

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Diethyl 4-[2-(4-methoxyphenyl)-1Hpyrazol-3-yl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

#### Hoong-Kun Fun,<sup>a</sup>\*‡Madhukar Hemamalini,<sup>a</sup> A. M. Vijesh,<sup>b</sup>§ A. M. Isloor<sup>b</sup> and Shridhar Malladi<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>b</sup>Department of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India Correspondence e-mail: hkfun@usm.my

Received 3 May 2011; accepted 10 May 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.134; data-to-parameter ratio = 25.4.

In the title compound, C<sub>23</sub>H<sub>27</sub>N<sub>3</sub>O<sub>5</sub>, the pyrazole ring is inclined at dihedral angles of 38.16(6) and  $80.80(6)^{\circ}$ , respectively, to the least-squares planes of the benzene and dihydropyridine rings. In the crystal, adjacent molecules are linked via a pair of  $N-H \cdots N$  hydrogen bonds, forming an inversion dimer. The dimers are stacked in a column along the a axis through  $N-H\cdots O$  hydrogen bonds. Intra- and intermolecular  $C-H \cdots N$  and  $C-H \cdots O$  hydrogen bonds are also observed.

#### **Related literature**

For applications of pyridine derivatives, see: Surendra Kumar et al. (2011); Swarnalatha et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).



#### **Experimental**

#### Crystal data

| C <sub>23</sub> H <sub>27</sub> N <sub>3</sub> O <sub>5</sub> | $\gamma = 92.992 \ (1)^{\circ}$           |
|---------------------------------------------------------------|-------------------------------------------|
| $M_r = 425.48$                                                | V = 1078.37 (2) Å <sup>3</sup>            |
| Triclinic, P1                                                 | Z = 2                                     |
| a = 8.5800 (1)  Å                                             | Mo $K\alpha$ radiation                    |
| b = 11.1286 (1) Å                                             | $\mu = 0.09 \text{ mm}^{-1}$              |
| c = 11.4996 (1) Å                                             | $T = 100 { m K}$                          |
| $\alpha = 94.425 \ (1)^{\circ}$                               | $0.39 \times 0.23 \times 0.22 \text{ mm}$ |
| $\beta = 99.191 \ (1)^{\circ}$                                |                                           |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2009)  $T_{\min} = 0.965, T_{\max} = 0.980$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.046$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.134$               |  |
| S = 1.05                        |  |
| 7437 reflections                |  |
| 293 parameters                  |  |
|                                 |  |

28279 measured reflections 7437 independent reflections 5974 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.022$ 

| H atoms treated by a mixture of                            |
|------------------------------------------------------------|
| independent and constrained                                |
| refinement                                                 |
| $\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$ |

| Fable 1                |     |   |
|------------------------|-----|---|
| Hydrogen-bond geometry | (Å. | ¢ |

| $D - H \cdots A$                                                                                                                                        | D-H                                              | $H \cdots A$                                     | $D \cdots A$                                                            | $D - \mathbf{H} \cdot \cdot \cdot A$          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|
| $N2 - H1N2 \cdots O1^{i}$ $N1 - H1N1 \cdots N3^{ii}$ $C6 - H6B \cdots N3^{iii}$ $C7 - H7A \cdots O3^{iv}$ $C14 - H14A \cdots N1$ $C14 - H14A \cdots N1$ | 0.906 (17)<br>0.880 (17)<br>0.98<br>0.98<br>0.95 | 1.981 (17)<br>2.173 (17)<br>2.50<br>2.59<br>2.60 | 2.8858 (12)<br>2.9969 (13)<br>3.4076 (15)<br>3.5561 (15)<br>3.2484 (14) | 176.3 (14)<br>155.7 (16)<br>154<br>167<br>126 |
| $C18 - H18A \cdots O1$<br>$C22 - H22A \cdots O3$                                                                                                        | 0.95                                             | 2.48<br>2.28                                     | 3.1394 (14)<br>3.2210 (15)                                              | 128<br>170                                    |
|                                                                                                                                                         |                                                  |                                                  |                                                                         |                                               |

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Board for Research in Nuclear Sciences, Government of India, for a Young Scientists award. AMV is thankful to Dr Arulmoli, Vice President (R&D) and the management, SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2709).

<sup>‡</sup> Thomson Reuters ResearcherID: A-3561-2009.

<sup>§</sup> On secondment to: SeQuent Scientific Ltd, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India.

#### References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Surendra Kumar, R., Idhayadhulla, A., Jamal Abdul Nasser, A. & Selvin, J. (2011). J. Serb. Chem. Soc. 76, 1–11.
- Swarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75–89.

# supporting information

Acta Cryst. (2011). E67, o1417-o1418 [doi:10.1107/S1600536811017600]

# Diethyl 4-[2-(4-methoxyphenyl)-1*H*-pyrazol-3-yl]-2,6-dimethyl-1,4-dihydro-pyridine-3,5-dicarboxylate

# Hoong-Kun Fun, Madhukar Hemamalini, A. M. Vijesh, A. M. Isloor and Shridhar Malladi

## S1. Comment

Substituted pyridines are important structural components of a variety of biologically active compounds. They possess anti-inflammatory, anti-microbial (Surendra Kumar *et al.*, 2011), anti-oxidant, anti-tumor and anti-ulcer activities (Swarnalatha *et al.*, 2011). In view of these activities, herein we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The pyrazole (N2/N3/C14-C16) ring is approximately planar with maximum deviation of 0.003 (1) Å for atom N2. The central pyrazole (N2/N3/C14-C16) ring makes dihedral angles of 80.80 (6) and 38.16 (6)° with the pyridine (N1/C1-C5) ring and the benzene (C17-C22) ring, respectively. The dihedral angle between the pyridine (N1/C1-C5) ring and the benzene (C17-C22) ring is 44.88 (5)°.

In the crystal packing, (Fig. 2), the adjacent molecules are connected *via* intra- and intermolecular N2—H1N2…O1, N1 —H1N1…N3, C6—H6B…N3, C7—H7A…O3, C14—H14A…N1, C18—H18A…O1 and C22—H22A…O3 hydrogen bonds.

## S2. Experimental

3-(4-Methoxyphenyl)-1*H*-pyrazole-4-carbaldehyde (0.2g, 0.80 mmol), ethylacetoacetate (0.26g, 1.6 mmol) and ammonium acetate (0.07g, 0.90 mmol) in ethanol (20 ml) were refluxed for 8 hours in an oil bath. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from hot ethanol (yield: 0.32g, 76%; m.p. 453–455 K).

### **S3. Refinement**

Atom H1N1 and H1N2 were located from a difference Fourier maps and refined freely [N—H = 0.880 (17)–0.906 (17) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ . A rotating group model was applied to the methyl groups.



# Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. C—H…O and C—H…N hydrogen bonds are shown by dashed lines.



# Figure 2

The crystal packing of the title compound, viewed along the c axis.

# Diethyl 4-[2-(4-methoxyphenyl)-1*H*-pyrazol-3-yl]-2,6-dimethyl- 1,4-dihydropyridine-3,5-dicarboxylate

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $C_{23}H_{27}N_3O_5$            | Z = 2                                                 |
| $M_r = 425.48$                  | F(000) = 452                                          |
| Triclinic, P1                   | $D_{\rm x} = 1.310 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Hall symbol: -P 1               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 8.5800 (1)  Å               | Cell parameters from 9992 reflections                 |
| b = 11.1286(1) Å                | $\theta = 2.4 - 32.9^{\circ}$                         |
| c = 11.4996 (1) Å               | $\mu=0.09~\mathrm{mm}^{-1}$                           |
| $\alpha = 94.425 \ (1)^{\circ}$ | T = 100  K                                            |
| $\beta = 99.191 \ (1)^{\circ}$  | Block, yellow                                         |
| $\gamma = 92.992 \ (1)^{\circ}$ | $0.39 \times 0.23 \times 0.22 \text{ mm}$             |
| $V = 1078.37 (2) \text{ Å}^3$   |                                                       |
|                                 |                                                       |

Data collection

| Bruker SMART APEXII CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2009)<br>$T_{\min} = 0.965, T_{\max} = 0.980$<br><i>Refinement</i> | 28279 measured reflections<br>7437 independent reflections<br>5974 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.022$<br>$\theta_{max} = 32.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -16 \rightarrow 16$<br>$l = -17 \rightarrow 17$                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.046$<br>$wR(F^2) = 0.134$<br>S = 1.05<br>7437 reflections<br>293 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                                   | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0684P)^2 + 0.3274P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.51$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.29$ e Å <sup>-3</sup> |

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|-------------|-----------------------------|--|
| 01  | 0.16548 (9)  | 0.44561 (8)  | 0.87653 (7) | 0.02135 (17)                |  |
| O2  | 0.38602 (9)  | 0.35073 (8)  | 0.93477 (7) | 0.01969 (16)                |  |
| O3  | 0.47154 (11) | 0.01240 (8)  | 0.66212 (9) | 0.0295 (2)                  |  |
| O4  | 0.25759 (10) | -0.00120 (7) | 0.52149 (7) | 0.02201 (17)                |  |
| O5  | 0.90976 (11) | 0.04691 (9)  | 1.17677 (8) | 0.0292 (2)                  |  |
| N1  | 0.25821 (10) | 0.36906 (8)  | 0.52613 (8) | 0.01673 (17)                |  |
| N2  | 0.83784 (11) | 0.41106 (8)  | 0.76648 (8) | 0.01671 (17)                |  |
| N3  | 0.77514 (11) | 0.47186 (9)  | 0.67396 (8) | 0.01983 (18)                |  |
| C1  | 0.29133 (12) | 0.24919 (10) | 0.50498 (9) | 0.01684 (19)                |  |
| C2  | 0.36451 (12) | 0.19308 (9)  | 0.59735 (9) | 0.01576 (18)                |  |
| C3  | 0.43164 (11) | 0.26769 (9)  | 0.71308 (9) | 0.01462 (18)                |  |
| H3A | 0.4394       | 0.2133       | 0.7788      | 0.018*                      |  |
| C4  | 0.31145 (12) | 0.36043 (9)  | 0.73257 (9) | 0.01510 (18)                |  |
| C5  | 0.24375 (12) | 0.41694 (9)  | 0.63803 (9) | 0.01594 (18)                |  |
|     |              |              |             |                             |  |

| C6   | 0.15830(13)  | 0.53096 (10)  | 0.64023 (10) | 0.0202(2)    |
|------|--------------|---------------|--------------|--------------|
| H6A  | 0.1846       | 0.5744        | 0.7190       | 0.030*       |
| H6B  | 0.0439       | 0.5110        | 0.6218       | 0.030*       |
| H6C  | 0.1905       | 0.5820        | 0.5813       | 0.030*       |
| C7   | 0.23910 (14) | 0.19722 (11)  | 0.37946 (9)  | 0.0223(2)    |
| H7A  | 0.3043       | 0.1305        | 0.3620       | 0.033*       |
| H7B  | 0.2510       | 0.2600        | 0.3257       | 0.033*       |
| H7C  | 0.1279       | 0.1672        | 0.3687       | 0.033*       |
| C8   | 0.37462 (13) | 0.06117 (10)  | 0.59670 (9)  | 0.01829 (19) |
| C9   | 0.25093(15)  | -0.13152(10)  | 0.52548 (11) | 0.0248(2)    |
| H9A  | 0.2395       | -0.1533       | 0.6057       | 0.030*       |
| H9B  | 0.3485       | -0.1647       | 0.5043       | 0.030*       |
| C10  | 0.10914 (15) | -0.18010 (11) | 0.43720 (11) | 0.0263 (2)   |
| H10A | 0.0967       | -0.2680       | 0.4382       | 0.039*       |
| H10B | 0.1238       | -0.1600       | 0.3580       | 0.039*       |
| H10C | 0.0143       | -0.1440       | 0.4578       | 0.039*       |
| C11  | 0.27844 (12) | 0.39157 (9)   | 0.85152 (9)  | 0.01611 (18) |
| C12  | 0.36198 (14) | 0.37357 (12)  | 1.05686 (10) | 0.0241 (2)   |
| H12A | 0.2559       | 0.3404        | 1.0665       | 0.029*       |
| H12B | 0.3706       | 0.4614        | 1.0804       | 0.029*       |
| C13  | 0.48935 (16) | 0.31170 (14)  | 1.13135 (11) | 0.0306 (3)   |
| H13A | 0.4835       | 0.3301        | 1.2152       | 0.046*       |
| H13B | 0.5933       | 0.3406        | 1.1158       | 0.046*       |
| H13C | 0.4741       | 0.2242        | 1.1115       | 0.046*       |
| C14  | 0.62754 (12) | 0.42337 (10)  | 0.64436 (10) | 0.0191 (2)   |
| H14A | 0.5534       | 0.4484        | 0.5818       | 0.023*       |
| C15  | 0.59282 (12) | 0.33141 (9)   | 0.71527 (9)  | 0.01463 (18) |
| C16  | 0.73356 (12) | 0.32572 (9)   | 0.79400 (9)  | 0.01473 (18) |
| C17  | 0.77961 (12) | 0.25038 (9)   | 0.89185 (9)  | 0.01571 (18) |
| C18  | 0.87821 (13) | 0.29968 (10)  | 0.99559 (9)  | 0.01787 (19) |
| H18A | 0.9163       | 0.3820        | 1.0023       | 0.021*       |
| C19  | 0.92046 (13) | 0.22914 (11)  | 1.08843 (9)  | 0.0211 (2)   |
| H19A | 0.9872       | 0.2634        | 1.1583       | 0.025*       |
| C20  | 0.86537 (13) | 0.10797 (11)  | 1.07957 (10) | 0.0216 (2)   |
| C21  | 0.77058 (14) | 0.05728 (11)  | 0.97597 (10) | 0.0229 (2)   |
| H21A | 0.7349       | -0.0256       | 0.9687       | 0.027*       |
| C22  | 0.72820 (13) | 0.12868 (10)  | 0.88280 (10) | 0.0202 (2)   |
| H22A | 0.6634       | 0.0938        | 0.8123       | 0.024*       |
| C23  | 0.85276 (17) | -0.07678 (13) | 1.16952 (13) | 0.0332 (3)   |
| H23A | 0.8849       | -0.1095       | 1.2458       | 0.050*       |
| H23B | 0.8972       | -0.1230       | 1.1081       | 0.050*       |
| H23C | 0.7371       | -0.0827       | 1.1497       | 0.050*       |
| H1N2 | 0.941 (2)    | 0.4250 (14)   | 0.7995 (14)  | 0.027 (4)*   |
| H1N1 | 0.218 (2)    | 0.4093 (15)   | 0.4667 (15)  | 0.031 (4)*   |
|      |              |               |              |              |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$    | <i>U</i> <sup>13</sup> | U <sup>23</sup> |
|-----|------------|-----------------|-----------------|-------------|------------------------|-----------------|
| 01  | 0.0142 (4) | 0.0257 (4)      | 0.0235 (4)      | 0.0027 (3)  | 0.0025 (3)             | -0.0017 (3)     |
| 02  | 0.0162 (4) | 0.0277 (4)      | 0.0152 (3)      | 0.0038 (3)  | 0.0015 (3)             | 0.0024 (3)      |
| O3  | 0.0270 (4) | 0.0188 (4)      | 0.0375 (5)      | 0.0045 (3)  | -0.0108(4)             | 0.0004 (3)      |
| 04  | 0.0196 (4) | 0.0168 (4)      | 0.0268 (4)      | -0.0008(3)  | -0.0033 (3)            | 0.0003 (3)      |
| 05  | 0.0293 (5) | 0.0338 (5)      | 0.0243 (4)      | 0.0007 (4)  | -0.0021(3)             | 0.0156 (4)      |
| N1  | 0.0141 (4) | 0.0181 (4)      | 0.0178 (4)      | 0.0012 (3)  | 0.0003 (3)             | 0.0051 (3)      |
| N2  | 0.0121 (4) | 0.0185 (4)      | 0.0191 (4)      | 0.0004 (3)  | -0.0004 (3)            | 0.0056 (3)      |
| N3  | 0.0141 (4) | 0.0230 (4)      | 0.0225 (4)      | 0.0011 (3)  | -0.0003 (3)            | 0.0096 (3)      |
| C1  | 0.0130 (4) | 0.0187 (5)      | 0.0182 (4)      | -0.0013 (3) | 0.0011 (3)             | 0.0019 (3)      |
| C2  | 0.0130 (4) | 0.0160 (4)      | 0.0177 (4)      | -0.0001 (3) | 0.0009 (3)             | 0.0010 (3)      |
| C3  | 0.0120 (4) | 0.0159 (4)      | 0.0158 (4)      | 0.0010 (3)  | 0.0012 (3)             | 0.0026 (3)      |
| C4  | 0.0117 (4) | 0.0158 (4)      | 0.0178 (4)      | 0.0005 (3)  | 0.0019 (3)             | 0.0026 (3)      |
| C5  | 0.0109 (4) | 0.0172 (4)      | 0.0196 (4)      | -0.0002(3)  | 0.0015 (3)             | 0.0033 (3)      |
| C6  | 0.0165 (5) | 0.0197 (5)      | 0.0249 (5)      | 0.0043 (4)  | 0.0020 (4)             | 0.0053 (4)      |
| C7  | 0.0232 (5) | 0.0254 (5)      | 0.0167 (4)      | 0.0007 (4)  | -0.0012 (4)            | 0.0017 (4)      |
| C8  | 0.0161 (5) | 0.0174 (5)      | 0.0207 (5)      | 0.0002 (4)  | 0.0018 (4)             | 0.0002 (4)      |
| C9  | 0.0244 (6) | 0.0166 (5)      | 0.0314 (6)      | 0.0004 (4)  | -0.0008 (4)            | 0.0011 (4)      |
| C10 | 0.0231 (6) | 0.0229 (5)      | 0.0307 (6)      | -0.0012 (4) | 0.0007 (4)             | -0.0014 (4)     |
| C11 | 0.0126 (4) | 0.0160 (4)      | 0.0188 (4)      | -0.0019 (3) | 0.0006 (3)             | 0.0011 (3)      |
| C12 | 0.0201 (5) | 0.0360 (6)      | 0.0162 (5)      | 0.0006 (4)  | 0.0038 (4)             | 0.0005 (4)      |
| C13 | 0.0261 (6) | 0.0466 (8)      | 0.0188 (5)      | 0.0018 (5)  | 0.0006 (4)             | 0.0064 (5)      |
| C14 | 0.0134 (4) | 0.0225 (5)      | 0.0214 (5)      | 0.0011 (4)  | -0.0003 (4)            | 0.0088 (4)      |
| C15 | 0.0120 (4) | 0.0156 (4)      | 0.0161 (4)      | 0.0009 (3)  | 0.0009 (3)             | 0.0030 (3)      |
| C16 | 0.0135 (4) | 0.0150 (4)      | 0.0156 (4)      | 0.0017 (3)  | 0.0014 (3)             | 0.0028 (3)      |
| C17 | 0.0134 (4) | 0.0174 (4)      | 0.0162 (4)      | 0.0020 (3)  | 0.0010 (3)             | 0.0031 (3)      |
| C18 | 0.0162 (5) | 0.0189 (5)      | 0.0178 (4)      | 0.0010 (4)  | 0.0004 (3)             | 0.0020 (4)      |
| C19 | 0.0186 (5) | 0.0264 (5)      | 0.0169 (4)      | 0.0009 (4)  | -0.0019 (4)            | 0.0037 (4)      |
| C20 | 0.0184 (5) | 0.0268 (5)      | 0.0203 (5)      | 0.0026 (4)  | 0.0012 (4)             | 0.0103 (4)      |
| C21 | 0.0212 (5) | 0.0198 (5)      | 0.0263 (5)      | -0.0013 (4) | -0.0023 (4)            | 0.0080 (4)      |
| C22 | 0.0188 (5) | 0.0194 (5)      | 0.0206 (5)      | 0.0001 (4)  | -0.0030 (4)            | 0.0042 (4)      |
| C23 | 0.0304 (6) | 0.0343 (7)      | 0.0372 (7)      | 0.0016 (5)  | 0.0040 (5)             | 0.0219 (6)      |

# Geometric parameters (Å, °)

| 01—C11  | 1.2275 (13) | С7—Н7С   | 0.9800      |
|---------|-------------|----------|-------------|
| O2—C11  | 1.3430 (12) | C9—C10   | 1.5017 (17) |
| O2—C12  | 1.4565 (13) | С9—Н9А   | 0.9900      |
| O3—C8   | 1.2093 (13) | С9—Н9В   | 0.9900      |
| O4—C8   | 1.3398 (13) | C10—H10A | 0.9800      |
| O4—C9   | 1.4530 (14) | C10—H10B | 0.9800      |
| O5—C20  | 1.3655 (13) | C10—H10C | 0.9800      |
| O5—C23  | 1.4282 (17) | C12—C13  | 1.5075 (17) |
| N1—C5   | 1.3810 (14) | C12—H12A | 0.9900      |
| N1—C1   | 1.3896 (14) | C12—H12B | 0.9900      |
| N1—H1N1 | 0.880 (17)  | C13—H13A | 0.9800      |
|         |             |          |             |

| N2—N3       | 1.3584 (12) | C13—H13B                   | 0.9800      |
|-------------|-------------|----------------------------|-------------|
| N2—C16      | 1.3604 (13) | C13—H13C                   | 0.9800      |
| N2—H1N2     | 0.906 (17)  | C14—C15                    | 1.4056 (14) |
| N3—C14      | 1.3317 (14) | C14—H14A                   | 0.9500      |
| C1—C2       | 1.3574 (14) | C15—C16                    | 1.3963 (14) |
| C1—C7       | 1.5021 (15) | C16—C17                    | 1.4708 (13) |
| C2—C8       | 1.4746 (14) | C17—C22                    | 1.3931 (15) |
| C2—C3       | 1.5254 (14) | C17—C18                    | 1.4029 (14) |
| C3—C15      | 1.5165 (14) | C18—C19                    | 1.3867 (14) |
| C3—C4       | 1.5258 (14) | C18—H18A                   | 0.9500      |
| С3—НЗА      | 1.0000      | C19—C20                    | 1.3960 (17) |
| C4—C5       | 1.3627 (13) | С19—Н19А                   | 0.9500      |
| C4—C11      | 1.4602 (14) | C20—C21                    | 1.3921 (16) |
| C5—C6       | 1.4988 (15) | C21—C22                    | 1.3959 (14) |
| С6—Н6А      | 0.9800      | C21—H21A                   | 0.9500      |
| С6—Н6В      | 0.9800      | C22—H22A                   | 0.9500      |
| C6—H6C      | 0.9800      | C23—H23A                   | 0.9800      |
| C7—H7A      | 0.9800      | C23—H23B                   | 0.9800      |
| C7—H7B      | 0.9800      | $C^{23}$ H <sup>23</sup> C | 0.9800      |
| 0, II,D     | 0.9000      | 025 11250                  | 0.9000      |
| C11—O2—C12  | 116.61 (8)  | С9—С10—Н10С                | 109.5       |
| C8—O4—C9    | 115.93 (9)  | H10A—C10—H10C              | 109.5       |
| C20—O5—C23  | 116.58 (10) | H10B—C10—H10C              | 109.5       |
| C5—N1—C1    | 121.27 (9)  | O1—C11—O2                  | 121.98 (10) |
| C5—N1—H1N1  | 116.6 (11)  | O1—C11—C4                  | 126.11 (9)  |
| C1—N1—H1N1  | 119.6 (11)  | O2—C11—C4                  | 111.89 (9)  |
| N3—N2—C16   | 112.67 (8)  | O2—C12—C13                 | 106.44 (10) |
| N3—N2—H1N2  | 120.6 (10)  | O2—C12—H12A                | 110.4       |
| C16—N2—H1N2 | 126.6 (10)  | C13—C12—H12A               | 110.4       |
| C14—N3—N2   | 103.98 (8)  | O2—C12—H12B                | 110.4       |
| C2—C1—N1    | 117.80 (9)  | C13—C12—H12B               | 110.4       |
| C2—C1—C7    | 127.83 (10) | H12A—C12—H12B              | 108.6       |
| N1—C1—C7    | 114.37 (9)  | C12—C13—H13A               | 109.5       |
| C1—C2—C8    | 124.03 (9)  | C12—C13—H13B               | 109.5       |
| C1—C2—C3    | 119.30 (9)  | H13A—C13—H13B              | 109.5       |
| C8—C2—C3    | 116.54 (8)  | C12—C13—H13C               | 109.5       |
| C15—C3—C2   | 114.71 (8)  | H13A—C13—H13C              | 109.5       |
| C15—C3—C4   | 109.82 (8)  | H13B—C13—H13C              | 109.5       |
| C2—C3—C4    | 106.30 (8)  | N3—C14—C15                 | 113.01 (9)  |
| С15—С3—НЗА  | 108.6       | N3—C14—H14A                | 123.5       |
| С2—С3—НЗА   | 108.6       | C15—C14—H14A               | 123.5       |
| С4—С3—НЗА   | 108.6       | C16—C15—C14                | 103.80 (9)  |
| C5—C4—C11   | 121.66 (9)  | C16—C15—C3                 | 129.74 (9)  |
| C5—C4—C3    | 118.34 (9)  | C14—C15—C3                 | 126.03 (9)  |
| C11—C4—C3   | 119.91 (8)  | N2—C16—C15                 | 106.53 (9)  |
| C4—C5—N1    | 118.28 (9)  | N2—C16—C17                 | 120.75 (9)  |
| C4—C5—C6    | 127.35 (10) | C15—C16—C17                | 132.71 (9)  |
| N1—C5—C6    | 114.32 (9)  | C22—C17—C18                | 118.77 (9)  |
|             |             |                            |             |

| С5—С6—Н6А                         | 109.5       | C22—C17—C16                         | 120.81 (9)   |
|-----------------------------------|-------------|-------------------------------------|--------------|
| С5—С6—Н6В                         | 109.5       | C18—C17—C16                         | 120.41 (9)   |
| H6A—C6—H6B                        | 109.5       | C19—C18—C17                         | 120.51 (10)  |
| С5—С6—Н6С                         | 109.5       | C19—C18—H18A                        | 119.7        |
| H6A—C6—H6C                        | 109.5       | C17—C18—H18A                        | 119.7        |
| H6B—C6—H6C                        | 109.5       | C18—C19—C20                         | 120.28 (10)  |
| С1—С7—Н7А                         | 109.5       | C18—C19—H19A                        | 119.9        |
| С1—С7—Н7В                         | 109.5       | С20—С19—Н19А                        | 119.9        |
| H7A—C7—H7B                        | 109.5       | O5—C20—C21                          | 124.32 (11)  |
| C1—C7—H7C                         | 109.5       | O5—C20—C19                          | 115.95 (10)  |
| H7A—C7—H7C                        | 109.5       | C21—C20—C19                         | 119.73 (10)  |
| H7B—C7—H7C                        | 109.5       | C20—C21—C22                         | 119.77 (10)  |
| 03-08-04                          | 122.38 (10) | C20—C21—H21A                        | 120.1        |
| O3—C8—C2                          | 124.30 (10) | C22—C21—H21A                        | 120.1        |
| 04-C8-C2                          | 113.15 (9)  | C17—C22—C21                         | 120.91 (10)  |
| O4—C9—C10                         | 106.00 (9)  | C17—C22—H22A                        | 119.5        |
| 04—C9—H9A                         | 110.5       | $C_{21}$ $C_{22}$ $H_{22A}$         | 119.5        |
| C10—C9—H9A                        | 110.5       | 05—C23—H23A                         | 109.5        |
| 04—C9—H9B                         | 110.5       | 05-C23-H23B                         | 109.5        |
| C10—C9—H9B                        | 110.5       | H23A-C23-H23B                       | 109.5        |
| H9A—C9—H9B                        | 108.7       | $05-C^{23}-H^{23}C$                 | 109.5        |
| C9-C10-H10A                       | 109.5       | H23A—C23—H23C                       | 109.5        |
| C9-C10-H10B                       | 109.5       | $H_{23B} = C_{23} = H_{23C}$        | 109.5        |
| H10A - C10 - H10B                 | 109.5       |                                     | 109.0        |
|                                   | 107.5       |                                     |              |
| C16—N2—N3—C14                     | 0.59 (12)   | C5-C4-C11-O2                        | -163.27(9)   |
| C5—N1—C1—C2                       | -23.57 (14) | C3—C4—C11—O2                        | 13.14 (13)   |
| C5—N1—C1—C7                       | 156.10 (10) | C11—O2—C12—C13                      | 175.86 (10)  |
| N1—C1—C2—C8                       | 165.32 (10) | N2—N3—C14—C15                       | -0.41 (13)   |
| C7—C1—C2—C8                       | -14.30(17)  | N3—C14—C15—C16                      | 0.10 (13)    |
| N1—C1—C2—C3                       | -10.26(14)  | N3—C14—C15—C3                       | 173.13 (10)  |
| C7—C1—C2—C3                       | 170.12 (10) | C2-C3-C15-C16                       | -124.23 (11) |
| C1—C2—C3—C15                      | -81.50 (12) | C4—C3—C15—C16                       | 116.16 (11)  |
| C8—C2—C3—C15                      | 102.59 (10) | C2-C3-C15-C14                       | 64.59 (14)   |
| C1—C2—C3—C4                       | 40.06 (12)  | C4—C3—C15—C14                       | -55.03 (13)  |
| C8—C2—C3—C4                       | -135.85 (9) | N3—N2—C16—C15                       | -0.54 (12)   |
| C15—C3—C4—C5                      | 82.46 (11)  | N3—N2—C16—C17                       | -179.99 (9)  |
| C2—C3—C4—C5                       | -42.18 (12) | C14—C15—C16—N2                      | 0.26 (11)    |
| $C_{15} - C_{3} - C_{4} - C_{11}$ | -94.07 (11) | C3-C15-C16-N2                       | -172.41(10)  |
| C2-C3-C4-C11                      | 141.30 (9)  | C14—C15—C16—C17                     | 179.61 (11)  |
| $C_{11} - C_{4} - C_{5} - N_{1}$  | -168.89(9)  | C3-C15-C16-C17                      | 6.94 (19)    |
| C3-C4-C5-N1                       | 14.65 (14)  | N2-C16-C17-C22                      | -141.80(11)  |
| $C_{11} - C_{4} - C_{5} - C_{6}$  | 13.84 (16)  | $C_{15}$ $C_{16}$ $C_{17}$ $C_{22}$ | 38.92 (17)   |
| C3—C4—C5—C6                       | -162.62(10) | N2-C16-C17-C18                      | 37.31 (15)   |
| C1 - N1 - C5 - C4                 | 21.24 (14)  | C15-C16-C17-C18                     | -141.96(12)  |
| C1 - N1 - C5 - C6                 | -161.14(9)  | $C_{22}$ $C_{17}$ $C_{18}$ $C_{19}$ | -1.53 (16)   |
| C9-04-C8-03                       | 1.75 (17)   | C16-C17-C18-C19                     | 179.34 (10)  |
| 0, 0, 00 00                       |             |                                     |              |
| C9-04-C8-C2                       | -17377(9)   | C17 - C18 - C19 - C20               | 0.08(17)     |

# supporting information

| C1-C2-C8-O3 $C3-C2-C8-O3$ $C1-C2-C8-O4$ $C3-C2-C8-O4$ $C8-O4-C9-C10$ $C12-O2-C11-O1$ $C12-O2-C11-C4$ $C5-C4-C11-O1$ | 159.34 (12)  | C23—O5—C20—C21  | -0.38 (18)   |
|---------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--------------|
|                                                                                                                     | -24.97 (16)  | C23—O5—C20—C19  | 179.30 (11)  |
|                                                                                                                     | -25.24 (15)  | C18—C19—C20—O5  | -178.22 (10) |
|                                                                                                                     | 150.45 (9)   | C18—C19—C20—C21 | 1.47 (18)    |
|                                                                                                                     | 178.33 (10)  | O5—C20—C21—C22  | 178.13 (11)  |
|                                                                                                                     | 0.11 (15)    | C19—C20—C21—C22 | -1.54 (18)   |
|                                                                                                                     | -178.22 (9)  | C18—C17—C22—C21 | 1.46 (17)    |
|                                                                                                                     | 18.49 (17)   | C16—C17—C22—C21 | -179.41 (10) |
| C3-C4-C11-O1                                                                                                        | -165.10 (10) | C16—C17—C22—C21 | -1/9.41 (10) |
| C3-C4-C11-O1                                                                                                        |              | C20—C21—C22—C17 | 0.06 (18)    |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>     | <i>D</i> —Н | H···A      | D····A      | <i>D</i> —H··· <i>A</i> |
|-----------------------------|-------------|------------|-------------|-------------------------|
| N2—H1N2…O1 <sup>i</sup>     | 0.906 (17)  | 1.981 (17) | 2.8858 (12) | 176.3 (14)              |
| N1—H1N1····N3 <sup>ii</sup> | 0.880 (17)  | 2.173 (17) | 2.9969 (13) | 155.7 (16)              |
| C6—H6B····N3 <sup>iii</sup> | 0.98        | 2.50       | 3.4076 (15) | 154                     |
| C7—H7A····O3 <sup>iv</sup>  | 0.98        | 2.59       | 3.5561 (15) | 167                     |
| C14—H14A…N1                 | 0.95        | 2.60       | 3.2484 (14) | 126                     |
| C18—H18A····O1 <sup>v</sup> | 0.95        | 2.48       | 3.1594 (14) | 128                     |
| C22—H22A····O3              | 0.95        | 2.28       | 3.2210 (15) | 170                     |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+2.