

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-[(2-Chlorobenzyl)amino]-5-(3,4,5trimethoxyphenyl)-5,5a,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d][1,3]dioxol-6(8H)-one

Tie-Liang Zhu,^a Jie-Ru Jin,^b Hong Chen,^{c,d} Li-Ting Chen^d and ling Liu^d*

^aThe Affiliated Hospital of the Medical College of the Chinese People's Armed Police Forces, Tianjin 300162, People's Republic of China, ^bThe General Unit of the Chinese People's Armed Police Force Hospital in Tianjin, Tianjin 300252, People's Republic of China, ^cTianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazards, Tianjin 300162, People's Republic of China, and ^dRoom of Pharmacognosy, Medical College of the Chinese People's Armed Police Forces, Tianjin 300162, People's Republic of China Correspondence e-mail: liujing870421@yahoo.cn

Received 8 May 2011; accepted 13 May 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.066; data-to-parameter ratio = 17.1.

In the title compound, C₂₉H₂₈ClNO₇, the tetrahydrofuran ring and the six-membered ring fused to it both display envelope conformations. The dihedral angles between the plane of the benzene ring of the benzo[d][1,3] dioxole system and the planes of the other two benzene rings are 80.59(3) and 63.60 (2)°.

Related literature

For bond-length and angle data for similar structures, see: Feng et al. (2008); Zhang et al. (1994); Zuo et al. (2009).

26247 measured reflections

 $R_{\rm int} = 0.044$

5968 independent reflections 5580 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C29H28ClNO7 V = 2499.9 (6) Å³ $M_r = 537.97$ Z = 4Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation a = 10.0971 (14) Å $\mu = 0.20 \text{ mm}^{-1}$ T = 113 Kb = 15.264 (2) Å c = 16.220 (2) Å $0.20 \times 0.18 \times 0.12 \text{ mm}$

Data collection

Rigaku Saturn CCD area-detector
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
$T_{\min} = 0.960, T_{\max} = 0.976$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
$wR(F^2) = 0.066$	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
S = 1.03	Absolute structure: Flack (1983),
5968 reflections	2615 Friedel pairs
350 parameters	Flack parameter: 0.00 (4)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C26-H26\cdots O7^{i}$	0.95	2.56	3.2130 (18)	126
Symmetry code: (i) x y	-17			

Symmetry code: (i) x, y - 1, z.

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No. 30873363), the Program of the Science Foundation of Tianjin (08JCYBJC070000) and the Major Program of the Science Foundation of Tianjin (09ZCKFSH01700).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5035).

References

Feng, M., Zhao, M., Zhang, J., Yang, Z. & Chen, H. (2008). Acta Cryst. E64, o2339.

- Rigaku. (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, Y. L., Tropsha, A., McPhail, A. T. & Lee, K. H. (1994). J. Med. Chem. 37. 1460-1464.

Zuo, S., Chen, H., Lu, Y., Cao, B. & Liu, D. (2009). Acta Cryst. E65, 03257.

supporting information

Acta Cryst. (2011). E67, o1491 [doi:10.1107/S1600536811018289]

9-[(2-Chlorobenzyl)amino]-5-(3,4,5-trimethoxyphenyl)-5,5a,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-*d*][1,3]dioxol-6(8*H*)-one

Tie-Liang Zhu, Jie-Ru Jin, Hong Chen, Li-Ting Chen and Jing Liu

S1. Comment

Podophyllotoxin and their derivatives are well known as substances with anti-cancer activity. In recent years, our study are paying attention to synthesize different kinds of Podophyllotoxin compounds and aim at the discovery of new derivatives with improved bioactivities. In this paper, we reported the crystal structure of title compound.

In title compound, $C_{29}H_{28}CINO_7$, bond lengths and angles are normal and in good agreement with those reported previously (Feng *et al.*, 2008; Zhang, *et al.*, 1994; Zuo, *et al.*, 2009). The tetrahydrofuran ring (C1/C2/C12/C30/O3) and the six-membered ring (C2—C4/C10—C12)fused to it both display envelope conformations. The dihedral angles between the benzene ring (C4—C10) of the benzo[*d*]-[1,3]dioxole and the other two benzene ring (C13—C18 and C23—C28) are 80.59 (3) and 63.60 (2)°, respectively. There are weaker C—H…O intermolecular interactions, which stabilized the structure (Table 1).

S2. Experimental

The target compound was synthesized by two steps. 2-chlorobenzaldehyde, 4β -amino podophyllotoxin, two drops of acetic acid in 95% ethanol was stirred for 6 h. Appropriate amount of NaBH₄ was added into the reaction mixture to stirred for 1 h at 273 K. Then add 5% HCl to end off the reaction, the reaction mixture was concentrated *in vacuo*. Add saturated NaHCO₃ to adjust PH>7. The reaction mixture was extracted with CH₂Cl₂ and dried over MgSO₄ and concentrated *in vacuo*. The residue was resolved in a methanol solution and slow evaporation over two weeks at room temperature gave transparent crystals suitable for X-ray analysis.

S3. Refinement

All C H atoms were found on difference maps, with C—H = 0.95–1.00 Å and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl and methylene H atoms and $1.5U_{eq}(C)$ for the methyl H atoms. H atoms bonded N were refined freely with N—H = 0.96 (2) Å.

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 40% probability level.

9-[(2-Chlorobenzyl)amino]-5-(3,4,5-trimethoxyphenyl)-5,5a,8a,9-tetrahydrofuro[3',4':6,7]naphtho[2,3-d] [1,3]dioxol-6(8*H*)-one

Crystal data

$$C_{29}H_{28}CINO_7$$
 $F(000) = 1128$
 $M_r = 537.97$
 $D_x = 1.429 \text{ Mg m}^{-3}$

 Orthorhombic, $P2_12_12_1$
 Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$

 Hall symbol: P 2ac 2ab
 Cell parameters from 8535 reflection

 $a = 10.0971 (14) \text{ Å}$
 $\theta = 1.3-27.9^{\circ}$
 $b = 15.264 (2) \text{ Å}$
 $\mu = 0.20 \text{ mm}^{-1}$
 $c = 16.220 (2) \text{ Å}$
 $T = 113 \text{ K}$
 $V = 2499.9 (6) \text{ Å}^3$
 Prism, colorless

 $Z = 4$
 $0.20 \times 0.18 \times 0.12 \text{ mm}$

Rigaku Saturn CCD area-detector diffractometer Radiation source: rotating anode Multilayer monochromator $R_{\rm int} = 0.044$ $\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ $h = -13 \rightarrow 13$ Detector resolution: 14.63 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan $k = -20 \rightarrow 20$ (CrystalClear; Rigaku, 2007) $l = -20 \rightarrow 21$ $T_{\rm min} = 0.960, \ T_{\rm max} = 0.976$

ıs

26247 measured reflections 5968 independent reflections 5580 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent
$wR(F^2) = 0.066$	and constrained refinement
S = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2]$
5968 reflections	where $P = (F_o^2 + 2F_c^2)/3$
350 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 2615 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.00 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	-0.19083 (4)	-0.19218 (2)	0.81504 (2)	0.02120 (9)
01	0.56079 (11)	0.23021 (7)	0.72078 (6)	0.0247 (3)
O2	0.41961 (12)	0.14072 (7)	0.64668 (6)	0.0240 (3)
O3	0.09055 (11)	0.06096 (7)	1.11792 (6)	0.0253 (3)
O4	0.28209 (11)	0.10425 (6)	1.17321 (6)	0.0261 (3)
05	0.31178 (11)	0.40151 (6)	1.20050 (6)	0.0209 (2)
O6	0.18781 (11)	0.51133 (6)	1.09222 (6)	0.0189 (2)
07	0.12116 (11)	0.45705 (6)	0.94280 (6)	0.0209 (2)
N1	0.16797 (13)	-0.03792 (7)	0.88773 (8)	0.0199 (3)
C1	0.03959 (16)	0.03821 (10)	1.03598 (9)	0.0229 (3)
H1A	-0.0550	0.0545	1.0307	0.027*
H1B	0.0491	-0.0253	1.0253	0.027*
C2	0.12467 (15)	0.09136 (9)	0.97679 (9)	0.0178 (3)
H2	0.0883	0.1522	0.9740	0.021*
C3	0.14712 (15)	0.05866 (8)	0.88890 (9)	0.0180 (3)
Н3	0.0667	0.0725	0.8554	0.022*
C4	0.26551 (15)	0.10614 (8)	0.85124 (9)	0.0162 (3)
C5	0.28349 (15)	0.09545 (9)	0.76558 (9)	0.0193 (3)
Н5	0.2256	0.0594	0.7343	0.023*
C6	0.38597 (16)	0.13821 (9)	0.72912 (9)	0.0189 (3)
C7	0.54559 (17)	0.18360 (12)	0.64454 (10)	0.0287 (4)
H7A	0.5496	0.2248	0.5975	0.034*
H7B	0.6174	0.1399	0.6382	0.034*

C8	0.47041 (15)	0.19194 (10)	0.77350 (9)	0.0185 (3)
С9	0.45689 (15)	0.20311 (9)	0.85659 (9)	0.0180 (3)
Н9	0.5156	0.2400	0.8865	0.022*
C10	0.35316 (15)	0.15831 (8)	0.89679 (9)	0.0163 (3)
C11	0.34335 (15)	0.16871 (8)	0.99015 (8)	0.0161 (3)
H11	0.4342	0.1599	1.0133	0.019*
C12	0.25620 (15)	0.09411 (9)	1.02231 (9)	0.0179 (3)
H12	0.3033	0.0382	1.0093	0.021*
C13	0.29684 (15)	0.25985 (8)	1.01666 (8)	0.0158 (3)
C14	0.32622 (15)	0.28769 (8)	1.09600 (9)	0.0168 (3)
H14	0.3742	0.2503	1.1320	0.020*
C15	0.28577 (15)	0.37031 (9)	1.12340 (8)	0.0158 (3)
C16	0.21789 (15)	0.42648 (8)	1.07030 (8)	0.0158 (3)
C17	0.18852 (15)	0.39801 (8)	0.99061 (8)	0.0157 (3)
C18	0.22750 (14)	0.31519 (9)	0.96379 (9)	0.0165 (3)
H18	0.2068	0.2965	0.9094	0.020*
C19	0.37066 (17)	0.34058 (10)	1.25669 (9)	0.0248 (4)
H19A	0.3180	0.2867	1.2580	0.037*
H19B	0.3734	0.3664	1.3120	0.037*
H19C	0.4609	0.3270	1.2386	0.037*
C20	0.08614 (17)	0.52134 (10)	1.15354 (10)	0.0233 (4)
H20A	0.0070	0.4889	1.1365	0.035*
H20B	0.0642	0.5836	1.1596	0.035*
H20C	0.1179	0.4984	1.2064	0.035*
C21	0.10712 (18)	0.43615 (10)	0.85726 (9)	0.0254 (4)
H21A	0.1949	0.4285	0.8325	0.038*
H21B	0.0604	0.4838	0.8291	0.038*
H21C	0.0564	0.3818	0.8515	0.038*
C22	0.04768 (15)	-0.08553 (9)	0.86421 (9)	0.0193 (3)
H22A	0.0434	-0.0891	0.8033	0.023*
H22B	-0.0305	-0.0519	0.8832	0.023*
C23	0.04024 (15)	-0.17743 (9)	0.89942 (8)	0.0157 (3)
C24	0.13828 (16)	-0.21272 (9)	0.94947 (9)	0.0196 (3)
H24	0.2148	-0.1789	0.9617	0.024*
C25	0.12665 (16)	-0.29669 (9)	0.98209 (9)	0.0218 (3)
H25	0.1958	-0.3201	1.0151	0.026*
C26	0.01461 (16)	-0.34623 (10)	0.96657 (9)	0.0206 (3)
H26	0.0055	-0.4028	0.9904	0.025*
C27	-0.08436 (15)	-0.31306 (9)	0.91619 (8)	0.0184 (3)
H27	-0.1614	-0.3467	0.9049	0.022*
C28	-0.06935 (15)	-0.23039 (9)	0.88264 (8)	0.0165 (3)
C30	0.21676 (16)	0.08957 (9)	1.11209 (9)	0.0211 (3)
H1	0.2339 (18)	-0.0558 (10)	0.8486 (10)	0.029 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.01945 (19)	0.02013 (16)	0.02402 (18)	-0.00103 (16)	-0.00483 (16)	0.00179 (14)

01	0.0245 (6)	0.0268 (6)	0.0227 (6)	-0.0046 (5)	0.0060 (5)	-0.0004 (4)
O2	0.0276 (7)	0.0272 (6)	0.0172 (5)	-0.0013 (5)	0.0006 (5)	-0.0011 (4)
O3	0.0264 (7)	0.0266 (6)	0.0229 (6)	-0.0033 (5)	0.0008 (5)	0.0018 (5)
O4	0.0340 (7)	0.0244 (5)	0.0200 (6)	-0.0020 (5)	-0.0058 (5)	0.0028 (4)
05	0.0264 (6)	0.0203 (5)	0.0160 (5)	-0.0005 (5)	-0.0052 (5)	-0.0020 (4)
O6	0.0253 (6)	0.0112 (4)	0.0203 (5)	-0.0021 (5)	0.0045 (5)	-0.0013 (4)
O7	0.0305 (6)	0.0163 (5)	0.0159 (5)	0.0054 (5)	-0.0063 (5)	0.0013 (4)
N1	0.0177 (7)	0.0138 (6)	0.0282 (7)	0.0003 (5)	-0.0035 (6)	-0.0016 (5)
C1	0.0202 (9)	0.0249 (8)	0.0234 (8)	-0.0020 (7)	-0.0009 (7)	0.0017 (6)
C2	0.0168 (8)	0.0154 (7)	0.0213 (7)	0.0017 (6)	-0.0017 (6)	0.0016 (6)
C3	0.0163 (8)	0.0147 (7)	0.0230 (8)	0.0008 (6)	-0.0051 (6)	-0.0003 (6)
C4	0.0178 (8)	0.0104 (6)	0.0203 (7)	0.0030 (6)	-0.0027 (6)	0.0012 (5)
C5	0.0213 (8)	0.0140 (6)	0.0227 (8)	0.0009 (6)	-0.0054 (6)	-0.0020 (6)
C6	0.0232 (9)	0.0165 (7)	0.0171 (8)	0.0050 (6)	-0.0008 (6)	0.0017 (6)
C7	0.0255 (9)	0.0387 (10)	0.0219 (8)	-0.0006 (8)	0.0017 (7)	0.0007 (7)
C8	0.0170 (8)	0.0152 (7)	0.0232 (8)	0.0026 (7)	0.0003 (6)	0.0023 (6)
C9	0.0176 (8)	0.0142 (7)	0.0221 (8)	0.0001 (6)	-0.0023 (6)	-0.0031 (6)
C10	0.0179 (8)	0.0126 (6)	0.0182 (7)	0.0059 (6)	-0.0010 (6)	-0.0014 (5)
C11	0.0169 (8)	0.0164 (7)	0.0151 (7)	0.0013 (6)	-0.0033 (6)	0.0010 (5)
C12	0.0184 (8)	0.0139 (6)	0.0214 (8)	0.0027 (6)	-0.0028 (6)	0.0012 (6)
C13	0.0142 (8)	0.0153 (7)	0.0179 (7)	-0.0017 (6)	0.0000 (7)	0.0002 (5)
C14	0.0157 (8)	0.0161 (7)	0.0187 (7)	0.0005 (6)	-0.0041 (6)	0.0036 (5)
C15	0.0154 (8)	0.0179 (6)	0.0140 (7)	-0.0047 (6)	-0.0006 (6)	-0.0013 (5)
C16	0.0181 (8)	0.0125 (6)	0.0169 (7)	-0.0027 (6)	0.0024 (6)	-0.0017 (5)
C17	0.0148 (7)	0.0146 (6)	0.0178 (7)	-0.0023 (6)	0.0002 (6)	0.0030 (5)
C18	0.0174 (7)	0.0169 (7)	0.0152 (7)	-0.0020 (6)	0.0010 (6)	-0.0006 (6)
C19	0.0292 (9)	0.0276 (8)	0.0175 (8)	-0.0019 (7)	-0.0070 (7)	0.0028 (6)
C20	0.0239 (9)	0.0189 (8)	0.0272 (9)	-0.0012 (6)	0.0056 (7)	-0.0033 (6)
C21	0.0386 (10)	0.0215 (8)	0.0160 (8)	-0.0003 (7)	-0.0056 (7)	0.0025 (6)
C22	0.0196 (8)	0.0172 (7)	0.0213 (8)	-0.0031 (6)	-0.0033 (6)	0.0018 (6)
C23	0.0182 (8)	0.0151 (7)	0.0138 (7)	0.0006 (6)	0.0017 (6)	-0.0017 (5)
C24	0.0202 (8)	0.0212 (8)	0.0174 (7)	-0.0011 (6)	-0.0004 (6)	-0.0022 (6)
C25	0.0274 (9)	0.0211 (8)	0.0169 (7)	0.0059 (7)	-0.0040 (7)	0.0001 (6)
C26	0.0284 (9)	0.0158 (7)	0.0174 (7)	0.0022 (6)	0.0046 (7)	0.0003 (6)
C27	0.0200 (8)	0.0183 (7)	0.0169 (7)	-0.0029 (7)	0.0044 (6)	-0.0025 (6)
C28	0.0168 (8)	0.0189 (7)	0.0139 (7)	0.0018 (6)	0.0002 (6)	-0.0018 (6)
C30	0.0246 (9)	0.0143 (7)	0.0245 (8)	0.0018 (6)	-0.0008 (7)	0.0032 (6)

Geometric parameters (Å, °)

C11—C28	1.7455 (15)	C11—C13	1.5301 (19)
O1—C8	1.3803 (18)	C11—C12	1.531 (2)
O1—C7	1.4348 (18)	C11—H11	1.0000
O2—C6	1.3802 (17)	C12—C30	1.511 (2)
O2—C7	1.431 (2)	C12—H12	1.0000
O3—C30	1.3504 (19)	C13—C14	1.3874 (19)
O3—C1	1.4669 (18)	C13—C18	1.3925 (19)
O4—C30	1.2116 (18)	C14—C15	1.3981 (19)

O5—C15	1.3637 (16)	C14—H14	0.9500
O5—C19	1.4315 (17)	C15—C16	1.395 (2)
O6—C16	1.3771 (16)	C16—C17	1.3956 (19)
O6—C20	1.4374 (18)	C17—C18	1.3937 (19)
O7—C17	1.3697 (17)	C18—H18	0.9500
O7—C21	1.4307 (18)	С19—Н19А	0.9800
N1—C22	1.4659 (19)	С19—Н19В	0.9800
N1—C3	1.4892 (17)	С19—Н19С	0.9800
N1—H1	0.959 (17)	C20—H20A	0.9800
C1—C2	1.522 (2)	C20—H20B	0.9800
C1—H1A	0.9900	C20—H20C	0.9800
C1—H1B	0.9900	C21—H21A	0.9800
C^2 — C^{12}	1 520 (2)	C21—H21B	0.9800
$C^2 - C^3$	1.527(2)	C_{21} H21C	0.9800
C2—H2	1 0000	C^{22} C^{23}	1 5164 (19)
$C_3 - C_4$	1 526 (2)	C22_H22A	0.9900
C3—H3	1.0000	C22_H22B	0.9900
C4-C10	1 401 (2)	C^{23} C^{24}	1.389(2)
C4-C5	1.101(2) 1.411(2)	C_{23} C_{28}	1.307(2)
C5-C6	1.411(2) 1 359(2)	$C_{23} = C_{23}$	1.397(2)
C5—H5	0.9500	C24—C25	0.9500
C6-C8	1 385 (2)	$C_{24} = 1124$ $C_{25} = C_{26}$	1.384(2)
C7_H7A	0.9900	C25—C20	0.9500
C7 H7B	0.9900	C25 C27	1.387(2)
C_{1}	1 3654 (10)	$C_{20} = C_{27}$	0.9500
C_{0}	1.3034(19) 1.411(2)	$C_{20} = 1120$	1.383(2)
C_{2}	1.411(2)	$C_{27} = C_{28}$	1.383 (2)
$C_{2} = 115$	0.9500	027-1127	0.9500
C10-C11	1.320 (2)		
C8-01-C7	104 68 (11)	C14—C13—C18	119 54 (12)
$C_{6} - O_{2} - C_{7}$	104.77(12)	C_{14} C_{13} C_{11}	119.31 (12)
$C_{30} = C_{3} = C_{1}$	110 13 (12)	C18 - C13 - C11	122.19(12)
$C_{15} - C_{19}$	115 91 (11)	C_{13} C_{14} C_{15}	122.19(12) 120.58(13)
$C_{16} = O_{6} = C_{20}$	115.86 (10)	C_{13} C_{14} H_{14}	110 7
$C_{17} = 07 = C_{21}$	116.85 (11)	C_{15} C_{14} H_{14}	119.7
$C_{22} = N_{1} = C_{3}$	112 14 (11)	05-015-016	116.50 (12)
$C_{22} = N_1 = H_1$	105.2(10)	05-C15-C14	123 39 (12)
C_2 N1 H1	112.8(10)	$C_{16} C_{15} C_{14}$	123.37(12) 120.10(13)
$C_3 = C_1 = C_2$	112.0(10) 104.31(12)	06 C16 C15	120.10(13) 121.80(12)
03-C1-H1A	110.9	06-C16-C17	121.00(12) 119.02(12)
$C_2 - C_1 - H_1 A$	110.9	C_{15}	119.02(12)
$C_2 = C_1 = H_1 R$	110.9	$07 \ C17 \ C18$	119.00(12) 124.07(13)
C_2 C_1 H_1B	110.9	07 - C17 - C16	127.07(13) 115 16(12)
	10.9	$C_{18} = C_{17} = C_{16}$	113.10(12) 120.77(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.7	$C_{10} = C_{17} = C_{10}$	120.77(13) 120.00(13)
$C_{12} - C_{2} - C_{1}$	101.02(11) 100.44(12)	$C_{13} = C_{10} = C_{17}$	120.00 (13)
$C_{12} - C_{2} - C_{3}$	107.44 (12) 110.88 (12)	C_{13} C_{10} $-\Pi_{10}$ C_{17} C_{18} Π_{19}	120.0
$C_1 = C_2 = C_3$	117.00 (12)	$C_{1} = C_{10} = H_{10}$	120.0
$U12 - U2 - \Pi2$	100.4	UJ-UIJ-117A	109.3

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2—H2	108.4	O5—C19—H19B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С2—Н2	108.4	H19A—C19—H19B	109.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C3—C4	110.76 (12)	O5—C19—H19C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C3—C2	110.88 (12)	H19A—C19—H19C	109.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C4—C3—C2	109.56 (11)	H19B—C19—H19C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C3—H3	108.5	O6—C20—H20A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С4—С3—Н3	108.5	O6—C20—H20B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С2—С3—Н3	108.5	H20A—C20—H20B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C4—C5	120.25 (14)	O6—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C4—C3	123.63 (13)	H20A—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C4—C3	116.12 (13)	H20B—C20—H20C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C5-C4	118.11 (14)	07—C21—H21A	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С5—Н5	120.9	07—C21—H21B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5—H5	120.9	$H_{21}A - C_{21} - H_{21}B$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{5}-C_{6}-O_{2}$	128 50 (14)	07-C21-H21C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{5} C_{6} C_{8}	121.80(13)	$H_{21}A - C_{21} - H_{21}C$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 - C6 - C8	109.61 (13)	H_{21B} C_{21} H_{21C}	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 - C7 - 01	107.52(12)	N1-C22-C23	113 68 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Omega^2 - C^7 - H^7 A$	110.2	N1—C22—H22A	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-C7-H7A	110.2	C_{23} C_{22} H_{22A}	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02—C7—H7B	110.2	N1—C22—H22B	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—C7—H7B	110.2	C23—C22—H22B	108.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H7A - C7 - H7B	108.5	$H_{22}A - C_{22} - H_{22}B$	107.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C8-O1	128 67 (14)	C_{24} C_{23} C_{28}	107.7 117.00(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C8-C6	121.71 (14)	C_{24} C_{23} C_{20} C_{20}	122.93 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 - C8 - C6	109.61(12)	$C_{28} = C_{23} = C_{22}$	122.95(13) 120.07(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C9-C10	118 03 (14)	C_{23} C_{24} C_{25}	120.07(13) 121.28(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C9—H9	121.0	C_{23} C_{24} H_{24}	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C9-H9	121.0	$C_{25} = C_{24} = H_{24}$	119.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C10-C9	120.05 (13)	$C_{25} = C_{25} = C_{24}$	120 20 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C10-C11	122.00 (13)	$C_{26} = C_{25} = H_{25}$	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C10-C11	117 17 (13)	C_{24} C_{25} H_{25}	119.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C13	113 17 (11)	$C_{25} = C_{26} = C_{27}$	119.80 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-C12	107 35 (11)	$C_{25} = C_{26} = H_{26}$	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13 - C11 - C12	113 84 (12)	$C_{27} - C_{26} - H_{26}$	120.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-H11	107.4	C_{28} C_{27} C_{26} C_{27} C_{26}	120.1 119.09(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—C11—H11	107.4	C28—C27—H27	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{12} C_{11} H_{11}	107.4	$C_{26} = C_{27} = H_{27}$	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{30} C_{12} C_{2} C_{2}	103.68 (12)	$C_{20} = C_{21} = C_{23}$	120.5
C2-C12-C11110.35 (12)C27-C12 C16110.36 (12)C2-C12-C11110.93 (11)C23-C28-C11119.05 (11)C30-C12-H12106.8O4-C30-O3121.09 (14)C2-C12-H12106.8O4-C30-C12129.53 (15)C11-C12-H12106.8O3-C30-C12109.32 (13)C30-O3-C1-C2-23.55 (15)C10-C11-C13-C14-158.29 (13)O3-C1-C2-C1232.23 (14)C12-C11-C13-C1478.78 (17)O3-C1-C2-C3152.89 (12)C10-C11-C13-C1821.3 (2)	$C_{30} - C_{12} - C_{2}$	120.93(12)	$C_{27} = C_{28} = C_{23}$	122.30(14) 118 38 (12)
$C_{22} = C_{12} = C_{11}$ $T_{10,55} (T_1)$ $C_{225} = C_{25} = C_{15}$ $T_{15,05} (T_1)$ $C_{30}-C_{12}-H_{12}$ 106.8 $O4-C_{30}-O3$ $121.09 (14)$ $C_{2}-C_{12}-H_{12}$ 106.8 $O4-C_{30}-C_{12}$ $129.53 (15)$ $C_{11}-C_{12}-H_{12}$ 106.8 $O3-C_{30}-C_{12}$ $109.32 (13)$ $C_{30}-O_{3}-C_{1}-C_{2}$ $-23.55 (15)$ $C_{10}-C_{11}-C_{13}-C_{14}$ $-158.29 (13)$ $O_{3}-C_{1}-C_{2}-C_{12}$ $32.23 (14)$ $C_{12}-C_{11}-C_{13}-C_{14}$ $78.78 (17)$ $O_{3}-C_{1}-C_{2}-C_{3}$ $152.89 (12)$ $C_{10}-C_{11}-C_{13}-C_{18}$ $21.3 (2)$	C_{2} C_{12} C_{11}	120.93(12) 110.93(11)	C_{23} C_{28} C_{11}	110.50(12)
$C_{30} - C_{12} - H_{12}$ $H_{30,3}$ $O_{4} - C_{30} - O_{3}$ $H_{21,0}$ (14) $C_{2} - C_{12} - H_{12}$ H_{20} $O_{4} - C_{30} - C_{12}$ $H_{22,53}$ (15) $C_{11} - C_{12} - H_{12}$ H_{20} $O_{3} - C_{30} - C_{12}$ $H_{22,53}$ (15) $C_{30} - O_{3} - C_{1} - C_{2}$ -23.55 (15) $C_{10} - C_{11} - C_{13} - C_{14}$ -158.29 (13) $O_{3} - C_{1} - C_{2} - C_{12}$ 32.23 (14) $C_{12} - C_{11} - C_{13} - C_{14}$ 78.78 (17) $O_{3} - C_{1} - C_{2} - C_{3}$ 152.89 (12) $C_{10} - C_{11} - C_{13} - C_{18}$ 21.3 (2)	$C_{2} = C_{12} = C_{11}$	106.8	$04-C_{30}-O_{3}$	119.09(11) 121.09(14)
C_{11} C_{11} C_{11} C_{11} C_{11} C_{11} C_{11} C_{11} C_{11} C_{12} C_{12	C_{2} C_{12} H_{12}	106.8	$04 - C_{30} - C_{12}$	121.09(14) 129.53(15)
C30-O3-C1-C2 $-23.55 (15)$ $C10-C11-C13-C14$ $-158.29 (13)$ $O3-C1-C2-C12$ $32.23 (14)$ $C12-C11-C13-C14$ $78.78 (17)$ $O3-C1-C2-C3$ $152.89 (12)$ $C10-C11-C13-C18$ $21.3 (2)$	C_{11} C_{12} H_{12}	106.8	$03 - C_{30} - C_{12}$	129.33(13) 109.32(13)
C30-O3-C1-C2 -23.55 (15) C10-C11-C13-C14 -158.29 (13) O3-C1-C2-C12 32.23 (14) C12-C11-C13-C14 78.78 (17) O3-C1-C2-C3 152.89 (12) C10-C11-C13-C18 21.3 (2)	011-012-1112	100.0	05-050-012	109.52 (15)
O3-C1-C2-C12 32.23 (14) C12-C11-C13-C14 78.78 (17) O3-C1-C2-C3 152.89 (12) C10-C11-C13-C18 21.3 (2)	C30—O3—C1—C2	-23.55 (15)	C10-C11-C13-C14	-158.29 (13)
O3—C1—C2—C3 152.89 (12) C10—C11—C13—C18 21.3 (2)	O3—C1—C2—C12	32.23 (14)	C12—C11—C13—C14	78.78 (17)
	O3—C1—C2—C3	152.89 (12)	C10-C11-C13-C18	21.3 (2)

C22—N1—C3—C4	-138.33 (13)	C12—C11—C13—C18	-101.68 (15)
C22—N1—C3—C2	99.82 (14)	C18—C13—C14—C15	0.6 (2)
C12—C2—C3—N1	76.31 (15)	C11—C13—C14—C15	-179.85 (13)
C1—C2—C3—N1	-40.37 (18)	C19—O5—C15—C16	174.55 (13)
C12—C2—C3—C4	-46.24 (14)	C19—O5—C15—C14	-7.0 (2)
C1—C2—C3—C4	-162.92 (13)	C13—C14—C15—O5	-179.86 (13)
N1-C3-C4-C10	-111.37 (14)	C13—C14—C15—C16	-1.5 (2)
C2-C3-C4-C10	11.25 (18)	C20	-71.65 (18)
N1—C3—C4—C5	68.97 (15)	C20—O6—C16—C17	113.25 (15)
C2—C3—C4—C5	-168.41 (12)	O5-C15-C16-O6	4.9 (2)
C10—C4—C5—C6	-1.1 (2)	C14—C15—C16—O6	-173.55 (13)
C3—C4—C5—C6	178.52 (12)	O5—C15—C16—C17	-179.98 (12)
C4—C5—C6—O2	-177.04 (14)	C14—C15—C16—C17	1.5 (2)
C4—C5—C6—C8	-0.8 (2)	C21—O7—C17—C18	-9.0 (2)
C7—O2—C6—C5	-171.48 (15)	C21—O7—C17—C16	170.60 (13)
C7—O2—C6—C8	11.94 (16)	O6—C16—C17—O7	-5.1 (2)
C6—O2—C7—O1	-19.05 (16)	C15—C16—C17—O7	179.68 (13)
C8—O1—C7—O2	18.94 (16)	O6-C16-C17-C18	174.50 (13)
C7—O1—C8—C9	169.91 (16)	C15—C16—C17—C18	-0.7 (2)
C7—O1—C8—C6	-11.63 (15)	C14—C13—C18—C17	0.2 (2)
C5—C6—C8—C9	1.6 (2)	C11—C13—C18—C17	-179.31 (13)
O2—C6—C8—C9	178.41 (13)	O7—C17—C18—C13	179.40 (13)
C5-C6-C8-O1	-177.03 (13)	C16—C17—C18—C13	-0.1 (2)
O2-C6-C8-O1	-0.17 (16)	C3—N1—C22—C23	-152.51 (12)
O1—C8—C9—C10	178.05 (13)	N1-C22-C23-C24	0.2 (2)
C6-C8-C9-C10	-0.2 (2)	N1—C22—C23—C28	179.56 (13)
C5-C4-C10-C9	2.4 (2)	C28—C23—C24—C25	-0.7 (2)
C3—C4—C10—C9	-177.21 (13)	C22—C23—C24—C25	178.61 (14)
C5-C4-C10-C11	-176.76 (13)	C23—C24—C25—C26	-1.5 (2)
C3—C4—C10—C11	3.6 (2)	C24—C25—C26—C27	2.1 (2)
C8—C9—C10—C4	-1.7 (2)	C25—C26—C27—C28	-0.4 (2)
C8—C9—C10—C11	177.53 (13)	C26—C27—C28—C23	-2.0 (2)
C4—C10—C11—C13	-109.51 (15)	C26—C27—C28—Cl1	176.65 (11)
C9—C10—C11—C13	71.28 (17)	C24—C23—C28—C27	2.5 (2)
C4—C10—C11—C12	16.95 (18)	C22—C23—C28—C27	-176.88 (13)
C9-C10-C11-C12	-162.27 (12)	C24—C23—C28—C11	-176.10 (11)
C1-C2-C12-C30	-29.50 (14)	C22—C23—C28—Cl1	4.52 (18)
C3—C2—C12—C30	-157.22 (11)	C1—O3—C30—O4	-173.15 (13)
C1—C2—C12—C11	-160.76 (12)	C1	4.19 (15)
C3—C2—C12—C11	71.52 (14)	C2-C12-C30-O4	-166.14 (15)
C10-C11-C12-C30	-174.77 (13)	C11—C12—C30—O4	-41.1 (2)
C13—C11—C12—C30	-48.71 (18)	C2—C12—C30—O3	16.81 (14)
C10-C11-C12-C2	-53.14 (15)	C11—C12—C30—O3	141.88 (13)
C13—C11—C12—C2	72.92 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C26—H26…O7 ⁱ	0.95	2.56	3.2130 (18)	126

Symmetry code: (i) x, y-1, z.