metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­methyl sulfoxide-κO)(2-formyl­phenolato-κ2O,O′)[2-(2-oxido­benzyl­­idene­amino)­phenolato-κ3O,N,O′]manganese(III)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 April 2011; accepted 27 April 2011; online 7 May 2011)

The O-C6H4-CH=N–C6H4-O dianion of the title compound, [Mn(C13H9NO2)(C7H5O2)(C2H6OS)], acts as an O,N,O′-chelate to bind to the MnIII atom, and the three atoms constitute three points [O—Mn—O = 174.43 (11)°] of an octa­hedron around the metal atom. The azomethine linkage is disordered over two positions in a 0.657 (13):0.343 (13) ratio. The deprotonated salicyldehyde anion acts as an O,O′-chelate; the sixth coordination site is represented by the O atom of the dimethyl sulfoxide mol­ecule. The crystal studied was a non-merohedral twin with a minor twin component of 14.2 (3)%.

Related literature

For related MnIII structures, see: Asada et al. (1999[Asada, H., Ozeki, M., Fujiwara, M. & Matsushita, T. (1999). Chem. Lett. pp. 525-526.], 2002[Asada, H., Ozeki, M., Fujiwara, M. & Matsuchita, T. (2002). Polyhedron, 21, 1139-1148.]); Nakamura et al. (1999[Nakamura, T., Niwa, K., Fujiwara, M. & Matsushita, T. (1999). Chem. Lett. pp. 1067-1068.], 2001[Nakamura, T., Niwa, K., Usugi, S., Asada, H., Fujiwara, M. & Matsushita, T. (2001). Polyhedron, 20, 191-201.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C13H9NO2)(C7H5O2)(C2H6OS)]

  • Mr = 465.39

  • Monoclinic, P 21 /c

  • a = 12.1342 (3) Å

  • b = 20.4224 (5) Å

  • c = 8.1812 (2) Å

  • β = 94.692 (2)°

  • V = 2020.59 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.925

  • 39957 measured reflections

  • 5025 independent reflections

  • 3528 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.129

  • S = 1.03

  • 5025 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The deprotonated anion of the Schiff base derived by condensing salicylaldehyde and 2-aminophenol, (O–C6H4–CHN–C6H4O)2-, behaves as a terdentate O,N,O' chelate to a number of metal ions. For the manganese ion in particular, the crystal structures of a small number of manganese(III) [2-(2-oxidobenzylideneamino)phenolates have been reported (Asada et al., 1999; Asada et al., 2002; Nakamura et al., 1999; Nakamura et al., 2001). In the present study, the reaction of the Schiff base with an mangasese(III) salt resulted in the cleavage of the azomethine linkage of one half of the molar quantity of the organic reactant. The O–C6H4–CHN–C6H4–O dianion of Mn(C13H9NO2)(C7H5O3)(DMSO) (Scheme I) acts as an O,N,O'-chelates to bind to the MnIII atom, and the three atoms constitute three points O–Mn–O 174.4 (1) °] of the octahedron around the metal atom. The azomethine linkage is disordered over two positions in a 66 (1): 34 ratio. The deprotonated salicyldehyde anion acts as an O,O'-chelate; the sixth coordination site is represented by the O atom of the DMSO molecule (Fig. 1).

Related literature top

For related MnIII structures, see: Asada et al. (1999, 2002); Nakamura et al. (1999, 2001).

Experimental top

2-(Salicylaldimino)phenol was prepared from the condensation reaction of salicyaldehyde and 2-aminophenol. The Schiff base (0.22 g, 1 mmol) and manganese(III) acetate dihydrate (0.23 g, 1 mmol) along with ethanol (100 ml) were heated for an hour until the reactants dissolved completely. A few drops of DMSO were then added. The dark blue solution was then filtered and the solvent allowed to evporate over a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C).

The diffraction intensities were separated into two domains and then integrated simultaneously by using TWINABS (Bruker, 2009). The 'HKLF 4' diffraction indices were used for solution whereas the 'HKLF 5' ones were used for refinement.

There is no excess electron density near the O atom of the salicyldehyde group, which confirms the tripositive oxidation state of Mn.

The azomethine –CN– linkage is disordered over two positions in a 66 (1): 34 ratio.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Mn(C13H9NO2)(C7H5O3)(C2H6OS) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disordered azomethine linkage is shown in two conformations.
(Dimethyl sulfoxide-κO)(2-formylphenolato-κ2O,O')[2-(2- oxidobenzylideneamino)phenolato-κ3O,N,O']manganese(III) top
Crystal data top
[Mn(C13H9NO2)(C7H5O2)(C2H6OS)]F(000) = 960
Mr = 465.39Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2199 reflections
a = 12.1342 (3) Åθ = 2.7–20.7°
b = 20.4224 (5) ŵ = 0.79 mm1
c = 8.1812 (2) ÅT = 100 K
β = 94.692 (2)°Prism, blue
V = 2020.59 (9) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5025 independent reflections
Radiation source: fine-focus sealed tube3528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Bruker, 2009)
h = 1616
Tmin = 0.891, Tmax = 0.925k = 027
39957 measured reflectionsl = 010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.4711P]
where P = (Fo2 + 2Fc2)/3
5025 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Mn(C13H9NO2)(C7H5O2)(C2H6OS)]V = 2020.59 (9) Å3
Mr = 465.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1342 (3) ŵ = 0.79 mm1
b = 20.4224 (5) ÅT = 100 K
c = 8.1812 (2) Å0.15 × 0.10 × 0.10 mm
β = 94.692 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5025 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2009)
3528 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.925Rint = 0.091
39957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.60 e Å3
5025 reflectionsΔρmin = 0.49 e Å3
293 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.28456 (4)0.58739 (2)0.78780 (6)0.02681 (15)
S10.32300 (7)0.52236 (4)1.15078 (9)0.0296 (2)
O10.4174 (2)0.61593 (11)0.7087 (3)0.0386 (6)
O20.1485 (2)0.56551 (14)0.8733 (3)0.0461 (7)
O30.30142 (17)0.50104 (10)0.7054 (2)0.0260 (5)
O40.19393 (18)0.60934 (10)0.5404 (3)0.0303 (5)
O50.37558 (18)0.56099 (10)1.0187 (3)0.0285 (5)
N1'0.2928 (8)0.6891 (5)0.8183 (10)0.018 (3)0.343 (13)
N10.2358 (4)0.6733 (3)0.8700 (5)0.0224 (16)0.657 (13)
C10.4451 (3)0.67812 (16)0.6932 (4)0.0302 (7)
C20.5410 (3)0.69431 (17)0.6183 (4)0.0311 (7)
H20.58680.66050.58150.037*
C30.5696 (3)0.75874 (18)0.5973 (4)0.0361 (8)
H30.63520.76880.54670.043*
C40.5042 (3)0.80926 (17)0.6489 (4)0.0379 (8)
H40.52400.85360.63210.045*
C50.4111 (3)0.79438 (17)0.7238 (4)0.0371 (8)
H50.36640.82890.75950.045*
C60.3802 (3)0.72972 (17)0.7493 (4)0.0308 (7)
C7'0.2227 (8)0.7190 (6)0.9041 (11)0.020 (3)0.343 (13)
H7'0.22590.76460.92600.024*0.343 (13)
C70.2828 (5)0.7279 (4)0.8393 (7)0.0250 (17)0.657 (13)
H70.25290.76760.87660.030*0.657 (13)
C80.1373 (3)0.6757 (2)0.9648 (4)0.0398 (9)
C90.0843 (3)0.72355 (18)1.0517 (4)0.0451 (10)
H90.11260.76691.05770.054*
C100.0087 (3)0.70801 (17)1.1286 (4)0.0379 (8)
H100.04450.74041.18880.046*
C110.0501 (3)0.64453 (16)1.1177 (4)0.0301 (7)
H110.11490.63381.16950.036*
C120.0021 (3)0.59713 (15)1.0324 (4)0.0276 (7)
H120.02750.55411.02590.033*
C130.0974 (3)0.61137 (18)0.9557 (4)0.0328 (8)
C140.2369 (2)0.46740 (14)0.5998 (3)0.0221 (6)
C150.2486 (3)0.39870 (15)0.5978 (4)0.0254 (6)
H150.30330.37850.67080.030*
C160.1821 (3)0.36033 (15)0.4920 (4)0.0290 (7)
H160.19050.31410.49520.035*
C170.1030 (3)0.38830 (16)0.3805 (4)0.0323 (7)
H170.05700.36160.30870.039*
C180.0928 (3)0.45473 (15)0.3762 (4)0.0275 (7)
H180.03960.47390.29910.033*
C190.1585 (2)0.49587 (15)0.4825 (4)0.0254 (6)
C200.1448 (3)0.56547 (15)0.4608 (4)0.0275 (7)
H200.09190.57910.37550.033*
C210.4254 (3)0.52192 (16)1.3198 (4)0.0309 (7)
H21A0.49750.51121.28090.046*
H21B0.40610.48911.40000.046*
H21C0.42900.56521.37140.046*
C220.3339 (3)0.43848 (16)1.0928 (4)0.0366 (8)
H22A0.29180.43130.98690.055*
H22B0.30400.41061.17610.055*
H22C0.41170.42751.08370.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0292 (3)0.0240 (3)0.0256 (2)0.0075 (2)0.00755 (19)0.00551 (19)
S10.0237 (4)0.0383 (5)0.0260 (4)0.0052 (3)0.0018 (3)0.0021 (3)
O10.0367 (14)0.0310 (13)0.0459 (14)0.0077 (10)0.0096 (11)0.0101 (11)
O20.0291 (13)0.0813 (19)0.0271 (12)0.0156 (13)0.0029 (10)0.0159 (12)
O30.0278 (12)0.0252 (11)0.0238 (10)0.0042 (9)0.0050 (9)0.0033 (9)
O40.0339 (13)0.0264 (11)0.0289 (11)0.0063 (9)0.0068 (10)0.0033 (9)
O50.0288 (12)0.0290 (12)0.0263 (11)0.0001 (9)0.0053 (9)0.0003 (9)
N1'0.018 (5)0.020 (6)0.017 (4)0.005 (4)0.000 (3)0.002 (3)
N10.020 (3)0.024 (3)0.022 (2)0.0037 (19)0.0026 (18)0.0012 (18)
C10.0342 (19)0.0320 (18)0.0221 (15)0.0041 (14)0.0114 (13)0.0061 (13)
C20.0267 (17)0.041 (2)0.0258 (15)0.0085 (14)0.0014 (13)0.0022 (14)
C30.0267 (17)0.052 (2)0.0297 (17)0.0045 (16)0.0018 (14)0.0147 (15)
C40.034 (2)0.0310 (19)0.047 (2)0.0034 (15)0.0108 (16)0.0073 (15)
C50.0338 (19)0.040 (2)0.0355 (18)0.0106 (16)0.0096 (15)0.0066 (15)
C60.0201 (15)0.052 (2)0.0190 (14)0.0005 (14)0.0039 (12)0.0046 (14)
C7'0.015 (5)0.028 (7)0.017 (4)0.000 (4)0.001 (4)0.002 (4)
C70.026 (3)0.023 (3)0.025 (3)0.001 (2)0.008 (2)0.003 (2)
C80.0242 (18)0.074 (3)0.0207 (15)0.0046 (17)0.0028 (13)0.0137 (16)
C90.053 (2)0.037 (2)0.042 (2)0.0202 (18)0.0217 (18)0.0140 (17)
C100.044 (2)0.0325 (19)0.0352 (18)0.0054 (16)0.0078 (16)0.0029 (15)
C110.0250 (17)0.0375 (19)0.0279 (16)0.0003 (14)0.0034 (13)0.0034 (14)
C120.0290 (17)0.0267 (17)0.0265 (15)0.0031 (13)0.0011 (13)0.0006 (13)
C130.0226 (16)0.054 (2)0.0206 (15)0.0101 (15)0.0063 (12)0.0003 (14)
C140.0194 (15)0.0271 (16)0.0202 (13)0.0017 (12)0.0052 (11)0.0007 (12)
C150.0221 (15)0.0292 (17)0.0250 (15)0.0023 (12)0.0021 (12)0.0003 (12)
C160.0313 (17)0.0251 (16)0.0308 (16)0.0016 (13)0.0031 (14)0.0017 (13)
C170.0288 (18)0.0367 (19)0.0304 (17)0.0054 (14)0.0039 (14)0.0052 (14)
C180.0204 (16)0.0353 (18)0.0264 (15)0.0007 (13)0.0005 (12)0.0009 (13)
C190.0228 (16)0.0305 (17)0.0226 (14)0.0031 (13)0.0001 (12)0.0007 (12)
C200.0254 (17)0.0318 (17)0.0246 (15)0.0061 (13)0.0019 (13)0.0001 (13)
C210.0265 (17)0.0408 (19)0.0245 (15)0.0059 (14)0.0031 (13)0.0011 (14)
C220.042 (2)0.0310 (18)0.0348 (18)0.0077 (15)0.0090 (15)0.0037 (14)
Geometric parameters (Å, º) top
Mn1—O11.878 (2)C7'—H7'0.9500
Mn1—O21.899 (3)C7—H70.9500
Mn1—O31.905 (2)C8—C91.396 (5)
Mn1—N11.986 (5)C8—C131.401 (5)
Mn1—N1'2.094 (11)C9—C101.374 (5)
Mn1—O52.177 (2)C9—H90.9500
Mn1—O42.267 (2)C10—C111.390 (5)
S1—O51.520 (2)C10—H100.9500
S1—C211.782 (3)C11—C121.377 (4)
S1—C221.785 (3)C11—H110.9500
O1—C11.322 (4)C12—C131.391 (5)
O2—C131.336 (4)C12—H120.9500
O3—C141.312 (3)C14—C151.410 (4)
O4—C201.233 (4)C14—C191.419 (4)
N1'—C7'1.299 (19)C15—C161.378 (4)
N1'—C61.492 (11)C15—H150.9500
N1—C71.285 (11)C16—C171.391 (4)
N1—C81.478 (6)C16—H160.9500
C1—C21.399 (4)C17—C181.362 (5)
C1—C61.414 (5)C17—H170.9500
C2—C31.375 (5)C18—C191.408 (4)
C2—H20.9500C18—H180.9500
C3—C41.388 (5)C19—C201.440 (4)
C3—H30.9500C20—H200.9500
C4—C51.362 (5)C21—H21A0.9800
C4—H40.9500C21—H21B0.9800
C5—C61.393 (5)C21—H21C0.9800
C5—H50.9500C22—H22A0.9800
C6—C71.443 (7)C22—H22B0.9800
C7'—C81.478 (11)C22—H22C0.9800
O1—Mn1—O2175.43 (11)C8—C7'—H7'122.9
O1—Mn1—O392.60 (10)N1—C7—C6121.1 (7)
O2—Mn1—O391.96 (11)N1—C7—H7119.4
O1—Mn1—N197.47 (19)C6—C7—H7119.4
O2—Mn1—N177.96 (19)C9—C8—C13120.8 (3)
O3—Mn1—N1168.85 (17)C9—C8—C7'96.8 (5)
O1—Mn1—N1'72.5 (3)C13—C8—C7'142.4 (6)
O2—Mn1—N1'103.0 (3)C9—C8—N1135.8 (4)
O3—Mn1—N1'162.8 (3)C13—C8—N1103.4 (4)
N1—Mn1—N1'25.3 (2)C10—C9—C8120.1 (3)
O1—Mn1—O589.25 (9)C10—C9—H9119.9
O2—Mn1—O590.97 (9)C8—C9—H9119.9
O3—Mn1—O590.93 (8)C9—C10—C11119.4 (3)
N1—Mn1—O593.96 (12)C9—C10—H10120.3
N1'—Mn1—O597.3 (2)C11—C10—H10120.3
O1—Mn1—O489.92 (9)C12—C11—C10120.7 (3)
O2—Mn1—O490.13 (9)C12—C11—H11119.7
O3—Mn1—O485.72 (8)C10—C11—H11119.7
N1—Mn1—O489.50 (12)C11—C12—C13121.0 (3)
N1'—Mn1—O485.7 (2)C11—C12—H12119.5
O5—Mn1—O4176.51 (8)C13—C12—H12119.5
O5—S1—C21104.34 (14)O2—C13—C12121.2 (3)
O5—S1—C22105.36 (15)O2—C13—C8120.8 (3)
C21—S1—C2298.00 (16)C12—C13—C8118.0 (3)
C1—O1—Mn1124.3 (2)O3—C14—C15118.2 (3)
C13—O2—Mn1118.3 (2)O3—C14—C19124.2 (3)
C14—O3—Mn1129.96 (19)C15—C14—C19117.5 (3)
C20—O4—Mn1120.4 (2)C16—C15—C14121.2 (3)
S1—O5—Mn1122.20 (12)C16—C15—H15119.4
C7'—N1'—C6117.5 (11)C14—C15—H15119.4
C7'—N1'—Mn1120.2 (9)C15—C16—C17121.0 (3)
C6—N1'—Mn1122.3 (7)C15—C16—H16119.5
C7—N1—C8117.6 (6)C17—C16—H16119.5
C7—N1—Mn1123.4 (5)C18—C17—C16118.8 (3)
C8—N1—Mn1118.9 (4)C18—C17—H17120.6
O1—C1—C2119.7 (3)C16—C17—H17120.6
O1—C1—C6122.1 (3)C17—C18—C19122.2 (3)
C2—C1—C6118.1 (3)C17—C18—H18118.9
C3—C2—C1120.6 (3)C19—C18—H18118.9
C3—C2—H2119.7C18—C19—C14119.1 (3)
C1—C2—H2119.7C18—C19—C20117.3 (3)
C2—C3—C4121.1 (3)C14—C19—C20123.5 (3)
C2—C3—H3119.4O4—C20—C19127.3 (3)
C4—C3—H3119.4O4—C20—H20116.4
C5—C4—C3119.1 (3)C19—C20—H20116.4
C5—C4—H4120.4S1—C21—H21A109.5
C3—C4—H4120.4S1—C21—H21B109.5
C4—C5—C6121.5 (3)H21A—C21—H21B109.5
C4—C5—H5119.3S1—C21—H21C109.5
C6—C5—H5119.3H21A—C21—H21C109.5
C5—C6—C1119.6 (3)H21B—C21—H21C109.5
C5—C6—C7110.1 (4)S1—C22—H22A109.5
C1—C6—C7130.3 (4)S1—C22—H22B109.5
C5—C6—N1'142.3 (5)H22A—C22—H22B109.5
C1—C6—N1'98.1 (5)S1—C22—H22C109.5
N1'—C7'—C8114.2 (11)H22A—C22—H22C109.5
N1'—C7'—H7'122.9H22B—C22—H22C109.5
O3—Mn1—O1—C1164.1 (2)C4—C5—C6—N1'179.3 (5)
N1—Mn1—O1—C111.1 (3)O1—C1—C6—C5177.5 (3)
N1'—Mn1—O1—C17.2 (3)C2—C1—C6—C52.1 (4)
O5—Mn1—O1—C1105.0 (2)O1—C1—C6—C75.0 (5)
O4—Mn1—O1—C178.4 (2)C2—C1—C6—C7175.4 (3)
O3—Mn1—O2—C13177.8 (2)O1—C1—C6—N1'1.2 (4)
N1—Mn1—O2—C137.1 (2)C2—C1—C6—N1'179.2 (4)
N1'—Mn1—O2—C1310.9 (3)C7'—N1'—C6—C511.1 (10)
O5—Mn1—O2—C1386.8 (2)Mn1—N1'—C6—C5171.2 (4)
O4—Mn1—O2—C1396.5 (2)C7'—N1'—C6—C1170.8 (6)
O1—Mn1—O3—C14120.6 (2)Mn1—N1'—C6—C17.0 (5)
O2—Mn1—O3—C1459.1 (2)C7'—N1'—C6—C73.8 (5)
N1—Mn1—O3—C1434.0 (8)Mn1—N1'—C6—C7178.4 (9)
N1'—Mn1—O3—C1491.2 (8)C6—N1'—C7'—C8178.6 (5)
O5—Mn1—O3—C14150.1 (2)Mn1—N1'—C7'—C83.5 (9)
O4—Mn1—O3—C1430.8 (2)C8—N1—C7—C6179.2 (3)
O1—Mn1—O4—C20120.4 (2)Mn1—N1—C7—C63.8 (6)
O2—Mn1—O4—C2064.2 (2)C5—C6—C7—N1176.5 (4)
O3—Mn1—O4—C2027.8 (2)C1—C6—C7—N15.8 (6)
N1—Mn1—O4—C20142.1 (3)N1'—C6—C7—N11.2 (5)
N1'—Mn1—O4—C20167.2 (4)N1'—C7'—C8—C9177.8 (6)
C21—S1—O5—Mn1173.72 (14)N1'—C7'—C8—C135.7 (11)
C22—S1—O5—Mn183.62 (17)N1'—C7'—C8—N11.6 (5)
O1—Mn1—O5—S1170.71 (15)C7—N1—C8—C99.2 (6)
O2—Mn1—O5—S113.85 (16)Mn1—N1—C8—C9173.6 (3)
O3—Mn1—O5—S178.12 (15)C7—N1—C8—C13171.5 (4)
N1—Mn1—O5—S191.8 (2)Mn1—N1—C8—C135.6 (3)
N1'—Mn1—O5—S1117.1 (3)C7—N1—C8—C7'3.9 (6)
O1—Mn1—N1'—C7'169.6 (7)Mn1—N1—C8—C7'178.9 (6)
O2—Mn1—N1'—C7'9.9 (6)C13—C8—C9—C100.5 (5)
O3—Mn1—N1'—C7'159.4 (6)C7'—C8—C9—C10176.9 (4)
N1—Mn1—N1'—C7'1.1 (5)N1—C8—C9—C10179.7 (4)
O5—Mn1—N1'—C7'82.8 (6)C8—C9—C10—C110.7 (5)
O4—Mn1—N1'—C7'99.1 (6)C9—C10—C11—C120.8 (5)
O1—Mn1—N1'—C68.1 (4)C10—C11—C12—C130.2 (5)
O2—Mn1—N1'—C6172.3 (4)Mn1—O2—C13—C12174.9 (2)
O3—Mn1—N1'—C622.9 (11)Mn1—O2—C13—C86.3 (4)
N1—Mn1—N1'—C6178.8 (9)C11—C12—C13—O2179.8 (3)
O5—Mn1—N1'—C695.0 (5)C11—C12—C13—C81.4 (4)
O4—Mn1—N1'—C683.2 (5)C9—C8—C13—O2179.6 (3)
O1—Mn1—N1—C710.2 (4)C7'—C8—C13—O24.4 (8)
O2—Mn1—N1—C7169.9 (4)N1—C8—C13—O20.3 (4)
O3—Mn1—N1—C7144.2 (7)C9—C8—C13—C121.6 (5)
N1'—Mn1—N1—C71.3 (5)C7'—C8—C13—C12174.4 (6)
O5—Mn1—N1—C7100.0 (4)N1—C8—C13—C12179.1 (3)
O4—Mn1—N1—C779.6 (4)Mn1—O3—C14—C15160.1 (2)
O1—Mn1—N1—C8172.8 (3)Mn1—O3—C14—C1922.4 (4)
O2—Mn1—N1—C87.1 (2)O3—C14—C15—C16178.8 (3)
O3—Mn1—N1—C832.8 (9)C19—C14—C15—C163.5 (4)
N1'—Mn1—N1—C8178.3 (7)C14—C15—C16—C171.6 (5)
O5—Mn1—N1—C883.0 (3)C15—C16—C17—C180.7 (5)
O4—Mn1—N1—C897.4 (3)C16—C17—C18—C190.9 (5)
Mn1—O1—C1—C2173.8 (2)C17—C18—C19—C141.0 (5)
Mn1—O1—C1—C65.8 (4)C17—C18—C19—C20176.6 (3)
O1—C1—C2—C3178.4 (3)O3—C14—C19—C18179.3 (3)
C6—C1—C2—C31.3 (4)C15—C14—C19—C183.2 (4)
C1—C2—C3—C40.3 (5)O3—C14—C19—C203.2 (5)
C2—C3—C4—C51.1 (5)C15—C14—C19—C20174.3 (3)
C3—C4—C5—C60.2 (5)Mn1—O4—C20—C1917.4 (4)
C4—C5—C6—C11.4 (5)C18—C19—C20—O4180.0 (3)
C4—C5—C6—C7176.6 (3)C14—C19—C20—O42.5 (5)

Experimental details

Crystal data
Chemical formula[Mn(C13H9NO2)(C7H5O2)(C2H6OS)]
Mr465.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1342 (3), 20.4224 (5), 8.1812 (2)
β (°) 94.692 (2)
V3)2020.59 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(TWINABS; Bruker, 2009)
Tmin, Tmax0.891, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
39957, 5025, 3528
Rint0.091
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.129, 1.03
No. of reflections5025
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationAsada, H., Ozeki, M., Fujiwara, M. & Matsuchita, T. (2002). Polyhedron, 21, 1139–1148.  CrossRef CAS
First citationAsada, H., Ozeki, M., Fujiwara, M. & Matsushita, T. (1999). Chem. Lett. pp. 525–526.  CSD CrossRef
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS
First citationBruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationNakamura, T., Niwa, K., Fujiwara, M. & Matsushita, T. (1999). Chem. Lett. pp. 1067–1068.  Web of Science CrossRef
First citationNakamura, T., Niwa, K., Usugi, S., Asada, H., Fujiwara, M. & Matsushita, T. (2001). Polyhedron, 20, 191–201.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds