

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua[1-(4-carboxyphenyl)-1*H*imidazole- κN^3](pyridine-2,6dicarboxylato- $\kappa^3 O^2$,*N*,*O*⁶)copper(II) monohydrate

Fanzhen Kong and Zhangyu Yu*

School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 330031, People's Republic of China Correspondence e-mail: yuzhangyucn@yahoo.com.cn

Received 9 April 2011; accepted 25 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.096; data-to-parameter ratio = 12.2.

In the title complex, $[Cu(C_7H_3NO_4)(C_{10}H_8N_2O_2)(H_2O)] \cdot H_2O$, the Cu^{II} ion is in a slightly distorted square-pyramidal geometry. Two carboxylate O atoms and one pyridine N atom from a pyridine-2,6-dicarboxylate ligand chelate the Cu^{II} ion, forming two stable five-membered metalla rings. One imidazole N atom from a 1-(4-carboxyphenyl)imidazole ligand and one water molecule complete the five-coordination. O– $H \cdot \cdot \cdot O$ hydrogen bonds involving the coordinated water molecules and carboxylate groups link the complex molecules into chain-containing dinuclear macrocycles. O– $H \cdot \cdot \cdot O$ hydrogen bonds involving the uncoordinated water molecules link the chains into a layer extending parallel to ($10\overline{1}$).

Related literature

For the design and synthesis of compounds with metal-organic supramolecular architectures, see: Bradshaw *et al.* (2005); Tian *et al.* (2005); Wang *et al.* (2009). For the use of N-containing heterocyclic carboxylate ligands in metal-organic supramolecular architectures, see: Bentiss *et al.* (2004); Yang *et al.* (2008); Zeng *et al.* (2006). For related structures, see: Li *et al.* (2008).

Experimental

 Crystal data

 $[Cu(C_7H_3NO_4)(C_{10}H_8N_2O_2) (H_2O)]\cdot H_2O$
 $M_r = 452.87$

 Triclinic, $P\overline{1}$

 $V = 862.43 (15) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.34 \times 0.20 \times 0.15 \text{ mm}$

6749 measured reflections 3920 independent reflections

3485 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\cdot A$

 $\mu = 1.32 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.020$

refinement

 $\Delta \rho_{\rm max} = 0.37$ e Å⁻³

 $\Delta \rho_{\rm min} = -0.62 \text{ e} \text{ Å}^{-3}$

7 - 2

a = 8.1638 (5) Å b = 8.2081 (5) Å c = 13.1265 (18) Å $\alpha = 84.353 (16)^{\circ}$ $\beta = 85.789 (13)^{\circ}$ $\gamma = 80.736 (14)^{\circ}$

Data collection

Bruker APEX CCD diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.662, \ T_{\max} = 0.826$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.096$ S = 1.06 3920 reflections 322 parameters 5 restraints

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot$
$\overline{O1-H1\cdots O3^{i}}$	0.81 (1)	1.90 (1)	2.710 (2)	173 (4)
$O1W - H1W1 \cdots O2W^{ii}$	0.82(2)	2.02 (2)	2.803 (3)	159 (4)
$O1W - H2W1 \cdots O5^{ii}$	0.82(2)	1.92 (2)	2.740 (2)	177 (3)
$O2W - H1W2 \cdots O6$	0.83 (2)	1.98 (2)	2.794 (2)	168 (3)
$O2W - H2W2 \cdot \cdot \cdot O2^{iii}$	0.83(2)	2.25(2)	2.986 (3)	148 (3)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2; (iii) -x, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Foundation of Shandong Province for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2420).

References

- Bentiss, F., Roussel, P., Drache, M., Conflant, P., Lagrenee, M. & Wignacourt, J. P. (2004). J. Mol. Struct. 707, 63–68.
- Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. (2005). Acc. Chem. Res. 38, 273–282.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H., Xu, J.-W. & Batten, S. R. (2008). *CrystEngComm*, **10**, 983–985.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Tian, G., Zhu, G., Yang, X., Fang, Q., Sun, J., Wei, Y. & Qiu, S. (2005). Chem.
- Commun. pp. 1405–1407. Wang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9,
- 368–371. Yang, A.-H., Zhang, H., Gao, H.-L., Zhan, W.-Q. & Cui, J.-Z. (2008). Cryst.
- Growth Des. 8, 3354–3359. Zeng, M.-H., Wang, B., Wang, X.-Y., Zhang, W.-X., Chen, X.-M. & Gao, S. (2006). Inorg. Chem. 45, 7069–7076.

supporting information

Acta Cryst. (2011). E67, m783 [doi:10.1107/S1600536811015522]

Aqua[1-(4-carboxyphenyl)-1*H*-imidazole- κN^3](pyridine-2,6-dicarboxylato- $\kappa^3 O^2$, *N*, *O*⁶)copper(II) monohydrate

Fanzhen Kong and Zhangyu Yu

S1. Comment

The rational design and synthesis of metal-organic supramolecular architectures are of great interest and importance owing to their intriguing structural topologies and potential applications as functional materials (Bradshaw et al., 2005). A successful strategy in building the architectures is the deliberate selection of functional organic ligands and transition metal ions with specific coordination geometry. In the context, the carboxylate ligands are widely employed because they exhibit diverse coordination modes (Tian et al., 2005; Wang et al., 2009). The different coordination modes of carboxylate groups can induce different coordination geometries of transition metal ions and enhance the robustness of the resulting architectures. Moreover, the negative charge of carboxylate groups compensates the positive charge from metal ions and can mitigate the counterion effect in self-assembly processes. With the development of supramolecular chemistry and crystal engineering, the scope of the investigations on carboxylate ligands has been widen by the use of Ncontaining heterocyclic carboxylate ligands, such as pyrazole- (Bentiss et al., 2004), imidazole- (Zeng et al., 2006) and pyridine-carboxylates (Wang et al., 2009; Yang et al., 2008). The introduction of N atoms can satisfy the coordination requirements of metal ions and they also link metal-carboxylate frameworks into various fascinating extended networks. On the other hand, N atoms are highly accessible to transition metal ions, their stronger coordination ability than carboxylate groups may result in the formation of hydrogen bonding interactions by uncoordinated carboxylate O atoms, which further make the whole framework more stable. Among N-containing carboxylate ligands, we are interested in pyridine-2,6-dicarboxylic acid (2,6-H₂pydc) since its N atom and two carboxylate groups may chelate one metal ion, forming two stable five-membered rings (Li et al., 2008). The introduction of the other N-containing carboxylate ligands may lead to interesting structural frameworks. Herein, we report a Cu(II) supramolecular complex from 2,6-H₂pydc and 4-(imidazol-1-yl)benzoic acid (HIBA).

As shown in Fig. 1, the Cu^{II} ion has a slightly distorted square-pyramidal coordination geometry. Two carboxylate O atoms and one pyridine N atom from a 2,6-pydc ligand and one imidazolyl N atom from HIBA are in the basal plane, with a mean deviation of 0.0222 (2) Å from the plane. Cu1 atom is slightly out of the plane about 0.2221 (3) Å. One water molecule (O1W) occupies the apical position. As expected, two O atoms (O4, O6) from different carboxylate groups and an N atom (N3) chelate Cu1, forming two stable five-membered rings. This results in Cu1—N3 bond distance of 1.9075 (17) Å being much shorter than Cu1—N1 bond distance of 1.9467 (18) Å. Two carboxylate groups (O3, O4, C11 and O5, O6, C17) are almost coplanar with the pyridine ring, with dihedral angles between them of 3.5 (1) and 7.3 (2)°, respectively. HIBA serves as a monodentate ligand through imidazolyl N atom coordinating to Cu1 atom. The twisting angle between the imidazolyl ring and benzene ring is 23.02 (8)°, while the dihedral angle between the benzene ring and the carboxylate group in HIBA is 2.7 (2)°.

Interestingly, carboxylic proton forms a strong hydrogen bond with one uncoordinated carboxylate O atom of the 2,6-pydc ligand (Table 1), which results in a dinuclear supramolecular macrocycle (Fig. 2). The Cu…Cu separation in the cycle is 13.749 (2) Å. O—H…O hydrogen bonds between the other carboxylate group of the 2,6-pydc ligand and the coordinated water molecule link the macrocyles into a one-dimensional supramolecular chain (Fig. 3). The nearest Cu…Cu separation in the chain is 6.322 (1) Å. O—H…O hydrogen bonds involving the uncoordinated water molecules link the chains into a layer.

S2. Experimental

A mixture of pyridine-2,6-dicarboxylic acid (0.034 g, 0.2 mmol), HIBA (0.038 g, 0.2 mmol), copper nitrate hydrate (0.036 g, 0.2 mmol) and one drop of KOH aqueous solution (10%) in 15 ml distilled water was heated in a 30 ml Teflonlined steel bomb at 433 K for 3 d. Blue crystals formed were collected, washed with ethanol and dried in air.

S3. Refinement

All H atoms were located from difference Fourier maps and refined isotropically, with a distance restraint of O-H = 0.82 (1) Å.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View of the dinuclear Cu^{II} supramolecular macrocycle. Dashed lines denote hydrogen bonds. [Symmetry code: (i) -x, - y+1, -z+1.]

Figure 3

View of the one-dimensional supramolecular chain. Dashed lines denote hydrogen bonds.

Aqua[1-(4-carboxyphenyl)-1*H*-imidazole- κN^3](pyridine- 2,6-dicarboxylato- $\kappa^3 O^2$, *N*, *O*⁶)copper(II) monohydrate

Crystal data	
$[Cu(C_7H_3NO_4)(C_{10}H_8N_2O_2)(H_2O)] \cdot H_2O$ $M_r = 452.87$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.1638 (5) Å b = 8.2081 (5) Å c = 13.1265 (18) Å a = 84.353 (16)° $\beta = 85.789$ (13)° $\gamma = 80.736$ (14)° V = 862.43 (15) Å ³	Z = 2 F(000) = 462 $D_x = 1.744 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6749 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 1.32 \text{ mm}^{-1}$ T = 293 K Block, blue $0.34 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.662, T_{\max} = 0.826$	6749 measured reflections 3920 independent reflections 3485 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -14 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.096$ S = 1.06 3920 reflections 322 parameters 5 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.3344P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.37$ e Å ⁻³ $\Delta\rho_{min} = -0.62$ e Å ⁻³

Fractional atomic coor	rdinates and isotropi	ic or equivalent	isotropic disp	lacement parame	eters (Ų)
	···· · ··· · · · · · · · · · · · · · ·			···· · · · · · · · · · · · · · · · · ·	

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.51191 (3)	0.77853 (3)	0.81495 (2)	0.02775 (11)	
01	-0.5172 (2)	0.7396 (3)	0.42103 (17)	0.0516 (5)	
N1	0.3000 (2)	0.8750 (2)	0.75900 (14)	0.0286 (4)	

C1	-0.3561(3)	0 6898 (3)	0 40439 (19)	0.0347(5)
H1	-0.575(4)	0.708 (5)	0.381(2)	0.0317(3)
02	-0.2974(2)	0.6052 (3)	0.33628(16)	0.070(12) 0.0533(5)
N2	0.0788(2)	0.8924(2)	0.67065 (13)	0.0235(3)
C2	-0.2492(3)	0.7482(3)	0 47641 (17)	0.0283(5)
03	0.2192(3) 0.7305(2)	0.3533(2)	0.70285(15)	0.0203(3) 0.0414(4)
N3	0.7383(2)	0.6954(2)	0.84101 (14)	0.0244(4)
C3	-0.0783(3)	0.6968 (3)	0 46374 (18)	0.0312(5)
H3	-0.036(4)	0.627 (4)	0.408 (2)	0.046 (8)*
04	0.5460 (2)	0.5751 (2)	0.73733 (14)	0.0376 (4)
C4	0.0295 (3)	0.7460 (3)	0.52654 (18)	0.0300(5)
H4	0.135(4)	0.714 (3)	0.515(2)	0.038(7)*
05	0.7779(2)	1.0466 (2)	0.96052(14)	0.0392(4)
C5	-0.0332(3)	0.8478(2)	0.60358 (16)	0.0237(4)
06	0.57541 (19)	0.97815(19)	0.87486 (13)	0.0333(4)
C6	-0.2030(3)	0.9038 (3)	0.61558 (17)	0.0290 (4)
H6	-0.247(3)	0.981 (3)	0.673 (2)	0.039(7)*
C7	-0.3103(3)	0.8539 (3)	0.55223 (18)	0.0305 (5)
H7	-0.418(4)	0.888 (3)	0.562 (2)	0.036 (7)*
C8	0.2294 (3)	0.8052 (3)	0.69116 (17)	0.0282 (4)
H8	0.265 (3)	0.706 (3)	0.6699 (18)	0.026 (6)*
С9	0.1899 (3)	1.0144 (3)	0.78355 (18)	0.0290 (5)
Н9	0.213 (3)	1.084 (3)	0.830 (2)	0.030 (6)*
C10	0.0526 (3)	1.0255 (3)	0.72996 (17)	0.0280 (4)
H10	-0.043 (3)	1.102 (3)	0.726 (2)	0.033 (7)*
C11	0.6874 (3)	0.4845 (3)	0.74368 (17)	0.0291 (5)
C12	0.8070 (3)	0.5506 (3)	0.80631 (17)	0.0255 (4)
C13	0.9705 (3)	0.4866 (3)	0.82600 (19)	0.0309 (5)
H13	1.023 (4)	0.383 (4)	0.803 (2)	0.052 (8)*
C14	1.0569 (3)	0.5759 (3)	0.88262 (19)	0.0324 (5)
H14	1.165 (4)	0.537 (4)	0.895 (2)	0.049 (8)*
C15	0.9826 (3)	0.7273 (3)	0.91638 (18)	0.0287 (4)
H15	1.038 (3)	0.791 (3)	0.955 (2)	0.037 (7)*
C16	0.8205 (3)	0.7846 (3)	0.89290 (16)	0.0240 (4)
C17	0.7182 (3)	0.9512 (3)	0.91352 (17)	0.0269 (4)
O1W	0.4032 (2)	0.6744 (2)	0.96552 (14)	0.0357 (4)
O2W	0.3880 (2)	1.2940 (2)	0.87970 (16)	0.0427 (4)
H1W1	0.474 (4)	0.658 (5)	1.008 (2)	0.074 (12)*
H2W1	0.349 (4)	0.756 (3)	0.990 (2)	0.055 (9)*
H1W2	0.445 (4)	1.203 (3)	0.869 (2)	0.054 (9)*
H2W2	0.396 (4)	1.341 (4)	0.8208 (17)	0.061 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02014 (15)	0.02746 (16)	0.03696 (18)	0.00146 (10)	-0.01098 (11)	-0.01095 (11)
01	0.0321 (10)	0.0655 (13)	0.0633 (13)	0.0001 (9)	-0.0194 (9)	-0.0361 (11)
N1	0.0232 (9)	0.0299 (9)	0.0334 (10)	0.0004 (7)	-0.0105 (7)	-0.0080 (7)

C1	0.0339 (12)	0.0319 (12)	0.0404 (13)	-0.0037 (9)	-0.0120 (10)	-0.0084 (10)
O2	0.0403 (10)	0.0672 (13)	0.0592 (13)	-0.0047 (9)	-0.0134 (9)	-0.0379 (11)
N2	0.0224 (8)	0.0254 (9)	0.0266 (9)	-0.0013 (7)	-0.0083 (7)	-0.0049 (7)
C2	0.0292 (11)	0.0288 (11)	0.0283 (11)	-0.0037 (9)	-0.0113 (9)	-0.0029 (8)
03	0.0322 (9)	0.0394 (9)	0.0561 (11)	0.0020 (7)	-0.0108 (8)	-0.0277 (8)
N3	0.0204 (8)	0.0244 (8)	0.0293 (9)	-0.0010 (7)	-0.0051 (7)	-0.0077 (7)
C3	0.0335 (12)	0.0317 (11)	0.0290 (11)	-0.0005 (9)	-0.0074 (9)	-0.0092 (9)
O4	0.0268 (8)	0.0371 (9)	0.0522 (10)	0.0015 (7)	-0.0155 (7)	-0.0211 (8)
C4	0.0224 (10)	0.0351 (12)	0.0325 (11)	0.0003 (9)	-0.0063 (9)	-0.0073 (9)
O5	0.0319 (9)	0.0365 (9)	0.0534 (11)	-0.0019 (7)	-0.0107 (8)	-0.0240 (8)
C5	0.0238 (10)	0.0247 (10)	0.0232 (10)	-0.0031 (8)	-0.0087 (8)	-0.0012 (8)
O6	0.0265 (8)	0.0262 (8)	0.0488 (10)	0.0031 (6)	-0.0151 (7)	-0.0131 (7)
C6	0.0258 (10)	0.0341 (11)	0.0273 (11)	0.0003 (9)	-0.0065 (8)	-0.0074 (9)
C7	0.0214 (10)	0.0391 (12)	0.0318 (11)	-0.0018 (9)	-0.0070 (9)	-0.0074 (9)
C8	0.0238 (10)	0.0287 (11)	0.0326 (11)	0.0021 (8)	-0.0104 (8)	-0.0084 (9)
C9	0.0278 (11)	0.0257 (10)	0.0340 (12)	0.0001 (8)	-0.0097 (9)	-0.0073 (9)
C10	0.0264 (11)	0.0259 (10)	0.0321 (11)	0.0006 (9)	-0.0083 (9)	-0.0075 (8)
C11	0.0248 (10)	0.0319 (11)	0.0327 (11)	-0.0037 (9)	-0.0055 (9)	-0.0120 (9)
C12	0.0224 (10)	0.0255 (10)	0.0294 (11)	-0.0021 (8)	-0.0038 (8)	-0.0077 (8)
C13	0.0244 (11)	0.0280 (11)	0.0397 (13)	0.0038 (9)	-0.0053 (9)	-0.0097 (9)
C14	0.0202 (10)	0.0355 (12)	0.0413 (13)	0.0017 (9)	-0.0085 (9)	-0.0071 (10)
C15	0.0250 (10)	0.0328 (11)	0.0303 (11)	-0.0055 (9)	-0.0074 (9)	-0.0068 (9)
C16	0.0216 (9)	0.0242 (10)	0.0272 (10)	-0.0030 (8)	-0.0050 (8)	-0.0060 (8)
C17	0.0229 (10)	0.0274 (10)	0.0314 (11)	-0.0019 (8)	-0.0043 (8)	-0.0085 (8)
O1W	0.0334 (9)	0.0336 (9)	0.0407 (10)	0.0007 (7)	-0.0077 (8)	-0.0119 (7)
O2W	0.0458 (11)	0.0343 (10)	0.0467 (11)	0.0060 (8)	-0.0110 (9)	-0.0103 (8)

Geometric parameters (Å, °)

Cu1—N1	1.9467 (18)	O5—C17	1.222 (3)
Cu1—N3	1.9076 (17)	C5—C6	1.391 (3)
Cu1—O4	2.0118 (16)	O6—C17	1.283 (3)
Cu1—O6	2.0393 (16)	C6—C7	1.385 (3)
Cu1—O1W	2.2537 (19)	С6—Н6	1.04 (3)
01—C1	1.322 (3)	С7—Н7	0.88 (3)
01—H1	0.81 (1)	C8—H8	0.89 (3)
N1—C8	1.318 (3)	C9—C10	1.353 (3)
N1—C9	1.386 (3)	С9—Н9	0.92 (3)
C1—O2	1.210 (3)	C10—H10	0.92 (3)
C1—C2	1.493 (3)	C11—C12	1.517 (3)
N2—C8	1.350 (3)	C12—C13	1.386 (3)
N2—C10	1.383 (3)	C13—C14	1.392 (3)
N2—C5	1.426 (3)	C13—H13	0.95 (3)
C2—C3	1.393 (3)	C14—C15	1.391 (3)
С2—С7	1.396 (3)	C14—H14	0.91 (3)
O3—C11	1.239 (3)	C15—C16	1.378 (3)
N3—C16	1.332 (3)	C15—H15	0.95 (3)
N3—C12	1.337 (3)	C16—C17	1.521 (3)

C2 C4 1.270 (2) 0.1W	
$C_3 - C_4 = 1.379(3) = 01W - 1.379(3)$	HIWI 0.82 (2)
C3—H3 0.98 (3) 01W—	H2W1 0.82(2)
O4—C11 1.272 (3) O2W—	H1W2 0.83 (2)
C4—C5 1.391 (3) O2W—	H2W2 0.83 (2)
C4—H4 0.87 (3)	
N3—Cu1—N1 167.81 (8) C5—Ce	—Н6 119.4 (16)
N3—Cu1—O4 80.11 (7) C6—C [*]	—С2 120.5 (2)
N1—Cu1—O4 95.85 (7) C6—C	—Н7 118.2 (18)
N3—Cu1—O6 80.22 (7) C2—C	—Н7 121.3 (18)
N1—Cu1—O6 100.91 (7) N1—C	3—N2 110.75 (19)
O4—Cu1—O6 156.95 (7) N1—Ca	З—Н8 125.3 (16)
N3—Cu1—O1W 96.05 (7) N2—C	З—Н8 123.1 (16)
N1—Cu1—O1W 95.97 (8) C10—C	9—N1 109.0 (2)
O4—Cu1—O1W 99.71 (7) C10—C	128.9 (16)
O6—Cu1—O1W 94.19 (7) N1—C	—Н9 122.2 (16)
C1	$0-N^2$ 106.46 (19)
C8—N1—C9 106.55 (18) C9—C1	0 - H10 132.6 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - H10 $120.9(17)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 - 04 $125.2(2)$
02-C1-01 $1237(2)$ $03-C1$	1 - C12 $120.2(2)$
$02 - C1 - C2$ $121 \cdot 8 \cdot (2)$ $04 - C1$	1 - C12 $120.11(19)$
$01 C1 C2 \qquad 1145(2) \qquad 03 C1 C2 \qquad 04 C1 C2 \qquad 04 C1 C2 C2 C1 C2 C2 C1 C2 C2$	2 C13 119.5(2)
$C_{1} = C_{1} = C_{2}$ $C_{1} = C_{2}$ $C_{1} = C_{2}$ $C_{1} = C_{2}$ $C_{1} = C_{2}$ $C_{2} = C_{2}$ C_{2} $C_{2} = C_{2}$ C_{2} $C_{2} = C_{2}$ C_{2} $C_{2} = C_{2}$ C_{2} C_{2	2 - C13 = 119.5 (2)
$C_8 = N_2 = C_10$ $107.20(18)$ $N_3 = C_1$	112 - C11 = 120 41 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113 - C14 $118.2 (2)$
$C_{3} = C_{2} = C_{1}$ 119.1 (2) C12=C	12 - H12 = 110.8 (10)
C_{3} C_{2} C_{1} C_{1} C_{1} C_{1} C_{2} C_{1} C_{1} C_{1} C_{2} C_{1} C_{1	13—H13 119.8 (19)
$C/-C_2$ C_1 $123.8(2)$ C_15-C_1	14 - C13 $120.9(2)$
C16-N3-C12 123.10 (18) $C15-C$	14—H14 119./(19)
C16-N3-Cul 118.33 (14) $C13-Cul$	14—H14 119.3 (19)
C12—N3—Cu1 118.58 (15) C16—C	115—C14 117.7 (2)
C4—C3—C2 120.8 (2) C16—C	115—H15 119.2 (17)
C4—C3—H3 120.8 (18) C14—C	15—H15 123.0 (17)
C2—C3—H3 118.4 (18) N3—C	6—C15 120.51 (19)
C11—O4—Cu1 115.70 (14) N3—C	6—C17 111.96 (18)
C3—C4—C5 119.6 (2) C15—C	16—C17 127.41 (19)
C3—C4—H4 117.9 (19) O5—C	7—06 126.6 (2)
C5—C4—H4 122.4 (19) O5—C	7—C16 119.27 (19)
C6—C5—C4 120.4 (2) O6—C	7—C16 114.11 (18)
C6—C5—N2 120.54 (18) Cu1—C	01W—H1W1 110 (3)
C4—C5—N2 119.10 (19) Cu1—C	1W—H2W1 104 (2)
C17—O6—Cu1 114.41 (13) H1W1-	-O1W—H2W1 96 (3)
C7—C6—C5 119.6 (2) H1W2-	-O2W—H2W2 98 (3)
С7—С6—Н6 121.0.(16)	

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1…O3 ⁱ	0.81 (1)	1.90(1)	2.710 (2)	173 (4)
$O1W - H1W1 \cdots O2W^{ii}$	0.82 (2)	2.02 (2)	2.803 (3)	159 (4)
O1 <i>W</i> —H2 <i>W</i> 1···O5 ⁱⁱ	0.82 (2)	1.92 (2)	2.740 (2)	177 (3)
O2 <i>W</i> —H1 <i>W</i> 2···O6	0.83 (2)	1.98 (2)	2.794 (2)	168 (3)
O2 <i>W</i> —H2 <i>W</i> 2···O2 ⁱⁱⁱ	0.83 (2)	2.25 (2)	2.986 (3)	148 (3)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+2; (iii) -*x*, -*y*+2, -*z*+1.