supplementary materials


im2281 scheme

Acta Cryst. (2011). E67, m730    [ doi:10.1107/S160053681101645X ]

Bis(3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane) bis(1,2-dicyanoethene-1,2-dithiolato)nickelate(II)

C. Pan, B. Cai and W.-B. Pei

Abstract top

The asymmetric unit of the title complex, (C6H13N4)2[Ni(C4N2S2)2], comprises one 1-azonia-3,5,7-triazatricyclo[3.3.1.13,7]decane cation and one half of an [Ni(mnt)2]2- (mnt2- is maleonitriledithiolate or 1,2-dicyanoethene-1,2-dithiolate) dianion. The Ni2+ ion is located on a center of inversion and is coordinated by four S atoms from two mnt2- ligands in a square-planar coordination mode. Intermolecular N-H...N hydrogen-bond interactions link one anion and two cations in the crystal structure.

Comment top

Square-planar M[dithiolene]2 complexes have been widely studied due to their novel properties and application in the areas of conducting and magnetic materials, dyes, non-linear optics, catalysis and others. These applications arise due to a combination of functional properties, specific geometries and intermolecular interactions (Duan et al., 2010; Pei et al., 2010). Herein we report the crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1., bond distances and bond angles are given as Supplementary Material. The N—H···N hydrogen bond properties are given in Table 1.

In the asymmetric unit of the title complex, (C6H13N4)2(C8N4NiS4), (I), one 1-azonia-3,5,7-triaza-tricyclo[3.3.1.13,7]decane cation and one half of a [Ni(mnt)2]2- (mnt2- = maleonitriledithiolate) dianion are observed. The Ni2+ ion is located on a crystallographic center of inversion and is coordinated by four S-atoms from two mnt2- ligands in a square-planar coordination mode. Intermolecular N—H···N hydrogen bond interactions join together one anion and two cations of (I) in the crystal structure.

Related literature top

For general background to square-planar M[dithiolene]2 complexes acting as magnetic materials or showing non-linear optical properties, see: Duan et al. (2010). For the synthesis, see: Pei et al. (2010). For related structures, see: Ren et al. (2002). For related literature [on what subject?], see: Bigoli et al. (2002).

Experimental top

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) and heated to boiling about 20 min. After filtering the red solution, an aequeous solution of hexamethylenetetramine hydrochloride (442 mg, 2.5 mmol) was added dropwise to the filtrate. The immediately formed dark red precipitate was filtered off, washed with water and dried in vacuum. The crude product was recrystallized to give red crystals (yield: 645 mg, 83%). Single crystals with block shape suitable for X-ray analysis were obtained via recrystallization of the corresponding complex in acetone.

Refinement top

Non-hydrogen atoms were refined anisotropically, whereas the H atom of the NH function was found in a difference Fourier map and was refined isotropically with N—H = 0.86 Å; and the H atoms of methylene protons were calculated and placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level (i = -x, 2-y, -z).
[Figure 2] Fig. 2. Packing diagram for (I). N—H···N hydrogen bonds are shown as dashed lines.
Bis(3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane) bis(1,2-dicyanoethene-1,2-dithiolato)nickelate(II) top
Crystal data top
(C6H13N4)2[Ni(C4N2S2)2]F(000) = 644
Mr = 621.50Dx = 1.594 Mg m3
Monoclinic, P21/nMelting point: 448 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.2274 (9) ÅCell parameters from 8518 reflections
b = 10.7676 (10) Åθ = 2.2–26.0°
c = 12.7030 (11) ŵ = 1.11 mm1
β = 112.212 (2)°T = 296 K
V = 1295.1 (2) Å3Block-shaped, red
Z = 20.2 × 0.15 × 0.15 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2530 independent reflections
Radiation source: fine-focus sealed tube1784 reflections with I > 2σ(I)
graphiteRint = 0.049
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick 2002)
h = 1212
Tmin = 0.819, Tmax = 0.847k = 139
7528 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0279P)2]
where P = (Fo2 + 2Fc2)/3
2530 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
(C6H13N4)2[Ni(C4N2S2)2]V = 1295.1 (2) Å3
Mr = 621.50Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.2274 (9) ŵ = 1.11 mm1
b = 10.7676 (10) ÅT = 296 K
c = 12.7030 (11) Å0.2 × 0.15 × 0.15 mm
β = 112.212 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2530 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 2002)
1784 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.847Rint = 0.049
7528 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.48 e Å3
S = 1.00Δρmin = 0.33 e Å3
2530 reflectionsAbsolute structure: ?
173 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Anal. Calcd. for C20H26N12NiS4: C, 38.65; H, 4.22; N, 27.05%.Found: C, 38.69; H, 4.19; N, 27.04%. FT—IR data (KBr pellets, cm-1): 3461 (m), 3118 (s), 2202 (s), 1650 (m), 1479 (s), 1257 (s), 1008 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1231 (3)1.2643 (3)0.0413 (2)0.0280 (7)
C20.1719 (3)1.3813 (3)0.0941 (2)0.0340 (7)
C30.0743 (3)0.7460 (3)0.0733 (2)0.0293 (7)
C40.0880 (3)0.6437 (3)0.1406 (2)0.0365 (8)
C50.1017 (3)0.1801 (3)0.5935 (2)0.0482 (9)
H5A0.06710.21240.64940.058*
H5B0.13620.09650.61620.058*
C60.1637 (3)0.3842 (3)0.5569 (2)0.0416 (8)
H6A0.12990.41900.61240.050*
H6B0.23990.43650.55470.050*
C70.0982 (3)0.3365 (3)0.3613 (2)0.0408 (8)
H7A0.17310.38930.35730.049*
H7B0.02220.33560.28690.049*
C80.0650 (3)0.3039 (3)0.4492 (3)0.0505 (9)
H8A0.14210.30290.37550.061*
H8B0.10070.33760.50390.061*
C90.2719 (3)0.2090 (3)0.5110 (2)0.0380 (8)
H9A0.30930.12610.53340.046*
H9B0.34780.26150.50860.046*
C100.0343 (3)0.1257 (3)0.3993 (3)0.0461 (9)
H10A0.04210.12450.32510.055*
H10B0.06670.04120.41940.055*
N10.2058 (3)1.4760 (3)0.1335 (2)0.0540 (8)
N20.1037 (3)0.5627 (3)0.1924 (2)0.0576 (9)
N30.0157 (3)0.1754 (3)0.4820 (2)0.0454 (7)
N40.2179 (3)0.2575 (2)0.59227 (18)0.0382 (6)
N50.0478 (3)0.3842 (2)0.44391 (19)0.0377 (6)
N60.1541 (3)0.2049 (2)0.3949 (2)0.0347 (6)
Ni10.00001.00000.00000.02636 (15)
S10.11966 (8)1.13766 (7)0.12444 (5)0.0364 (2)
S20.00440 (9)0.88177 (8)0.14071 (5)0.0384 (2)
H10.189 (3)0.175 (3)0.348 (2)0.031 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0344 (16)0.0198 (16)0.0287 (14)0.0032 (14)0.0108 (12)0.0003 (12)
C20.0470 (19)0.030 (2)0.0262 (14)0.0073 (16)0.0150 (14)0.0020 (14)
C30.0359 (17)0.0241 (17)0.0312 (14)0.0033 (14)0.0166 (13)0.0006 (13)
C40.0475 (19)0.033 (2)0.0295 (15)0.0052 (17)0.0157 (14)0.0044 (15)
C50.065 (2)0.043 (2)0.0456 (18)0.0046 (19)0.0315 (18)0.0071 (16)
C60.056 (2)0.030 (2)0.0441 (17)0.0013 (17)0.0251 (16)0.0042 (15)
C70.057 (2)0.030 (2)0.0391 (16)0.0067 (17)0.0233 (15)0.0081 (15)
C80.042 (2)0.055 (3)0.061 (2)0.0079 (19)0.0267 (17)0.0028 (19)
C90.0333 (17)0.034 (2)0.0450 (17)0.0032 (15)0.0125 (14)0.0010 (15)
C100.049 (2)0.032 (2)0.0549 (19)0.0128 (17)0.0175 (16)0.0037 (16)
N10.084 (2)0.036 (2)0.0383 (14)0.0203 (17)0.0189 (14)0.0041 (13)
N20.094 (2)0.042 (2)0.0406 (15)0.0115 (18)0.0292 (16)0.0059 (15)
N30.0440 (16)0.0391 (17)0.0607 (17)0.0061 (15)0.0286 (14)0.0016 (15)
N40.0474 (16)0.0313 (16)0.0359 (13)0.0021 (14)0.0158 (12)0.0007 (12)
N50.0460 (15)0.0306 (17)0.0420 (14)0.0071 (13)0.0228 (12)0.0028 (12)
N60.0437 (16)0.0305 (17)0.0354 (13)0.0040 (13)0.0212 (12)0.0046 (12)
Ni10.0352 (3)0.0193 (3)0.0253 (2)0.0012 (3)0.0122 (2)0.0014 (2)
S10.0552 (5)0.0234 (4)0.0241 (3)0.0058 (4)0.0076 (3)0.0014 (3)
S20.0607 (5)0.0292 (5)0.0253 (4)0.0124 (4)0.0162 (4)0.0043 (3)
Geometric parameters (Å, °) top
C1—C3i1.354 (3)C7—H7B0.9700
C1—C21.425 (4)C8—N51.463 (4)
C1—S11.733 (3)C8—N31.477 (4)
C2—N11.132 (4)C8—H8A0.9700
C3—C1i1.354 (3)C8—H8B0.9700
C3—C41.433 (4)C9—N41.440 (3)
C3—S21.731 (3)C9—N61.512 (3)
C4—N21.139 (4)C9—H9A0.9700
C5—N41.457 (4)C9—H9B0.9700
C5—N31.471 (4)C10—N31.434 (4)
C5—H5A0.9700C10—N61.511 (4)
C5—H5B0.9700C10—H10A0.9700
C6—N51.477 (3)C10—H10B0.9700
C6—N41.478 (4)N6—H10.86 (3)
C6—H6A0.9700Ni1—S1i2.1751 (7)
C6—H6B0.9700Ni1—S12.1751 (7)
C7—N51.429 (3)Ni1—S22.1810 (7)
C7—N61.528 (4)Ni1—S2i2.1810 (7)
C7—H7A0.9700
C3i—C1—C2119.9 (3)N6—C9—H9A109.8
C3i—C1—S1120.4 (2)N4—C9—H9B109.8
C2—C1—S1119.57 (19)N6—C9—H9B109.8
N1—C2—C1177.4 (4)H9A—C9—H9B108.3
C1i—C3—C4120.0 (3)N3—C10—N6109.6 (3)
C1i—C3—S2121.0 (2)N3—C10—H10A109.7
C4—C3—S2119.06 (19)N6—C10—H10A109.7
N2—C4—C3177.7 (3)N3—C10—H10B109.7
N4—C5—N3112.5 (2)N6—C10—H10B109.7
N4—C5—H5A109.1H10A—C10—H10B108.2
N3—C5—H5A109.1C10—N3—C5109.3 (3)
N4—C5—H5B109.1C10—N3—C8108.7 (3)
N3—C5—H5B109.1C5—N3—C8107.8 (3)
H5A—C5—H5B107.8C9—N4—C5109.6 (2)
N5—C6—N4111.5 (2)C9—N4—C6108.6 (2)
N5—C6—H6A109.3C5—N4—C6108.5 (2)
N4—C6—H6A109.3C7—N5—C8109.4 (3)
N5—C6—H6B109.3C7—N5—C6109.5 (2)
N4—C6—H6B109.3C8—N5—C6108.2 (2)
H6A—C6—H6B108.0C10—N6—C9109.8 (2)
N5—C7—N6109.2 (2)C10—N6—C7108.1 (2)
N5—C7—H7A109.8C9—N6—C7108.7 (2)
N6—C7—H7A109.8C10—N6—H1111.8 (19)
N5—C7—H7B109.8C9—N6—H1107.4 (17)
N6—C7—H7B109.8C7—N6—H1111 (2)
H7A—C7—H7B108.3S1i—Ni1—S1180.0
N5—C8—N3112.1 (2)S1i—Ni1—S291.69 (3)
N5—C8—H8A109.2S1—Ni1—S288.31 (3)
N3—C8—H8A109.2S1i—Ni1—S2i88.31 (3)
N5—C8—H8B109.2S1—Ni1—S2i91.69 (3)
N3—C8—H8B109.2S2—Ni1—S2i180.00 (4)
H8A—C8—H8B107.9C1—S1—Ni1103.24 (9)
N4—C9—N6109.3 (2)C3—S2—Ni1103.06 (9)
N4—C9—H9A109.8
Symmetry codes: (i) −x, −y+2, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N6—H1···N1ii0.87 (4)2.37 (4)2.941 (5)124 (3)
Symmetry codes: (ii) −x+1/2, y−3/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N6—H1···N1i0.87 (4)2.37 (4)2.941 (5)124 (3)
Symmetry codes: (i) −x+1/2, y−3/2, −z+1/2.
Acknowledgements top

The authors thank the Doctorial Innovation Fund of Nanjing University of Technology (grant No. BSCX200908).

references
References top

Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pilia, L., Pintus, G., Serpe, A. & Trogu, E. F. (2002). Inorg. Chem. 41, 5241–5248.

Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.

Pei, W. B., Wu, J. S., Liu, J. L., Ren, X. M. & Shen, L. J. (2010). Spectrochim. Acta Part A, 75, 191–197.

Ren, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931–5933.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.