis[4-amino-*N*-(pyrimidin-2- yl)benzenesulfonamidato]- $\kappa^2 N$, *N*'; κN - aquabis(dimethylformamide- κO)cadmium(II) monohydrate

F(000) = 1624 $D_x = 1.638 \text{ Mg m}^{-3}$

 $\theta = 2.9-27.5^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.10 \times 0.10 \times 0.04 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 7313 reflections

Crystal data

$[Cd(C_{10}H_9N_4O_2S)_2(C_3H_7NO)_2(H_2O)]$ ·H ₂ O
$M_r = 793.17$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 13.9012 (3) Å
b = 9.9763 (2) Å
c = 23.8147 (5) Å
$\beta = 103.203 (1)^{\circ}$
V = 3215.38 (12) Å ³
Z = 4

Data collection

Nonius KappaCCD	24302 measured reflections
diffractometer	7313 independent reflections
Radiation source: fine-focus sealed tube	5720 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.080$
ωscans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 17$
(SORTAV; Blessing, 1995)	$k = -12 \rightarrow 12$
$T_{\min} = 0.918, T_{\max} = 0.966$	$l = -30 \rightarrow 30$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
7313 reflections	and constrained refinement
460 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0412P)^2 + 1.8016P]$
12 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.06 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cd1	0.290291 (16)	0.29728 (2)	0.034509 (9)	0.01727 (8)	
S11	0.33422 (5)	0.41881 (7)	-0.11138 (3)	0.01623 (16)	

S21	0.18412 (5)	0.12716 (7)	0.12871 (3)	0.01808 (17)
O11	0.39815 (15)	0.5141 (2)	-0.07301 (9)	0.0205 (5)
O12	0.38338 (16)	0.3485 (2)	-0.14979 (9)	0.0240 (5)
O21	0.15043 (16)	0.1606 (2)	0.18039 (9)	0.0238 (5)
O22	0.11094 (16)	0.1429 (2)	0.07524 (9)	0.0272 (5)
N11	0.29064 (18)	0.3272 (2)	-0.06853 (10)	0.0167 (5)
N12	0.19324 (18)	0.1714 (2)	-0.04169 (10)	0.0174 (5)
N13	0.1916 (2)	0.1903 (2)	-0.14243 (11)	0.0216 (6)
N14	0.0348 (2)	0.7936 (3)	-0.24158 (14)	0.0330(7)
N21	0.27561 (18)	0.2170 (2)	0.12076 (10)	0.0176 (5)
N22	0.43358 (19)	0.2942 (2)	0.14358 (11)	0.0197 (6)
N23	0 38318 (19)	0.1370(2)	0 20728 (10)	0.0208 (6)
N24	0.3315(2)	-0.4299(3)	0.16052 (14)	0.0200(0) 0.0304(7)
C11	0.3315(2) 0.2235(2)	0.1299(3)	-0.08703(12)	0.0301(7)
C12	0.2255(2) 0.1256(2)	0.2275(3) 0.0745(3)	-0.05344(14)	0.0109(0) 0.0221(7)
U12 H12	0.1230 (2)	0.0745 (5)	-0.0227	0.027*
C13	0.1024 0.0887 (2)	0.0300	-0.10880(14)	0.027 0.0247(7)
U13	0.0887 (2)	-0.0302(3)	-0.1171	0.0247(7)
C14	0.0408 0.1240 (2)	0.0392	-0.15177(14)	0.030°
U14 U14	0.1249 (2)	0.0914 (5)	-0.13177(14)	0.0231(7)
П14 С15	0.1009 0.2281 (2)	0.0013	-0.1903 -0.15305(12)	0.030°
C15	0.2381(2)	0.3139(3)	-0.13303(12) 0.20072(12)	0.0102(0)
	0.2380 (2)	0.3497 (3)	-0.20975 (15)	0.0210(7)
H10	0.2844	0.5095	-0.2283	0.025*
CI/	0.1704 (2)	0.6418 (3)	-0.23916 (13)	0.0229 (7)
HI/	0.1/18	0.6655	-0.2//6	0.028*
C18	0.1002 (2)	0.7003 (3)	-0.21307 (14)	0.0231 (7)
C19	0.0994 (2)	0.6630 (3)	-0.15630 (13)	0.0218 (7)
H19	0.0509	0.6995	-0.1383	0.026*
C20	0.1687 (2)	0.5733 (3)	-0.12621 (13)	0.0190 (6)
H20	0.1689	0.5510	-0.0874	0.023*
C21	0.3658 (2)	0.2140 (3)	0.15960 (12)	0.0169 (6)
C22	0.5243 (2)	0.2924 (3)	0.17670 (14)	0.0256 (7)
H22	0.5734	0.3475	0.1665	0.031*
C23	0.5504 (3)	0.2135 (3)	0.22563 (14)	0.0261 (7)
H23	0.6159	0.2116	0.2486	0.031*
C24	0.4763 (2)	0.1382 (3)	0.23904 (13)	0.0252 (7)
H24	0.4918	0.0838	0.2726	0.030*
C25	0.2238 (2)	-0.0401 (3)	0.13588 (12)	0.0181 (6)
C26	0.1971 (2)	-0.1222 (3)	0.17657 (13)	0.0211 (7)
H26	0.1548	-0.0888	0.1995	0.025*
C27	0.2315 (2)	-0.2522 (3)	0.18403 (13)	0.0227 (7)
H27	0.2123	-0.3081	0.2119	0.027*
C28	0.2945 (2)	-0.3021 (3)	0.15076 (14)	0.0207 (7)
C29	0.3201 (2)	-0.2190 (3)	0.10946 (15)	0.0259 (7)
H29	0.3615	-0.2523	0.0860	0.031*
C30	0.2860 (2)	-0.0889 (3)	0.10219 (13)	0.0240 (7)
H30	0.3048	-0.0327	0.0743	0.029*
C1	0.1274 (2)	0.4958 (3)	0.05636 (13)	0.0192 (6)

H1	0.1262	0.4329	0.0862	0.023*
C2	0.0778 (3)	0.7114 (3)	0.01313 (16)	0.0313 (8)
H2A	0.1256	0.6877	-0.0098	0.047*
H2B	0.0968	0.7970	0.0328	0.047*
H2C	0.0119	0.7198	-0.0123	0.047*
C3	0.0160 (2)	0.6297 (3)	0.09716 (14)	0.0282 (7)
H3A	0.0330	0.7164	0.1161	0.042*
H3B	0.0281	0.5582	0.1262	0.042*
H3C	-0.0539	0.6295	0.0771	0.042*
C4	0.4966 (2)	0.1672 (3)	0.03565 (14)	0.0245 (7)
H4	0.5077	0.2442	0.0145	0.029*
C5	0.5645 (3)	-0.0106 (4)	0.10096 (16)	0.0415 (10)
H5A	0.4949	-0.0214	0.1022	0.062*
H5B	0.6044	0.0023	0.1402	0.062*
H5C	0.5870	-0.0909	0.0841	0.062*
C6	0.6737 (3)	0.1498 (4)	0.0652 (2)	0.0611 (14)
H6A	0.6695	0.2336	0.0433	0.092*
H6B	0.7068	0.0814	0.0469	0.092*
H6C	0.7115	0.1651	0.1048	0.092*
N1	0.07654 (18)	0.6072 (2)	0.05576 (10)	0.0199 (5)
N2	0.5748 (2)	0.1044 (3)	0.06631 (13)	0.0310 (7)
O1	0.17698 (16)	0.4670 (2)	0.02063 (9)	0.0246 (5)
O2	0.40965 (16)	0.1327 (2)	0.03247 (9)	0.0232 (5)
O3	0.39437 (17)	0.4831 (2)	0.04135 (10)	0.0223 (5)
O4	0.1616 (2)	0.4417 (3)	0.20345 (11)	0.0363 (6)
H14A	-0.016 (2)	0.811 (4)	-0.2316 (16)	0.049 (14)*
H14B	0.030 (3)	0.812 (4)	-0.2758 (11)	0.044 (13)*
H24A	0.355 (2)	-0.465 (3)	0.1372 (13)	0.031 (11)*
H24B	0.295 (2)	-0.485 (3)	0.1728 (13)	0.020 (9)*
H4A	0.157 (6)	0.467 (7)	0.2366 (18)	0.15 (3)*
H4B	0.157 (15)	0.356 (3)	0.202 (6)	0.50 (12)*
H3D	0.451 (2)	0.478 (4)	0.0587 (13)	0.040 (12)*
H3E	0.394 (3)	0.499 (4)	0.0086 (10)	0.041 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01636 (13)	0.01826 (13)	0.01795 (13)	0.00356 (8)	0.00549 (9)	0.00285 (8)
S11	0.0137 (4)	0.0187 (4)	0.0166 (4)	-0.0014 (3)	0.0041 (3)	0.0005 (3)
S21	0.0150 (4)	0.0191 (4)	0.0207 (4)	0.0016 (3)	0.0053 (3)	0.0018 (3)
011	0.0167 (11)	0.0240 (11)	0.0202 (11)	-0.0053 (9)	0.0030 (9)	0.0005 (8)
O12	0.0208 (12)	0.0300 (12)	0.0234 (12)	0.0021 (10)	0.0096 (10)	-0.0010 (9)
O21	0.0195 (12)	0.0241 (11)	0.0318 (12)	0.0025 (9)	0.0141 (10)	-0.0010 (9)
O22	0.0175 (12)	0.0323 (12)	0.0290 (12)	0.0007 (10)	-0.0007 (10)	0.0057 (10)
N11	0.0156 (13)	0.0190 (12)	0.0155 (12)	-0.0018 (10)	0.0033 (10)	-0.0005 (9)
N12	0.0149 (13)	0.0171 (12)	0.0212 (13)	0.0032 (10)	0.0063 (11)	0.0046 (10)
N13	0.0190 (14)	0.0239 (14)	0.0212 (14)	-0.0031 (11)	0.0034 (11)	-0.0034 (10)
N14	0.0244 (18)	0.0426 (19)	0.0319 (18)	0.0101 (14)	0.0061 (14)	0.0136 (14)

N21	0.0151 (13)	0.0211 (13)	0.0169 (13)	-0.0002 (10)	0.0043 (11)	0.0009 (10)
N22	0.0204 (14)	0.0206 (13)	0.0185 (13)	-0.0029 (10)	0.0051 (11)	0.0017 (10)
N23	0.0212 (14)	0.0223 (13)	0.0188 (13)	-0.0014 (11)	0.0043 (11)	0.0018 (10)
N24	0.0348 (18)	0.0231 (15)	0.0359 (18)	0.0035 (13)	0.0137 (15)	-0.0022 (13)
C11	0.0123 (15)	0.0188 (15)	0.0191 (15)	0.0054 (12)	0.0027 (12)	0.0008 (11)
C12	0.0175 (16)	0.0145 (15)	0.0370 (19)	0.0036 (12)	0.0119 (14)	0.0054 (13)
C13	0.0163 (17)	0.0195 (16)	0.0385 (19)	-0.0033 (13)	0.0067 (15)	-0.0033 (13)
C14	0.0196 (17)	0.0263 (17)	0.0276 (17)	-0.0031 (13)	0.0017 (14)	-0.0060 (13)
C15	0.0131 (15)	0.0171 (14)	0.0182 (15)	-0.0031 (11)	0.0030 (12)	0.0016 (11)
C16	0.0199 (17)	0.0241 (16)	0.0201 (15)	-0.0040 (13)	0.0070 (13)	-0.0018 (12)
C17	0.0244 (18)	0.0271 (17)	0.0171 (15)	-0.0023 (14)	0.0042 (14)	0.0026 (12)
C18	0.0211 (17)	0.0217 (16)	0.0242 (17)	-0.0053 (13)	0.0005 (14)	0.0027 (12)
C19	0.0175 (16)	0.0259 (16)	0.0235 (16)	0.0012 (13)	0.0078 (13)	0.0011 (13)
C20	0.0162 (16)	0.0213 (15)	0.0197 (15)	-0.0048 (12)	0.0045 (13)	0.0026 (12)
C21	0.0199 (16)	0.0146 (14)	0.0172 (15)	0.0032 (12)	0.0061 (13)	-0.0009 (11)
C22	0.0233 (18)	0.0260 (17)	0.0286 (18)	-0.0065 (13)	0.0081 (15)	0.0021 (13)
C23	0.0212 (18)	0.0300 (18)	0.0259 (17)	-0.0026 (14)	0.0029 (14)	-0.0010 (13)
C24	0.0275 (19)	0.0274 (17)	0.0180 (16)	0.0005 (14)	-0.0002 (14)	0.0029 (13)
C25	0.0147 (15)	0.0188 (15)	0.0201 (15)	-0.0010 (12)	0.0030 (13)	-0.0039 (12)
C26	0.0198 (17)	0.0240 (16)	0.0221 (16)	-0.0020 (13)	0.0104 (13)	-0.0018 (12)
C27	0.0253 (18)	0.0228 (15)	0.0214 (16)	-0.0033 (14)	0.0080 (14)	0.0032 (13)
C28	0.0175 (16)	0.0169 (15)	0.0264 (17)	-0.0006 (12)	0.0025 (13)	-0.0045 (12)
C29	0.0270 (19)	0.0203 (16)	0.0350 (19)	-0.0009 (13)	0.0166 (15)	-0.0055 (13)
C30	0.0270 (18)	0.0237 (16)	0.0243 (16)	-0.0041 (13)	0.0123 (14)	0.0018 (13)
C1	0.0149 (15)	0.0208 (15)	0.0210 (16)	0.0015 (12)	0.0019 (13)	0.0030 (12)
C2	0.031 (2)	0.0256 (18)	0.039 (2)	0.0124 (14)	0.0120 (17)	0.0102 (14)
C3	0.0226 (18)	0.0338 (19)	0.0301 (18)	0.0086 (14)	0.0099 (15)	0.0015 (14)
C4	0.0198 (18)	0.0236 (16)	0.0318 (18)	0.0069 (14)	0.0096 (15)	-0.0019 (13)
C5	0.041 (2)	0.042 (2)	0.038 (2)	0.0222 (18)	0.0033 (18)	0.0071 (17)
C6	0.017 (2)	0.047 (2)	0.117 (4)	0.0050 (18)	0.012 (2)	-0.016 (3)
N1	0.0162 (14)	0.0206 (13)	0.0216 (13)	0.0038 (10)	0.0017 (11)	0.0006 (10)
N2	0.0184 (15)	0.0265 (15)	0.0456 (18)	0.0070 (12)	0.0022 (13)	-0.0086 (13)
01	0.0235 (12)	0.0270 (12)	0.0243 (11)	0.0100 (9)	0.0077 (10)	0.0027 (9)
O2	0.0184 (12)	0.0225 (11)	0.0291 (12)	0.0036 (9)	0.0064 (10)	0.0012 (9)
O3	0.0174 (13)	0.0292 (12)	0.0191 (12)	-0.0008 (10)	0.0020 (10)	0.0017 (10)
O4	0.0427 (16)	0.0327 (14)	0.0338 (15)	0.0031 (12)	0.0094 (13)	0.0016 (11)

Geometric parameters (Å, °)

Cd1-01	2.284 (2)	C19—H19	0.9500
Cd1—O2	2.343 (2)	C20—H20	0.9500
Cd1—O3	2.334 (2)	C22—C23	1.385 (5)
Cd1—N11	2.473 (2)	C22—H22	0.9500
Cd1—N12	2.361 (2)	C23—C24	1.369 (5)
Cd1—N21	2.257 (2)	C23—H23	0.9500
Cd1—N22	2.890 (3)	C24—H24	0.9500
S11—O11	1.469 (2)	C25—C26	1.383 (4)
S11—012	1.443 (2)	C25—C30	1.394 (4)

S11—N11	1.589(2)	C26—C27	1.379 (4)
S11—C15	1.762 (3)	C26—H26	0.9500
S21—O21	1.452 (2)	C27—C28	1.400 (4)
S21—O22	1.445 (2)	C27—H27	0.9500
S21—N21	1.602 (3)	C28—C29	1,393 (4)
S21—C25	1.754 (3)	$C_{29} - C_{30}$	1.379 (4)
N11-C11	1.368 (4)	C29—H29	0.9500
N12—C12	1 332 (4)	C30—H30	0.9500
N12-C11	1.352(1) 1 364(4)	C1-O1	1.245(3)
N12-C14	1.304(4) 1.337(4)	C1 - 01	1.245(3) 1 316(4)
N13 C11	1.337(4) 1.344(4)		0.9500
N13-C11	1.344(4) 1.360(4)	C_1 C_2 N_1	0.9500
N14-C18	1.309(4)	C_2 H_2	1.430 (4)
NI4—HI4A	0.81(2)	C2—H2A	0.9800
N14—H14B	0.82(2)	C2—H2B	0.9800
N21—C21	1.379 (4)	C2—H2C	0.9800
N22—C22	1.326 (4)	C3—N1	1.452 (4)
N22—C21	1.355 (4)	С3—НЗА	0.9800
N23—C24	1.342 (4)	С3—Н3В	0.9800
N23—C21	1.346 (4)	C3—H3C	0.9800
N24—C28	1.375 (4)	C4—O2	1.243 (4)
N24—H24A	0.79 (2)	C4—N2	1.320 (4)
N24—H24B	0.84 (2)	C4—H4	0.9500
C12—C13	1.374 (5)	C5—N2	1.439 (5)
C12—H12	0.9500	С5—Н5А	0.9800
C13—C14	1.381 (4)	C5—H5B	0.9800
С13—Н13	0.9500	С5—Н5С	0.9800
C14—H14	0.9500	C6—N2	1.454 (5)
C15—C16	1.391 (4)	С6—Н6А	0.9800
C15—C20	1.396 (4)	C6—H6B	0.9800
C16—C17	1.385 (4)	С6—Н6С	0.9800
C16—H16	0.9500	O3—H3D	0.81(2)
C17—C18	1.399 (5)	O3—H3E	0.79 (2)
С17—Н17	0.9500	O4—H4A	0.85 (3)
C18—C19	1.405 (4)	O4—H4B	0.85(3)
C19-C20	1.109(1) 1.388(4)		0.00 (0)
01) 020	1.500 (1)		
N11—Cd1—N12	55 37 (8)	C20-C19-H19	119 7
N11 Cd1 N21	165 24 (8)	C_{18} C_{19} H_{19}	119.7
N11—Cd1—N21	103.24(8) 137.30(8)	$C_{10} = C_{10} = C_{15}$	119.7 110.0(3)
$\frac{N11}{Cd1} = \frac{O1}{O1}$	157.59 (8) 85 67 (8)	$C_{19} = C_{20} = C_{13}$	119.9 (3)
N11 - Cd1 = O1	85.07 (8) 84.28 (8)	C15 - C20 - H20	120.0
N11—Cd1—O2	04.30 (0) 90.21 (9)	C13 - C20 - H20	120.0
N11 - Cd1 - 03	80.31 (8)	N23-C21-N22	124.9 (3)
N12 - Ca1 - N21	110.8/(8)	$\frac{N23-U21-N21}{N22-U21-N21}$	122.0(3)
N12— $Ca1$ — $N22$	14/.24 (/)	N22 - C21 - N21	112.5 (2)
N12—Cd1—O1	91.66 (8)	N22—C22—C23	122.6 (3)
N12—Cd1—O2	83.93 (8)	N22—C22—H22	118.7
N12—Cd1—O3	135.44 (8)	C23—C22—H22	118.7
N21—Cd1—N22	50.60 (8)	C24—C23—C22	116.3 (3)

N21—Cd1—O1	101.06 (8)	С24—С23—Н23	121.9
N21—Cd1—O2	88.97 (8)	С22—С23—Н23	121.9
N21—Cd1—O3	113.68 (8)	N23—C24—C23	123.6 (3)
N22—Cd1—O1	116.67 (7)	N23—C24—H24	118.2
N22—Cd1—O2	70.44 (7)	C23—C24—H24	118.2
N22—Cd1—O3	69.92 (7)	C26—C25—C30	119.9 (3)
O1—Cd1—O2	169.94 (7)	C26—C25—S21	120.2 (2)
O1—Cd1—O3	79.49 (8)	C30—C25—S21	119.9 (2)
O2—Cd1—O3	97.32 (8)	C27—C26—C25	120.4 (3)
O11—S11—O12	113.72 (13)	С27—С26—Н26	119.8
O12—S11—N11	115.62 (13)	С25—С26—Н26	119.8
O11—S11—N11	103.77 (12)	C26—C27—C28	120.3 (3)
O11—S11—C15	105.54 (13)	С26—С27—Н27	119.9
O12—S11—C15	108.57 (13)	С28—С27—Н27	119.9
N11—S11—C15	109.06 (13)	N24—C28—C29	121.7 (3)
O21—S21—O22	115.05 (13)	N24—C28—C27	119.5 (3)
O22—S21—N21	104.66 (13)	C29—C28—C27	118.7 (3)
O21—S21—N21	112.96 (13)	C30—C29—C28	120.9 (3)
O21—S21—C25	106.93 (13)	С30—С29—Н29	119.6
O22—S21—C25	109.36 (13)	С28—С29—Н29	119.6
N21—S21—C25	107.66 (13)	C29—C30—C25	119.8 (3)
C11—N11—S11	123.0 (2)	С29—С30—Н30	120.1
C11—N11—Cd1	94.35 (17)	С25—С30—Н30	120.1
S11—N11—Cd1	142.55 (13)	O1—C1—N1	124.6 (3)
C12—N12—C11	117.4 (3)	O1—C1—H1	117.7
C12—N12—Cd1	143.1 (2)	N1—C1—H1	117.7
C11—N12—Cd1	99.53 (18)	N1—C2—H2A	109.5
C14—N13—C11	115.3 (3)	N1—C2—H2B	109.5
C18—N14—H14A	122 (3)	H2A—C2—H2B	109.5
C18—N14—H14B	123 (3)	N1—C2—H2C	109.5
H14A—N14—H14B	111 (3)	H2A—C2—H2C	109.5
C21—N21—S21	122.2 (2)	H2B—C2—H2C	109.5
C21—N21—Cd1	111.16 (18)	N1—C3—H3A	109.5
S21—N21—Cd1	123.05 (13)	N1—C3—H3B	109.5
C22—N22—C21	116.9 (3)	НЗА—СЗ—НЗВ	109.5
C22—N22—Cd1	154.3 (2)	N1—C3—H3C	109.5
C21—N22—Cd1	83.03 (17)	НЗА—СЗ—НЗС	109.5
C24—N23—C21	115.7 (3)	НЗВ—СЗ—НЗС	109.5
C28—N24—H24A	120 (3)	O2—C4—N2	124.6 (3)
C28—N24—H24B	116 (2)	O2—C4—H4	117.7
H24A—N24—H24B	110 (3)	N2	117.7
N13—C11—N12	124.9 (3)	N2—C5—H5A	109.5
N13—C11—N11	124.3 (3)	N2—C5—H5B	109.5
N12—C11—N11	110.7 (2)	H5A—C5—H5B	109.5
N12—C12—C13	121.7 (3)	N2—C5—H5C	109.5
N12—C12—H12	119.1	H5A—C5—H5C	109.5
C13—C12—H12	119.1	H5B—C5—H5C	109.5
C12—C13—C14	116.7 (3)	N2—C6—H6A	109.5

C12—C13—H13	121.6	N2—C6—H6B	109.5
C14—C13—H13	121.6	H6A—C6—H6B	109.5
N13—C14—C13	124.0 (3)	N2—C6—H6C	109.5
N13—C14—H14	118.0	H6A—C6—H6C	109.5
C13—C14—H14	118.0	H6B—C6—H6C	109.5
C16—C15—C20	119.8 (3)	C1—N1—C3	121.1 (3)
C16—C15—S11	120.8 (2)	C1—N1—C2	121.3 (3)
C20—C15—S11	118.8 (2)	C3—N1—C2	117.7 (3)
C17—C16—C15	120.1 (3)	C4—N2—C5	121.2 (3)
С17—С16—Н16	119.9	C4—N2—C6	120.3 (3)
C15—C16—H16	119.9	C5—N2—C6	118.5 (3)
C16—C17—C18	120.9 (3)	C1	122.91 (19)
C16—C17—H17	119.5	C4-O2-Cd1	119 23 (19)
C18 - C17 - H17	119.5	Cd1 - O3 - H3D	120 (3)
N14-C18-C17	121 1 (3)	Cd1 - O3 - H3E	103(3)
N14-C18-C19	1204(3)	$H_{3}D_{}O_{3}$ $H_{3}E_{}$	108(3)
C17 - C18 - C19	1185(3)	H4A - O4 - H4B	108(3)
$C_{1}^{2} - C_{1}^{3} - C_{1}^{3}$	120.7(3)	Пела от Пер	100(7)
220-219-218	120.7 (5)		
012N11C11	-575(3)	$C11_N12_C12_C13$	1.2(4)
011N11C11	1773(2)	Cd1 - N12 - C12 - C13	-1792(2)
C15 = S11 = N11 = C11	65 2 (3)	N12 - C12 - C13 - C14	-0.3(4)
O12 S11 N11 Cd1	1277(2)	C_{11} N13 C_{14} C_{13}	0.3(+)
012 - 511 - N11 - Cd1	127.7(2)	$C_{11} = N_{13} = C_{14} = C_{13}$	-0.8(5)
C_{15} S_{11} N_{11} C_{d1}	-109.6(2)	$012 \times 11 \times 015 \times 016$	-20.0(3)
N21 Cd1 N11 C11	109.0(2)	012 - 311 - 015 - 010	20.0(3)
$N_2 = C_4 = N_1 = C_1 = C_1$	22.0(4)	N11 = S11 = C15 = C16	102.3(2)
$O_1 = C_1 = N_1 = C_1$	-175.02(18)	012 511 015 020	140.0(2)
$O_2 C_{d1}$ N11 C11	-1/5.95(10) 95.64(17)	012 - 311 - 015 - 020	-60.5(2)
$N_{12} = C_{11} = N_{11} = C_{11}$	0.04(17)	S11 - S11 - C15 - C20	-09.3(2)
NI2—CdI—NII—CII	-0.85(15)	N11 - S11 - C13 - C20	41.3 (3)
N21 Cd1 N11 S11	158.50(15) 162.2(2)	$C_{20} = C_{13} = C_{10} = C_{17}$	1.2(4)
$N_2 = C_4 = N_{11} = S_{11}$	-102.3(3)	SII = CIS = CI0 = CI7	-1/0.3(2)
OI = CoI = NII = SII	/9.8 (2)	C15 - C10 - C17 - C18	-1.2(5)
$O_3 = C_{d1} = N_{11} = S_{11}$	-0.3(2)	C16-C17-C18-N14	1/8.5 (3)
VI2 CH NII SII	-98.7(2)	C16-C17-C18-C19	-0.3(4)
NI2—CdI—NII—SII	1/4.8 (3)	N14 - C18 - C19 - C20	-1/6.9(3)
N22—Cd1—N11—S11	-45.9(3)	C17 - C18 - C19 - C20	2.0 (4)
N21—Cd1—N12—C12	7.3 (3)	C18 - C19 - C20 - C15	-2.1(4)
OI - CdI - NI2 - CI2	-95.2 (3)	C16-C15-C20-C19	0.5 (4)
03—Cd1—N12—C12	-171.8(3)	S11—C15—C20—C19	172.3 (2)
O2—Cd1—N12—C12	93.9 (3)	C24—N23—C21—N22	-2.8 (4)
N11—Cd1—N12—C12	-178.8 (4)	C24—N23—C21—N21	175.9 (3)
N22—Cd1—N12—C12	55.8 (4)	C22—N22—C21—N23	2.3 (4)
N21—Cd1—N12—C11	-173.05 (16)	Cd1—N22—C21—N23	165.3 (3)
01—Cd1—N12—C11	84.45 (17)	C22—N22—C21—N21	-176.5 (3)
O3—Cd1—N12—C11	7.8 (2)	Cd1—N22—C21—N21	-13.5 (2)
O2—Cd1—N12—C11	-86.48 (17)	S21—N21—C21—N23	-1.0 (4)
N11—Cd1—N12—C11	0.87 (15)	Cd1—N21—C21—N23	-160.3 (2)

N22—Cd1—N12—C11	-124.55 (18)	S21—N21—C21—N22	177.9 (2)
O22—S21—N21—C21	-171.0 (2)	Cd1—N21—C21—N22	18.6 (3)
O21—S21—N21—C21	63.2 (3)	C21—N22—C22—C23	-0.2 (4)
C25—S21—N21—C21	-54.7 (3)	Cd1—N22—C22—C23	-138.0 (4)
O22—S21—N21—Cd1	-14.09 (18)	N22—C22—C23—C24	-1.3 (5)
O21—S21—N21—Cd1	-139.98 (14)	C21—N23—C24—C23	1.1 (4)
C25—S21—N21—Cd1	102.20 (16)	C22—C23—C24—N23	0.8 (5)
O1—Cd1—N21—C21	-125.84 (18)	O22—S21—C25—C26	-109.1 (3)
O3—Cd1—N21—C21	-42.6 (2)	O21—S21—C25—C26	16.0 (3)
O2—Cd1—N21—C21	54.96 (18)	N21—S21—C25—C26	137.7 (2)
N12-Cd1-N21-C21	138.07 (17)	O22—S21—C25—C30	73.6 (3)
N11—Cd1—N21—C21	118.0 (3)	O21—S21—C25—C30	-161.2 (2)
N22—Cd1—N21—C21	-10.30 (15)	N21—S21—C25—C30	-39.5 (3)
O1—Cd1—N21—S21	75.04 (16)	C30—C25—C26—C27	-0.1 (5)
O3—Cd1—N21—S21	158.30 (13)	S21—C25—C26—C27	-177.3 (2)
O2—Cd1—N21—S21	-104.16 (15)	C25—C26—C27—C28	0.5 (5)
N12-Cd1-N21-S21	-21.05 (18)	C26—C27—C28—N24	177.1 (3)
N11—Cd1—N21—S21	-41.1 (4)	C26—C27—C28—C29	-1.2 (5)
N22-Cd1-N21-S21	-169.4 (2)	N24—C28—C29—C30	-176.9 (3)
N21—Cd1—N22—C22	152.7 (5)	C27—C28—C29—C30	1.5 (5)
O1—Cd1—N22—C22	-125.0 (4)	C28—C29—C30—C25	-1.0 (5)
O3—Cd1—N22—C22	-58.7 (4)	C26—C25—C30—C29	0.3 (5)
O2—Cd1—N22—C22	47.2 (4)	S21—C25—C30—C29	177.6 (2)
N12—Cd1—N22—C22	87.8 (5)	O1—C1—N1—C3	176.4 (3)
N11—Cd1—N22—C22	-10.1 (5)	O1—C1—N1—C2	-2.7 (5)
N21—Cd1—N22—C21	9.83 (15)	O2—C4—N2—C5	-1.9 (5)
O1—Cd1—N22—C21	92.09 (16)	O2—C4—N2—C6	177.5 (3)
O3—Cd1—N22—C21	158.45 (17)	N1-C1-O1-Cd1	165.9 (2)
O2—Cd1—N22—C21	-95.66 (16)	N21—Cd1—O1—C1	1.1 (2)
N12—Cd1—N22—C21	-55.1 (2)	O3—Cd1—O1—C1	-111.2 (2)
N11—Cd1—N22—C21	-153.00 (15)	O2—Cd1—O1—C1	176.5 (4)
C14—N13—C11—N12	0.3 (4)	N12—Cd1—O1—C1	112.7 (2)
C14—N13—C11—N11	-179.3 (3)	N11—Cd1—O1—C1	167.8 (2)
C12—N12—C11—N13	-1.3 (4)	N22—Cd1—O1—C1	-50.2 (2)
Cd1—N12—C11—N13	179.0 (2)	N2—C4—O2—Cd1	138.8 (3)
C12—N12—C11—N11	178.4 (2)	N21—Cd1—O2—C4	-113.0 (2)
Cd1—N12—C11—N11	-1.4 (2)	O1—Cd1—O2—C4	71.6 (5)
S11—N11—C11—N13	4.1 (4)	O3—Cd1—O2—C4	0.8 (2)
Cd1—N11—C11—N13	-179.1 (3)	N12—Cd1—O2—C4	135.9 (2)
S11—N11—C11—N12	-175.53 (19)	N11—Cd1—O2—C4	80.2 (2)
Cd1—N11—C11—N12	1.3 (2)	N22—Cd1—O2—C4	-64.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>	
N14—H14 <i>B</i> ····O12 ⁱ	0.82 (2)	2.39 (3)	3.104 (4)	146 (4)	
N14—H14 <i>A</i> ···O21 ⁱⁱ	0.81 (2)	2.47 (2)	3.267 (4)	167 (4)	
N24—H24 <i>B</i> ····O4 ⁱⁱⁱ	0.84 (2)	2.27 (2)	3.061 (4)	157 (3)	

Acta Cryst. (2011). E67, m805-m806

supporting information

N24—H24A···O3 ⁱⁱⁱ	0.79 (2)	2.52 (2)	3.272 (4)	160 (3)
O3—H3 <i>E</i> …O11	0.79 (2)	1.97 (2)	2.754 (3)	172 (4)
O3—H3D····O11 ^{iv}	0.81 (2)	2.04 (3)	2.810 (3)	159 (3)
O4—H4 <i>B</i> ⋯O21	0.85 (3)	2.02 (4)	2.855 (3)	166 (12)
O4— $H4A$ ···N23 ^v	0.85 (3)	2.30 (5)	3.051 (4)	148 (7)

Symmetry codes: (i) -x+1/2, y+1/2, -z-1/2; (ii) -x, -y+1, -z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z; (v) -x+1/2, y+1/2, -z+1/2.