organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Di­methyl-3,9-bis­­(4-nitro­phen­yl)-2,4,8,10-tetra­oxa­spiro­[5.5]undeca­ne

aKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China, and bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China
*Correspondence e-mail: yu_bin235@hotmail.com

(Received 14 March 2011; accepted 21 April 2011; online 7 May 2011)

In the title compound, C21H22N2O8, both of the nonplanar six-membered heterocycles adopt chair conformations. The dihedral angle between the terminal benzene rings is 58.22 (11)°. Weak inter­molecular C—H⋯O inter­actions are observed in the crystal structure.

Related literature

For general background to spiranes, see: Cismaş et al. (2005[Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287-1314.]); Mihiş et al. (2008[Mihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848-2858.]); Sun et al. (2010[Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152-156.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O8

  • Mr = 430.41

  • Triclinic, [P \overline 1]

  • a = 7.4215 (12) Å

  • b = 11.8790 (18) Å

  • c = 13.522 (3) Å

  • α = 115.280 (4)°

  • β = 94.426 (4)°

  • γ = 103.444 (3)°

  • V = 1027.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.21 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Gemany.]) Tmin = 0.976, Tmax = 0.986

  • 5588 measured reflections

  • 3563 independent reflections

  • 2980 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.187

  • S = 1.07

  • 3563 reflections

  • 282 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.97 2.56 3.515 (3) 168
C10—H10B⋯O1i 0.97 2.59 3.533 (3) 164
C17—H17⋯O4ii 0.93 2.45 3.337 (3) 160
C20—H20⋯O7iii 0.93 2.37 3.242 (3) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to the characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş et al., 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş et al., 2008; Sun et al., 2010). We herein present the structure of 3,9-dimethyl-3,9-di(4-nitrophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, the two non-planar six-membered heterocycle adopt chair conformations. The dihedral angle between the nitrobenzene rings is 58.22 (11)°. In the crystal structure, weak intermolecular C—H···O interactions contribute to the crystal packing (Table 1).

Related literature top

For general background to spiranes, see: Cismaş et al. (2005); Mihiş et al. (2008); Sun et al. (2010).

Experimental top

To a solution of p-nitroacetophen (2.06 g, 12.5 mmol) and pentaerythritol (0.68 g, 5 mmol) in toluene(30 ml), p-toluenesulfonic acid (0.05 g, 0.3 mmol) as catalyst was added, respectively. Then, the mixtures were refluxed for 6 h to complete the reaction. After reaction, the mixtures were allowed to cool to the room temperature, chloroform (30 ml) was added to dissolve the product, the remain residue was purified by recrystallization using ethanol to provide the title compound as a white solid (85% yield, m.p. 516–517 K). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol and chloroform mixed solution.

Refinement top

12 restraints with the ISOR command was applied to make O2 and N1 be approximately isotropic. All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
3,9-Dimethyl-3,9-bis(4-nitrophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane top
Crystal data top
C21H22N2O8Z = 2
Mr = 430.41F(000) = 452
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4215 (12) ÅCell parameters from 3502 reflections
b = 11.8790 (18) Åθ = 2.9–30.2°
c = 13.522 (3) ŵ = 0.11 mm1
α = 115.280 (4)°T = 295 K
β = 94.426 (4)°Block, colorless
γ = 103.444 (3)°0.21 × 0.21 × 0.16 mm
V = 1027.0 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3563 independent reflections
Radiation source: fine-focus sealed tube2980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.976, Tmax = 0.986k = 1414
5588 measured reflectionsl = 1611
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.135P)2 + 0.1621P]
where P = (Fo2 + 2Fc2)/3
3563 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.37 e Å3
12 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H22N2O8γ = 103.444 (3)°
Mr = 430.41V = 1027.0 (3) Å3
Triclinic, P1Z = 2
a = 7.4215 (12) ÅMo Kα radiation
b = 11.8790 (18) ŵ = 0.11 mm1
c = 13.522 (3) ÅT = 295 K
α = 115.280 (4)°0.21 × 0.21 × 0.16 mm
β = 94.426 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3563 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2980 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.986Rint = 0.022
5588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
3563 reflectionsΔρmin = 0.26 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.2247 (3)0.6344 (2)0.63022 (16)0.0321 (5)
N20.1620 (3)0.14798 (18)0.42929 (16)0.0254 (5)
O11.2782 (3)0.5766 (2)0.67765 (15)0.0451 (5)
O21.1755 (3)0.73336 (19)0.67867 (14)0.0424 (5)
O30.2195 (3)0.18113 (19)0.49758 (15)0.0398 (5)
O40.0012 (2)0.13861 (17)0.41184 (15)0.0346 (4)
O51.2135 (2)0.31399 (14)0.10612 (12)0.0205 (4)
O61.1156 (2)0.48954 (14)0.11022 (12)0.0209 (4)
O70.86957 (19)0.10427 (13)0.16096 (12)0.0192 (4)
O80.6406 (2)0.06651 (14)0.06059 (12)0.0238 (4)
C11.2214 (3)0.5840 (2)0.51053 (18)0.0242 (5)
C21.2715 (3)0.4717 (2)0.45462 (19)0.0254 (5)
H2A1.30380.42700.49200.030*
C31.2728 (3)0.4269 (2)0.34267 (18)0.0231 (5)
H3A1.30690.35150.30410.028*
C41.2233 (3)0.4939 (2)0.28631 (17)0.0195 (5)
C51.1707 (3)0.6059 (2)0.34539 (18)0.0224 (5)
H51.13530.65010.30830.027*
C61.1703 (3)0.6524 (2)0.45800 (18)0.0244 (5)
H61.13660.72780.49730.029*
C71.2414 (3)0.4498 (2)0.16478 (17)0.0199 (5)
C81.4377 (3)0.5140 (2)0.15867 (19)0.0264 (5)
H8A1.52840.49170.19580.040*
H8B1.46150.60690.19440.040*
H8C1.44840.48460.08190.040*
C91.0213 (3)0.2363 (2)0.08616 (17)0.0215 (5)
H9A0.98630.24800.15680.026*
H9B1.01110.14490.04210.026*
C100.9207 (3)0.4212 (2)0.09267 (17)0.0211 (5)
H10A0.84310.45070.05340.025*
H10B0.88440.43970.16410.025*
C110.8872 (3)0.2752 (2)0.02479 (17)0.0200 (5)
C120.9199 (3)0.2421 (2)0.09323 (17)0.0187 (5)
H12A0.84470.27860.12640.022*
H12B1.05200.28060.09010.022*
C130.6814 (3)0.2026 (2)0.01311 (18)0.0236 (5)
H13A0.65760.21440.08590.028*
H13B0.59840.23860.01560.028*
C140.6799 (3)0.0390 (2)0.16773 (17)0.0205 (5)
C150.6618 (3)0.1047 (2)0.22524 (19)0.0282 (5)
H15A0.75130.12290.18340.042*
H15B0.68650.12890.29910.042*
H15C0.53600.15370.22980.042*
C160.5415 (3)0.07090 (19)0.23489 (17)0.0192 (5)
C170.5956 (3)0.0991 (2)0.31997 (17)0.0195 (5)
H170.71690.10140.33380.023*
C180.4722 (3)0.1238 (2)0.38398 (17)0.0204 (5)
H180.50970.14430.43980.024*
C190.2916 (3)0.1176 (2)0.36354 (17)0.0208 (5)
C200.2302 (3)0.0863 (2)0.28153 (18)0.0232 (5)
H200.10730.08120.26990.028*
C210.3573 (3)0.0631 (2)0.21751 (18)0.0236 (5)
H210.31920.04190.16210.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0187 (10)0.0450 (13)0.0191 (10)0.0053 (9)0.0021 (8)0.0112 (9)
N20.0205 (10)0.0278 (10)0.0265 (10)0.0095 (8)0.0042 (8)0.0100 (9)
O10.0418 (11)0.0681 (14)0.0253 (9)0.0071 (10)0.0027 (8)0.0266 (10)
O20.0362 (10)0.0535 (12)0.0220 (9)0.0097 (9)0.0090 (8)0.0045 (8)
O30.0348 (10)0.0605 (13)0.0410 (11)0.0205 (9)0.0092 (8)0.0349 (10)
O40.0220 (9)0.0451 (10)0.0416 (10)0.0175 (8)0.0069 (7)0.0203 (9)
O50.0209 (8)0.0203 (8)0.0193 (8)0.0082 (6)0.0035 (6)0.0072 (6)
O60.0240 (8)0.0224 (8)0.0189 (8)0.0084 (6)0.0036 (6)0.0111 (6)
O70.0163 (7)0.0208 (8)0.0186 (7)0.0058 (6)0.0036 (6)0.0072 (6)
O80.0253 (8)0.0256 (8)0.0206 (8)0.0037 (7)0.0038 (6)0.0127 (7)
C10.0158 (10)0.0328 (12)0.0165 (11)0.0022 (9)0.0014 (8)0.0097 (10)
C20.0214 (11)0.0306 (12)0.0237 (11)0.0004 (9)0.0023 (9)0.0168 (10)
C30.0224 (11)0.0208 (11)0.0239 (11)0.0031 (9)0.0002 (9)0.0106 (9)
C40.0149 (10)0.0222 (11)0.0194 (11)0.0027 (8)0.0020 (8)0.0094 (9)
C50.0220 (11)0.0233 (11)0.0216 (11)0.0064 (9)0.0024 (9)0.0105 (9)
C60.0191 (11)0.0256 (11)0.0216 (11)0.0041 (9)0.0042 (9)0.0059 (9)
C70.0225 (11)0.0203 (11)0.0185 (11)0.0082 (9)0.0037 (9)0.0096 (9)
C80.0265 (12)0.0297 (12)0.0236 (12)0.0069 (10)0.0086 (9)0.0131 (10)
C90.0250 (11)0.0197 (11)0.0180 (10)0.0056 (9)0.0031 (9)0.0076 (9)
C100.0231 (11)0.0253 (11)0.0159 (10)0.0092 (9)0.0032 (8)0.0095 (9)
C110.0217 (11)0.0234 (11)0.0174 (11)0.0086 (9)0.0057 (8)0.0103 (9)
C120.0188 (10)0.0192 (10)0.0175 (11)0.0048 (8)0.0030 (8)0.0085 (9)
C130.0245 (11)0.0287 (12)0.0171 (10)0.0089 (9)0.0056 (9)0.0092 (9)
C140.0191 (11)0.0227 (11)0.0184 (11)0.0054 (9)0.0040 (8)0.0086 (9)
C150.0284 (12)0.0228 (12)0.0296 (12)0.0057 (10)0.0020 (10)0.0107 (10)
C160.0179 (10)0.0158 (10)0.0202 (11)0.0043 (8)0.0030 (8)0.0055 (9)
C170.0163 (10)0.0228 (11)0.0174 (10)0.0056 (8)0.0059 (8)0.0070 (9)
C180.0188 (10)0.0234 (11)0.0171 (10)0.0045 (9)0.0057 (8)0.0080 (9)
C190.0193 (11)0.0186 (10)0.0199 (11)0.0065 (8)0.0006 (8)0.0048 (9)
C200.0167 (10)0.0281 (12)0.0242 (11)0.0080 (9)0.0090 (9)0.0099 (10)
C210.0206 (11)0.0268 (12)0.0243 (11)0.0054 (9)0.0087 (9)0.0127 (10)
Geometric parameters (Å, º) top
N1—O11.226 (3)C8—H8C0.9600
N1—O21.234 (3)C9—C111.519 (3)
N1—C11.462 (3)C9—H9A0.9700
N2—O31.218 (2)C9—H9B0.9700
N2—O41.240 (2)C10—C111.522 (3)
N2—C191.466 (3)C10—H10A0.9700
O5—C71.414 (2)C10—H10B0.9700
O5—C91.441 (2)C11—C121.526 (3)
O6—C71.426 (2)C11—C131.528 (3)
O6—C101.430 (2)C12—H12A0.9700
O7—C141.415 (2)C12—H12B0.9700
O7—C121.428 (2)C13—H13A0.9700
O8—C141.413 (2)C13—H13B0.9700
O8—C131.431 (3)C14—C151.510 (3)
C1—C21.379 (3)C14—C161.534 (3)
C1—C61.379 (3)C15—H15A0.9600
C2—C31.375 (3)C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C3—C41.400 (3)C16—C171.391 (3)
C3—H3A0.9300C16—C211.393 (3)
C4—C51.393 (3)C17—C181.376 (3)
C4—C71.525 (3)C17—H170.9300
C5—C61.381 (3)C18—C191.381 (3)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.388 (3)
C7—C81.506 (3)C20—C211.384 (3)
C8—H8A0.9600C20—H200.9300
C8—H8B0.9600C21—H210.9300
O1—N1—O2123.3 (2)C11—C10—H10B109.6
O1—N1—C1118.2 (2)H10A—C10—H10B108.1
O2—N1—C1118.6 (2)C9—C11—C10107.29 (16)
O3—N2—O4123.52 (19)C9—C11—C12111.57 (17)
O3—N2—C19118.69 (18)C10—C11—C12110.46 (16)
O4—N2—C19117.79 (18)C9—C11—C13111.03 (16)
C7—O5—C9113.97 (15)C10—C11—C13109.82 (17)
C7—O6—C10113.62 (14)C12—C11—C13106.70 (17)
C14—O7—C12113.49 (15)O7—C12—C11110.82 (16)
C14—O8—C13113.91 (15)O7—C12—H12A109.5
C2—C1—C6122.4 (2)C11—C12—H12A109.5
C2—C1—N1119.3 (2)O7—C12—H12B109.5
C6—C1—N1118.3 (2)C11—C12—H12B109.5
C3—C2—C1118.90 (19)H12A—C12—H12B108.1
C3—C2—H2A120.5O8—C13—C11110.95 (16)
C1—C2—H2A120.5O8—C13—H13A109.4
C2—C3—C4120.5 (2)C11—C13—H13A109.4
C2—C3—H3A119.7O8—C13—H13B109.4
C4—C3—H3A119.7C11—C13—H13B109.4
C5—C4—C3118.81 (19)H13A—C13—H13B108.0
C5—C4—C7121.08 (18)O8—C14—O7111.31 (16)
C3—C4—C7119.96 (19)O8—C14—C15106.00 (17)
C6—C5—C4121.19 (19)O7—C14—C15106.04 (16)
C6—C5—H5119.4O8—C14—C16111.73 (16)
C4—C5—H5119.4O7—C14—C16111.13 (16)
C1—C6—C5118.1 (2)C15—C14—C16110.34 (17)
C1—C6—H6120.9C14—C15—H15A109.5
C5—C6—H6120.9C14—C15—H15B109.5
O5—C7—O6111.16 (15)H15A—C15—H15B109.5
O5—C7—C8106.19 (17)C14—C15—H15C109.5
O6—C7—C8106.18 (16)H15A—C15—H15C109.5
O5—C7—C4112.31 (16)H15B—C15—H15C109.5
O6—C7—C4110.65 (16)C17—C16—C21119.12 (19)
C8—C7—C4110.07 (17)C17—C16—C14119.69 (18)
C7—C8—H8A109.5C21—C16—C14121.04 (18)
C7—C8—H8B109.5C18—C17—C16120.94 (19)
H8A—C8—H8B109.5C18—C17—H17119.5
C7—C8—H8C109.5C16—C17—H17119.5
H8A—C8—H8C109.5C17—C18—C19118.60 (19)
H8B—C8—H8C109.5C17—C18—H18120.7
O5—C9—C11110.63 (16)C19—C18—H18120.7
O5—C9—H9A109.5C18—C19—C20122.33 (19)
C11—C9—H9A109.5C18—C19—N2118.64 (18)
O5—C9—H9B109.5C20—C19—N2119.01 (18)
C11—C9—H9B109.5C21—C20—C19118.04 (19)
H9A—C9—H9B108.1C21—C20—H20121.0
O6—C10—C11110.27 (16)C19—C20—H20121.0
O6—C10—H10A109.6C20—C21—C16120.92 (19)
C11—C10—H10A109.6C20—C21—H21119.5
O6—C10—H10B109.6C16—C21—H21119.5
O1—N1—C1—C22.3 (3)C14—O7—C12—C1157.4 (2)
O2—N1—C1—C2178.41 (19)C9—C11—C12—O766.9 (2)
O1—N1—C1—C6176.8 (2)C10—C11—C12—O7173.87 (15)
O2—N1—C1—C62.5 (3)C13—C11—C12—O754.5 (2)
C6—C1—C2—C30.8 (3)C14—O8—C13—C1156.1 (2)
N1—C1—C2—C3178.31 (18)C9—C11—C13—O868.0 (2)
C1—C2—C3—C40.3 (3)C10—C11—C13—O8173.56 (15)
C2—C3—C4—C50.7 (3)C12—C11—C13—O853.8 (2)
C2—C3—C4—C7174.82 (19)C13—O8—C14—O755.3 (2)
C3—C4—C5—C61.2 (3)C13—O8—C14—C15170.19 (16)
C7—C4—C5—C6174.24 (19)C13—O8—C14—C1669.6 (2)
C2—C1—C6—C50.3 (3)C12—O7—C14—O855.9 (2)
N1—C1—C6—C5178.84 (18)C12—O7—C14—C15170.77 (15)
C4—C5—C6—C10.8 (3)C12—O7—C14—C1669.3 (2)
C9—O5—C7—O654.6 (2)O8—C14—C16—C17155.17 (18)
C9—O5—C7—C8169.62 (16)O7—C14—C16—C1730.2 (2)
C9—O5—C7—C470.0 (2)C15—C14—C16—C1787.2 (2)
C10—O6—C7—O555.6 (2)O8—C14—C16—C2129.4 (3)
C10—O6—C7—C8170.66 (16)O7—C14—C16—C21154.43 (19)
C10—O6—C7—C469.9 (2)C15—C14—C16—C2188.2 (2)
C5—C4—C7—O5154.14 (18)C21—C16—C17—C182.3 (3)
C3—C4—C7—O530.5 (3)C14—C16—C17—C18177.83 (18)
C5—C4—C7—O629.3 (3)C16—C17—C18—C191.2 (3)
C3—C4—C7—O6155.32 (18)C17—C18—C19—C200.5 (3)
C5—C4—C7—C887.8 (2)C17—C18—C19—N2178.06 (18)
C3—C4—C7—C887.6 (2)O3—N2—C19—C182.0 (3)
C7—O5—C9—C1155.9 (2)O4—N2—C19—C18178.18 (19)
C7—O6—C10—C1157.5 (2)O3—N2—C19—C20176.7 (2)
O5—C9—C11—C1054.6 (2)O4—N2—C19—C203.2 (3)
O5—C9—C11—C1266.6 (2)C18—C19—C20—C211.1 (3)
O5—C9—C11—C13174.56 (16)N2—C19—C20—C21177.47 (18)
O6—C10—C11—C955.5 (2)C19—C20—C21—C160.0 (3)
O6—C10—C11—C1266.3 (2)C17—C16—C21—C201.7 (3)
O6—C10—C11—C13176.29 (15)C14—C16—C21—C20177.16 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.972.563.515 (3)168
C10—H10B···O1i0.972.593.533 (3)164
C17—H17···O4ii0.932.453.337 (3)160
C20—H20···O7iii0.932.373.242 (3)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H22N2O8
Mr430.41
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.4215 (12), 11.8790 (18), 13.522 (3)
α, β, γ (°)115.280 (4), 94.426 (4), 103.444 (3)
V3)1027.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.976, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5588, 3563, 2980
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.187, 1.07
No. of reflections3563
No. of parameters282
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.97002.56003.515 (3)168.00
C10—H10B···O1i0.97002.59003.533 (3)164.00
C17—H17···O4ii0.93002.45003.337 (3)160.00
C20—H20···O7iii0.93002.37003.242 (3)155.00
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

The authors are grateful to Changzhou University and the Natural Science Foundation of China (grant No. 20872051) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287–1314.  Google Scholar
First citationMihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848–2858.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Gemany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152–156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds