organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Formyl-4-methyl-2-oxo-2H-chromen-7-yl 4-methyl­benzene­sulfonate

aSchool of Display and Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749, Republic of Korea, bDepartment of Physics, Dr. M.G.R. Educational and Research Institute University, Periyar E.V.R. High Road, Maduravoyal, Chennai 600 095, India, cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, and dDepartment of Chemistry, B.K. College, Belgaum 590 001, Karnataka, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in

(Received 18 April 2011; accepted 18 May 2011; online 25 May 2011)

In the title compound, C18H14O6S, the coumarin ring system is nearly planar, with a maximum out-of-plane deviation of 0.032 (2) Å. The dihedral angle between the benzene ring and the coumarin ring system is 32.41 (8)°. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions, generating C(8), C(10) and C(11) chains and an R22(10) ring. The formyl group is disordered over two sets of sites, with occupancies of 0.548 (5) and 0.452 (5).

Related literature

For the biological activity of coumarins, see: Carlton et al. (1996[Carlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145-151.]); El-Agrody et al. (2001[El-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519-527.]); Emmanuel-Giota et al. (2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717-722.]); Kulkarni et al. (2006[Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795-2818.]); Kalkhambkar et al. (2008[Kalkhambkar, R.G., Kulkarni, G.M., Kamanavalli, Premkumar, N. Asdaq, S.M.B. & Sun, C.M. (2008). Eur. J. Med. Chem. 43, 2178-2188.]); Shaker (1996[Shaker, R. M. (1996). Pharmazie, 51, 148-148.]); Yang et al. (2005[Yang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852-60.]); Zhou et al. (2000[Zhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689-697.]). For a related structure, see: Yuvaraj et al. (2011[Yuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Kulkarni, G. M. & Bapset, R. M. (2011). Acta Cryst. E67, o323.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O6S

  • Mr = 358.35

  • Orthorhombic, P b c a

  • a = 17.6174 (7) Å

  • b = 7.2025 (3) Å

  • c = 25.7706 (10) Å

  • V = 3270.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.14 × 0.13 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 48911 measured reflections

  • 4234 independent reflections

  • 3095 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.135

  • S = 1.02

  • 4234 reflections

  • 238 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O6i 0.93 2.56 3.326 (2) 140
C13—H13⋯O6ii 0.93 2.52 3.343 (2) 148
C16—H16⋯O2iii 0.93 2.51 3.433 (2) 175
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Coumarins are the class of lactones with extensive occurrence in plants possessing wide range of biological activities (Kulkarni et al., 2006). Many synthetic and naturally occurring coumarins are well documented for their wide range of biological activities such as antibacterial (El-Agrody et al., 2001), antifungal (Shaker, 1996), antioxidant (Yang et al., 2005), analgesic (Kalkhambkar et al., 2008) and anti-inflammatory (Emmanuel-Giota et al., 2001) properties. A large number of natural and semisynthetic coumarin and bicoumarin derivatives have been reported to demonstrate chemopreventive (Carlton et al., 1996) and anti-HIV (Zhou et al., 2000) activities. In view of various biological properties associated with coumarins, we have synthesized the title compound and report here its structure.

The molecular structure of the title compound is shown in Fig.1. Bond lengths and bond angles are comparable with the similar structure (Yuvaraj et al., 2011). Positional disorder has been observed for formyl oxygen atom with C14—O4A and C14—O4B bond lengths being 1.137 (3) and 1.109 (4) Å, respectively. The coumarin ring system is nearly planar with a maximum out-of-plane deviation of 0.032 (2) Å (r.m.s. deviation = 0.021 Å). Dihedral angle between the C2–C7 benzene ring and the C8–C13 benzene ring of the coumarin moeity is 33.3 (1)°. Atoms O6 and C18 lie -0.017 (3) and 0.073 (3) Å, respectively, from the least-squares plane of the atoms (C10/C11/C17/C16/C15/O5, r.m.s. deviation = 0.012 Å). Atom C1 lies 0.030 (4) Å from the least-squares plane of the phenyl ring (r.m.s. deviation = 0.007 Å).

The crystal packing is stabilized by C—H···O intermolecular interactions. C4—H4···O6i interaction generates a helical C(11) chain along the [010] direction. Interactions C13—H13···O6ii and C16—H16···O2iii generate C(8) and C(10) chains, respectively, running along [100]. In addition, the interactions C13—H13···O6ii and C16—H16···O2iii generate an R22(10) ring.

Related literature top

For the biological activity of coumarins, see: Carlton et al. (1996); El-Agrody et al. (2001); Emmanuel-Giota et al. (2001); Kulkarni et al. (2006); Kalkhambkar et al. (2008); Shaker (1996); Yang et al. (2005); Zhou et al. (2000). For a related structure, see: Yuvaraj et al. (2011).

Experimental top

A mixture of 8-formyl-7-hydroxy-4-methyl coumarin (6 mmol), p-toluenesulfonylchloride (6 mmol) and powdered anhydrous K2CO3 (6 mmol) in 20 ml of super dry acetone was stirred in room temperature for 12 h. After the completion of the reaction, the solvent was removed under reduced pressure and separated the solids by filtration. It was then washed with 50 ml of dilute hydrochloric acid, excess of cold water, dried and crystallized from ethanol and dioxan mixture. Yield 80%; Light green crystalline solid (ethanol + dioxan); m.p. 180–182 °C; Rf 0.43 (benzene); IR (KBr) cm-1 1734, 1708, 1303; 1H NMR (CDCl3) δ 2.47 (3H, s), 2.51 (3H, s), 6.35 (1H, s), 7.32 (6H, m), 10.34 (1H, s); Anal. Calcd. for C18H14O6S: C 60.33, H 3.94; Found: C 60.13, H 3.70.

Refinement top

All H-atoms were refined using a riding model, with d(C—H) = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the aromatic CH, and with d(C—H) = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the CH3 group. The formyl group is disordered over two sites with occupancies of 0.548 (5) and 0.452 (5). Atoms O4A and O4B were restrained to be approximately isotropic by an ISOR 0.01 command. The distances of C14—O4A and C14—O4B have been restrained to 1.20 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound, showing the C—H···O interactions (dashed lines). For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
8-Formyl-4-methyl-2-oxo-2H-chromen-7-yl 4-methylbenzenesulfonate top
Crystal data top
C18H14O6SF(000) = 1488
Mr = 358.35Dx = 1.456 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6552 reflections
a = 17.6174 (7) Åθ = 2.3–26.6°
b = 7.2025 (3) ŵ = 0.23 mm1
c = 25.7706 (10) ÅT = 293 K
V = 3270.0 (2) Å3Plate, colorless
Z = 80.14 × 0.13 × 0.13 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3095 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 28.7°, θmin = 1.6°
ϕ and ω scansh = 2323
48911 measured reflectionsk = 99
4234 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.8242P]
where P = (Fo2 + 2Fc2)/3
4234 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.26 e Å3
14 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H14O6SV = 3270.0 (2) Å3
Mr = 358.35Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.6174 (7) ŵ = 0.23 mm1
b = 7.2025 (3) ÅT = 293 K
c = 25.7706 (10) Å0.14 × 0.13 × 0.13 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3095 reflections with I > 2σ(I)
48911 measured reflectionsRint = 0.037
4234 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04314 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4234 reflectionsΔρmin = 0.37 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.70245 (18)0.5004 (5)0.48070 (11)0.1076 (9)
H1A0.71600.41000.45500.161*
H1B0.74460.52020.50370.161*
H1C0.68950.61520.46390.161*
C20.63513 (13)0.4313 (3)0.51137 (8)0.0712 (5)
C30.62555 (11)0.4882 (3)0.56260 (8)0.0652 (5)
H30.66050.56920.57730.078*
C40.56508 (10)0.4264 (3)0.59184 (7)0.0585 (4)
H40.55870.46630.62590.070*
C50.51398 (10)0.3038 (2)0.56962 (7)0.0563 (4)
C60.52174 (14)0.2479 (3)0.51834 (8)0.0708 (5)
H60.48660.16770.50340.085*
C70.58218 (16)0.3130 (3)0.49004 (8)0.0791 (6)
H70.58750.27630.45560.095*
C80.54138 (10)0.0811 (3)0.67455 (7)0.0578 (4)
C90.61696 (10)0.0624 (2)0.65996 (6)0.0525 (4)
C100.67090 (9)0.1065 (2)0.69784 (6)0.0472 (3)
C110.65136 (9)0.1600 (2)0.74813 (6)0.0495 (4)
C120.57417 (11)0.1691 (3)0.76024 (7)0.0631 (5)
H120.55950.20120.79370.076*
C130.51960 (10)0.1319 (3)0.72389 (8)0.0680 (5)
H130.46840.14080.73240.082*
C140.63965 (14)0.0075 (4)0.60842 (8)0.0772 (6)
H14A0.69160.00090.60250.093*0.548 (5)
H14B0.59920.03940.58710.093*0.452 (5)
C150.80427 (9)0.1381 (2)0.71607 (7)0.0534 (4)
C160.78344 (10)0.1945 (2)0.76774 (7)0.0550 (4)
H160.82200.22640.79070.066*
C170.71185 (10)0.2035 (2)0.78441 (6)0.0513 (4)
C180.69355 (13)0.2552 (3)0.83935 (7)0.0720 (5)
H18A0.73980.27720.85810.108*
H18B0.66600.15580.85550.108*
H18C0.66310.36580.83960.108*
O10.38782 (9)0.1146 (3)0.57769 (7)0.0957 (6)
O20.41980 (9)0.3388 (2)0.64607 (6)0.0814 (4)
O30.48511 (7)0.03917 (19)0.63759 (6)0.0685 (4)
O4A0.60724 (19)0.0694 (4)0.57442 (11)0.0912 (13)0.548 (5)
O4B0.6962 (2)0.0293 (10)0.59052 (17)0.136 (2)0.452 (5)
O50.74534 (6)0.09179 (18)0.68306 (4)0.0539 (3)
O60.86731 (7)0.1254 (2)0.69874 (6)0.0738 (4)
S10.44287 (3)0.20842 (8)0.60799 (2)0.06651 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.113 (2)0.114 (2)0.0953 (18)0.0111 (18)0.0263 (16)0.0339 (16)
C20.0815 (14)0.0662 (12)0.0660 (11)0.0140 (10)0.0039 (10)0.0138 (10)
C30.0622 (11)0.0601 (10)0.0735 (12)0.0003 (9)0.0090 (9)0.0002 (9)
C40.0580 (10)0.0607 (10)0.0569 (9)0.0028 (8)0.0095 (8)0.0079 (8)
C50.0581 (9)0.0538 (9)0.0570 (9)0.0043 (8)0.0142 (8)0.0006 (7)
C60.0929 (15)0.0587 (10)0.0607 (10)0.0035 (10)0.0224 (10)0.0065 (9)
C70.1139 (18)0.0721 (13)0.0513 (10)0.0132 (13)0.0026 (11)0.0005 (9)
C80.0468 (8)0.0596 (10)0.0671 (10)0.0013 (7)0.0085 (7)0.0120 (8)
C90.0506 (9)0.0523 (9)0.0546 (9)0.0037 (7)0.0045 (7)0.0034 (7)
C100.0425 (8)0.0477 (8)0.0513 (8)0.0046 (6)0.0005 (6)0.0047 (6)
C110.0489 (8)0.0501 (8)0.0496 (8)0.0055 (7)0.0010 (7)0.0078 (7)
C120.0554 (10)0.0788 (12)0.0549 (9)0.0106 (9)0.0095 (8)0.0116 (9)
C130.0442 (9)0.0882 (14)0.0715 (11)0.0044 (9)0.0055 (8)0.0176 (10)
C140.0680 (13)0.0969 (16)0.0667 (12)0.0167 (12)0.0161 (11)0.0185 (11)
C150.0473 (8)0.0543 (9)0.0588 (9)0.0035 (7)0.0040 (7)0.0000 (7)
C160.0550 (9)0.0540 (9)0.0559 (9)0.0008 (7)0.0089 (7)0.0021 (7)
C170.0589 (9)0.0468 (8)0.0483 (8)0.0035 (7)0.0022 (7)0.0030 (7)
C180.0799 (13)0.0841 (13)0.0519 (9)0.0003 (11)0.0025 (9)0.0045 (9)
O10.0631 (9)0.1010 (12)0.1230 (14)0.0170 (8)0.0409 (9)0.0130 (10)
O20.0605 (8)0.0953 (11)0.0884 (10)0.0165 (8)0.0070 (7)0.0052 (9)
O30.0530 (7)0.0674 (8)0.0850 (9)0.0080 (6)0.0181 (6)0.0112 (7)
O4A0.111 (3)0.084 (2)0.0780 (19)0.0174 (17)0.0341 (17)0.0248 (15)
O4B0.078 (3)0.241 (6)0.089 (3)0.013 (3)0.016 (2)0.065 (3)
O50.0435 (6)0.0660 (7)0.0522 (6)0.0061 (5)0.0009 (5)0.0045 (5)
O60.0454 (7)0.0988 (11)0.0773 (9)0.0045 (7)0.0020 (6)0.0126 (8)
S10.0460 (2)0.0741 (3)0.0795 (3)0.0003 (2)0.0156 (2)0.0070 (2)
Geometric parameters (Å, º) top
C1—C21.510 (3)C11—C121.397 (2)
C1—H1A0.9600C11—C171.452 (2)
C1—H1B0.9600C12—C131.369 (3)
C1—H1C0.9600C12—H120.9300
C2—C71.378 (3)C13—H130.9300
C2—C31.393 (3)C14—O4B1.109 (4)
C3—C41.379 (3)C14—O4A1.137 (3)
C3—H30.9300C14—H14A0.9300
C4—C51.385 (2)C14—H14B0.9300
C4—H40.9300C15—O61.200 (2)
C5—C61.388 (3)C15—O51.383 (2)
C5—S11.737 (2)C15—C161.440 (2)
C6—C71.373 (3)C16—C171.334 (2)
C6—H60.9300C16—H160.9300
C7—H70.9300C17—C181.499 (2)
C8—C131.378 (3)C18—H18A0.9600
C8—C91.390 (2)C18—H18B0.9600
C8—O31.407 (2)C18—H18C0.9600
C9—C101.399 (2)O1—S11.4165 (16)
C9—C141.476 (3)O2—S11.4179 (17)
C10—O51.3696 (19)O3—S11.6191 (14)
C10—C111.395 (2)
C2—C1—H1A109.5C12—C11—C17124.09 (16)
C2—C1—H1B109.5C13—C12—C11121.44 (17)
H1A—C1—H1B109.5C13—C12—H12119.3
C2—C1—H1C109.5C11—C12—H12119.3
H1A—C1—H1C109.5C12—C13—C8119.21 (17)
H1B—C1—H1C109.5C12—C13—H13120.4
C7—C2—C3118.6 (2)C8—C13—H13120.4
C7—C2—C1121.8 (2)O4B—C14—C9131.8 (3)
C3—C2—C1119.6 (2)O4A—C14—C9133.7 (3)
C4—C3—C2121.12 (19)C9—C14—H14A113.1
C4—C3—H3119.4C9—C14—H14B114.2
C2—C3—H3119.4O6—C15—O5116.59 (16)
C3—C4—C5118.82 (17)O6—C15—C16126.95 (16)
C3—C4—H4120.6O5—C15—C16116.45 (15)
C5—C4—H4120.6C17—C16—C15123.55 (16)
C4—C5—C6120.96 (19)C17—C16—H16118.2
C4—C5—S1119.03 (14)C15—C16—H16118.2
C6—C5—S1119.89 (16)C16—C17—C11118.42 (15)
C7—C6—C5118.9 (2)C16—C17—C18121.31 (17)
C7—C6—H6120.6C11—C17—C18120.27 (16)
C5—C6—H6120.6C17—C18—H18A109.5
C6—C7—C2121.63 (19)C17—C18—H18B109.5
C6—C7—H7119.2H18A—C18—H18B109.5
C2—C7—H7119.2C17—C18—H18C109.5
C13—C8—C9122.83 (17)H18A—C18—H18C109.5
C13—C8—O3119.04 (16)H18B—C18—H18C109.5
C9—C8—O3118.08 (17)C8—O3—S1118.74 (12)
C8—C9—C10116.10 (16)C10—O5—C15121.95 (13)
C8—C9—C14122.41 (17)O1—S1—O2120.07 (11)
C10—C9—C14121.43 (16)O1—S1—O3102.44 (9)
O5—C10—C11121.05 (14)O2—S1—O3107.72 (9)
O5—C10—C9116.03 (14)O1—S1—C5111.62 (10)
C11—C10—C9122.91 (15)O2—S1—C5109.80 (10)
C10—C11—C12117.44 (16)O3—S1—C5103.55 (8)
C10—C11—C17118.47 (15)
C7—C2—C3—C40.8 (3)C8—C9—C14—O4B179.2 (6)
C1—C2—C3—C4179.4 (2)C10—C9—C14—O4B3.5 (7)
C2—C3—C4—C50.9 (3)C8—C9—C14—O4A7.1 (5)
C3—C4—C5—C62.0 (3)C10—C9—C14—O4A170.2 (3)
C3—C4—C5—S1173.98 (14)O6—C15—C16—C17179.34 (19)
C4—C5—C6—C71.5 (3)O5—C15—C16—C170.0 (3)
S1—C5—C6—C7174.49 (16)C15—C16—C17—C112.1 (3)
C5—C6—C7—C20.3 (3)C15—C16—C17—C18177.28 (18)
C3—C2—C7—C61.4 (3)C10—C11—C17—C161.5 (2)
C1—C2—C7—C6178.9 (2)C12—C11—C17—C16178.16 (18)
C13—C8—C9—C102.8 (3)C10—C11—C17—C18177.90 (17)
O3—C8—C9—C10179.68 (15)C12—C11—C17—C182.5 (3)
C13—C8—C9—C14174.6 (2)C13—C8—O3—S180.5 (2)
O3—C8—C9—C142.9 (3)C9—C8—O3—S1101.90 (18)
C8—C9—C10—O5178.68 (15)C11—C10—O5—C153.4 (2)
C14—C9—C10—O53.9 (3)C9—C10—O5—C15177.47 (15)
C8—C9—C10—C112.2 (2)O6—C15—O5—C10177.79 (16)
C14—C9—C10—C11175.20 (18)C16—C15—O5—C102.8 (2)
O5—C10—C11—C12179.13 (16)C8—O3—S1—O1175.87 (15)
C9—C10—C11—C120.1 (3)C8—O3—S1—O248.35 (16)
O5—C10—C11—C171.2 (2)C8—O3—S1—C567.94 (15)
C9—C10—C11—C17179.74 (15)C4—C5—S1—O1169.10 (15)
C10—C11—C12—C131.7 (3)C6—C5—S1—O114.87 (19)
C17—C11—C12—C13177.95 (18)C4—C5—S1—O233.42 (17)
C11—C12—C13—C81.2 (3)C6—C5—S1—O2150.56 (16)
C9—C8—C13—C121.2 (3)C4—C5—S1—O381.39 (16)
O3—C8—C13—C12178.67 (18)C6—C5—S1—O394.64 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i0.932.563.326 (2)140
C13—H13···O6ii0.932.523.343 (2)148
C16—H16···O2iii0.932.513.433 (2)175
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H14O6S
Mr358.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)17.6174 (7), 7.2025 (3), 25.7706 (10)
V3)3270.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.14 × 0.13 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
48911, 4234, 3095
Rint0.037
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.02
No. of reflections4234
No. of parameters238
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i0.932.563.326 (2)140
C13—H13···O6ii0.932.523.343 (2)148
C16—H16···O2iii0.932.513.433 (2)175
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+3/2.
 

Acknowledgements

HY acknowledges Yeungnam University for the opportunity to work as a Full-Time Foreign Instructor.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlton, B. D., Aubrun, J. C. & Simon, G. S. (1996). Fundam. Appl. Toxicol. 30, 145–151.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEl-Agrody, A. M., Abd El-Latif, M. S., El-Hady, N. A., Fakery, A. H. & Bedair, A. H. (2001). Molecules, 6, 519–527.  Web of Science CrossRef CAS Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2001). J. Heterocycl. Chem. 38, 717–722.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalkhambkar, R.G., Kulkarni, G.M., Kamanavalli, Premkumar, N. Asdaq, S.M.B. & Sun, C.M. (2008). Eur. J. Med. Chem. 43, 2178–2188.  Google Scholar
First citationKulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationShaker, R. M. (1996). Pharmazie, 51, 148–148.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H., Protiva, P., Gil, R. R., Jiang, B., Baggett, S., Basile, M. J., Reynertson, K. A., Weinstein, I. B. & Kennelly, E. J. (2005). Planta Med. 71, 852–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYuvaraj, H., Gayathri, D., Kalkhambkar, R. G., Kulkarni, G. M. & Bapset, R. M. (2011). Acta Cryst. E67, o323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, P., Takaishi, Y. & Duan, H. (2000). Phytochemistry, 53, 689–697.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds