organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1417-o1418

Di­ethyl 4-[2-(4-meth­­oxy­phen­yl)-1H-pyrazol-3-yl]-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 3 May 2011; accepted 10 May 2011; online 14 May 2011)

In the title compound, C23H27N3O5, the pyrazole ring is inclined at dihedral angles of 38.16 (6) and 80.80 (6)°, respectively, to the least-squares planes of the benzene and dihydro­pyridine rings. In the crystal, adjacent mol­ecules are linked via a pair of N—H⋯N hydrogen bonds, forming an inversion dimer. The dimers are stacked in a column along the a axis through N—H⋯O hydrogen bonds. Intra- and inter­molecular C—H⋯N and C—H⋯O hydrogen bonds are also observed.

Related literature

For applications of pyridine derivatives, see: Surendra Kumar et al. (2011[Surendra Kumar, R., Idhayadhulla, A., Jamal Abdul Nasser, A. & Selvin, J. (2011). J. Serb. Chem. Soc. 76, 1-11.]); Swarnalatha et al. (2011[Swarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75-89.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27N3O5

  • Mr = 425.48

  • Triclinic, [P \overline 1]

  • a = 8.5800 (1) Å

  • b = 11.1286 (1) Å

  • c = 11.4996 (1) Å

  • α = 94.425 (1)°

  • β = 99.191 (1)°

  • γ = 92.992 (1)°

  • V = 1078.37 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.39 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.980

  • 28279 measured reflections

  • 7437 independent reflections

  • 5974 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.05

  • 7437 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.906 (17) 1.981 (17) 2.8858 (12) 176.3 (14)
N1—H1N1⋯N3ii 0.880 (17) 2.173 (17) 2.9969 (13) 155.7 (16)
C6—H6B⋯N3iii 0.98 2.50 3.4076 (15) 154
C7—H7A⋯O3iv 0.98 2.59 3.5561 (15) 167
C14—H14A⋯N1 0.95 2.60 3.2484 (14) 126
C18—H18A⋯O1v 0.95 2.48 3.1594 (14) 128
C22—H22A⋯O3 0.95 2.28 3.2210 (15) 170
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyridines are important structural components of a variety of biologically active compounds. They possess anti-inflammatory, anti-microbial (Surendra Kumar et al., 2011), anti-oxidant, anti-tumor and anti-ulcer activities (Swarnalatha et al., 2011). In view of these activities, herein we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The pyrazole (N2/N3/C14–C16) ring is approximately planar with maximum deviation of 0.003 (1) Å for atom N2. The central pyrazole (N2/N3/C14–C16) ring makes dihedral angles of 80.80 (6) and 38.16 (6)° with the pyridine (N1/C1–C5) ring and the benzene (C17–C22) ring, respectively. The dihedral angle between the pyridine (N1/C1–C5) ring and the benzene (C17–C22) ring is 44.88 (5)°.

In the crystal packing, (Fig. 2), the adjacent molecules are connected via intra- and intermolecular N2—H1N2···O1, N1—H1N1···N3, C6—H6B···N3, C7—H7A···O3, C14—H14A···N1, C18—H18A···O1 and C22—H22A···O3 hydrogen bonds.

Related literature top

For applications of pyridine derivatives, see: Surendra Kumar et al. (2011); Swarnalatha et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

3-(4-Methoxyphenyl)-1H-pyrazole-4-carbaldehyde (0.2g, 0.80 mmol), ethylacetoacetate (0.26g, 1.6 mmol) and ammonium acetate (0.07g, 0.90 mmol) in ethanol (20 ml) were refluxed for 8 hours in an oil bath. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from hot ethanol (yield: 0.32g, 76%; m.p. 453–455 K).

Refinement top

Atom H1N1 and H1N2 were located from a difference Fourier maps and refined freely [N—H = 0.880 (17)–0.906 (17) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. C—H···O and C—H···N hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis.
Diethyl 4-[2-(4-methoxyphenyl)-1H-pyrazol-3-yl]-2,6-dimethyl- 1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C23H27N3O5Z = 2
Mr = 425.48F(000) = 452
Triclinic, P1Dx = 1.310 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5800 (1) ÅCell parameters from 9992 reflections
b = 11.1286 (1) Åθ = 2.4–32.9°
c = 11.4996 (1) ŵ = 0.09 mm1
α = 94.425 (1)°T = 100 K
β = 99.191 (1)°Block, yellow
γ = 92.992 (1)°0.39 × 0.23 × 0.22 mm
V = 1078.37 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7437 independent reflections
Radiation source: fine-focus sealed tube5974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.965, Tmax = 0.980k = 1616
28279 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.3274P]
where P = (Fo2 + 2Fc2)/3
7437 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C23H27N3O5γ = 92.992 (1)°
Mr = 425.48V = 1078.37 (2) Å3
Triclinic, P1Z = 2
a = 8.5800 (1) ÅMo Kα radiation
b = 11.1286 (1) ŵ = 0.09 mm1
c = 11.4996 (1) ÅT = 100 K
α = 94.425 (1)°0.39 × 0.23 × 0.22 mm
β = 99.191 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5974 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.980Rint = 0.022
28279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.51 e Å3
7437 reflectionsΔρmin = 0.29 e Å3
293 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16548 (9)0.44561 (8)0.87653 (7)0.02135 (17)
O20.38602 (9)0.35073 (8)0.93477 (7)0.01969 (16)
O30.47154 (11)0.01240 (8)0.66212 (9)0.0295 (2)
O40.25759 (10)0.00120 (7)0.52149 (7)0.02201 (17)
O50.90976 (11)0.04691 (9)1.17677 (8)0.0292 (2)
N10.25821 (10)0.36906 (8)0.52613 (8)0.01673 (17)
N20.83784 (11)0.41106 (8)0.76648 (8)0.01671 (17)
N30.77514 (11)0.47186 (9)0.67396 (8)0.01983 (18)
C10.29133 (12)0.24919 (10)0.50498 (9)0.01684 (19)
C20.36451 (12)0.19308 (9)0.59735 (9)0.01576 (18)
C30.43164 (11)0.26769 (9)0.71308 (9)0.01462 (18)
H3A0.43940.21330.77880.018*
C40.31145 (12)0.36043 (9)0.73257 (9)0.01510 (18)
C50.24375 (12)0.41694 (9)0.63803 (9)0.01594 (18)
C60.15830 (13)0.53096 (10)0.64023 (10)0.0202 (2)
H6A0.18460.57440.71900.030*
H6B0.04390.51100.62180.030*
H6C0.19050.58200.58130.030*
C70.23910 (14)0.19722 (11)0.37946 (9)0.0223 (2)
H7A0.30430.13050.36200.033*
H7B0.25100.26000.32570.033*
H7C0.12790.16720.36870.033*
C80.37462 (13)0.06117 (10)0.59670 (9)0.01829 (19)
C90.25093 (15)0.13152 (10)0.52548 (11)0.0248 (2)
H9A0.23950.15330.60570.030*
H9B0.34850.16470.50430.030*
C100.10914 (15)0.18010 (11)0.43720 (11)0.0263 (2)
H10A0.09670.26800.43820.039*
H10B0.12380.16000.35800.039*
H10C0.01430.14400.45780.039*
C110.27844 (12)0.39157 (9)0.85152 (9)0.01611 (18)
C120.36198 (14)0.37357 (12)1.05686 (10)0.0241 (2)
H12A0.25590.34041.06650.029*
H12B0.37060.46141.08040.029*
C130.48935 (16)0.31170 (14)1.13135 (11)0.0306 (3)
H13A0.48350.33011.21520.046*
H13B0.59330.34061.11580.046*
H13C0.47410.22421.11150.046*
C140.62754 (12)0.42337 (10)0.64436 (10)0.0191 (2)
H14A0.55340.44840.58180.023*
C150.59282 (12)0.33141 (9)0.71527 (9)0.01463 (18)
C160.73356 (12)0.32572 (9)0.79400 (9)0.01473 (18)
C170.77961 (12)0.25038 (9)0.89185 (9)0.01571 (18)
C180.87821 (13)0.29968 (10)0.99559 (9)0.01787 (19)
H18A0.91630.38201.00230.021*
C190.92046 (13)0.22914 (11)1.08843 (9)0.0211 (2)
H19A0.98720.26341.15830.025*
C200.86537 (13)0.10797 (11)1.07957 (10)0.0216 (2)
C210.77058 (14)0.05728 (11)0.97597 (10)0.0229 (2)
H21A0.73490.02560.96870.027*
C220.72820 (13)0.12868 (10)0.88280 (10)0.0202 (2)
H22A0.66340.09380.81230.024*
C230.85276 (17)0.07678 (13)1.16952 (13)0.0332 (3)
H23A0.88490.10951.24580.050*
H23B0.89720.12301.10810.050*
H23C0.73710.08271.14970.050*
H1N20.941 (2)0.4250 (14)0.7995 (14)0.027 (4)*
H1N10.218 (2)0.4093 (15)0.4667 (15)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0142 (4)0.0257 (4)0.0235 (4)0.0027 (3)0.0025 (3)0.0017 (3)
O20.0162 (4)0.0277 (4)0.0152 (3)0.0038 (3)0.0015 (3)0.0024 (3)
O30.0270 (4)0.0188 (4)0.0375 (5)0.0045 (3)0.0108 (4)0.0004 (3)
O40.0196 (4)0.0168 (4)0.0268 (4)0.0008 (3)0.0033 (3)0.0003 (3)
O50.0293 (5)0.0338 (5)0.0243 (4)0.0007 (4)0.0021 (3)0.0156 (4)
N10.0141 (4)0.0181 (4)0.0178 (4)0.0012 (3)0.0003 (3)0.0051 (3)
N20.0121 (4)0.0185 (4)0.0191 (4)0.0004 (3)0.0004 (3)0.0056 (3)
N30.0141 (4)0.0230 (4)0.0225 (4)0.0011 (3)0.0003 (3)0.0096 (3)
C10.0130 (4)0.0187 (5)0.0182 (4)0.0013 (3)0.0011 (3)0.0019 (3)
C20.0130 (4)0.0160 (4)0.0177 (4)0.0001 (3)0.0009 (3)0.0010 (3)
C30.0120 (4)0.0159 (4)0.0158 (4)0.0010 (3)0.0012 (3)0.0026 (3)
C40.0117 (4)0.0158 (4)0.0178 (4)0.0005 (3)0.0019 (3)0.0026 (3)
C50.0109 (4)0.0172 (4)0.0196 (4)0.0002 (3)0.0015 (3)0.0033 (3)
C60.0165 (5)0.0197 (5)0.0249 (5)0.0043 (4)0.0020 (4)0.0053 (4)
C70.0232 (5)0.0254 (5)0.0167 (4)0.0007 (4)0.0012 (4)0.0017 (4)
C80.0161 (5)0.0174 (5)0.0207 (5)0.0002 (4)0.0018 (4)0.0002 (4)
C90.0244 (6)0.0166 (5)0.0314 (6)0.0004 (4)0.0008 (4)0.0011 (4)
C100.0231 (6)0.0229 (5)0.0307 (6)0.0012 (4)0.0007 (4)0.0014 (4)
C110.0126 (4)0.0160 (4)0.0188 (4)0.0019 (3)0.0006 (3)0.0011 (3)
C120.0201 (5)0.0360 (6)0.0162 (5)0.0006 (4)0.0038 (4)0.0005 (4)
C130.0261 (6)0.0466 (8)0.0188 (5)0.0018 (5)0.0006 (4)0.0064 (5)
C140.0134 (4)0.0225 (5)0.0214 (5)0.0011 (4)0.0003 (4)0.0088 (4)
C150.0120 (4)0.0156 (4)0.0161 (4)0.0009 (3)0.0009 (3)0.0030 (3)
C160.0135 (4)0.0150 (4)0.0156 (4)0.0017 (3)0.0014 (3)0.0028 (3)
C170.0134 (4)0.0174 (4)0.0162 (4)0.0020 (3)0.0010 (3)0.0031 (3)
C180.0162 (5)0.0189 (5)0.0178 (4)0.0010 (4)0.0004 (3)0.0020 (4)
C190.0186 (5)0.0264 (5)0.0169 (4)0.0009 (4)0.0019 (4)0.0037 (4)
C200.0184 (5)0.0268 (5)0.0203 (5)0.0026 (4)0.0012 (4)0.0103 (4)
C210.0212 (5)0.0198 (5)0.0263 (5)0.0013 (4)0.0023 (4)0.0080 (4)
C220.0188 (5)0.0194 (5)0.0206 (5)0.0001 (4)0.0030 (4)0.0042 (4)
C230.0304 (6)0.0343 (7)0.0372 (7)0.0016 (5)0.0040 (5)0.0219 (6)
Geometric parameters (Å, º) top
O1—C111.2275 (13)C7—H7C0.9800
O2—C111.3430 (12)C9—C101.5017 (17)
O2—C121.4565 (13)C9—H9A0.9900
O3—C81.2093 (13)C9—H9B0.9900
O4—C81.3398 (13)C10—H10A0.9800
O4—C91.4530 (14)C10—H10B0.9800
O5—C201.3655 (13)C10—H10C0.9800
O5—C231.4282 (17)C12—C131.5075 (17)
N1—C51.3810 (14)C12—H12A0.9900
N1—C11.3896 (14)C12—H12B0.9900
N1—H1N10.880 (17)C13—H13A0.9800
N2—N31.3584 (12)C13—H13B0.9800
N2—C161.3604 (13)C13—H13C0.9800
N2—H1N20.906 (17)C14—C151.4056 (14)
N3—C141.3317 (14)C14—H14A0.9500
C1—C21.3574 (14)C15—C161.3963 (14)
C1—C71.5021 (15)C16—C171.4708 (13)
C2—C81.4746 (14)C17—C221.3931 (15)
C2—C31.5254 (14)C17—C181.4029 (14)
C3—C151.5165 (14)C18—C191.3867 (14)
C3—C41.5258 (14)C18—H18A0.9500
C3—H3A1.0000C19—C201.3960 (17)
C4—C51.3627 (13)C19—H19A0.9500
C4—C111.4602 (14)C20—C211.3921 (16)
C5—C61.4988 (15)C21—C221.3959 (14)
C6—H6A0.9800C21—H21A0.9500
C6—H6B0.9800C22—H22A0.9500
C6—H6C0.9800C23—H23A0.9800
C7—H7A0.9800C23—H23B0.9800
C7—H7B0.9800C23—H23C0.9800
C11—O2—C12116.61 (8)C9—C10—H10C109.5
C8—O4—C9115.93 (9)H10A—C10—H10C109.5
C20—O5—C23116.58 (10)H10B—C10—H10C109.5
C5—N1—C1121.27 (9)O1—C11—O2121.98 (10)
C5—N1—H1N1116.6 (11)O1—C11—C4126.11 (9)
C1—N1—H1N1119.6 (11)O2—C11—C4111.89 (9)
N3—N2—C16112.67 (8)O2—C12—C13106.44 (10)
N3—N2—H1N2120.6 (10)O2—C12—H12A110.4
C16—N2—H1N2126.6 (10)C13—C12—H12A110.4
C14—N3—N2103.98 (8)O2—C12—H12B110.4
C2—C1—N1117.80 (9)C13—C12—H12B110.4
C2—C1—C7127.83 (10)H12A—C12—H12B108.6
N1—C1—C7114.37 (9)C12—C13—H13A109.5
C1—C2—C8124.03 (9)C12—C13—H13B109.5
C1—C2—C3119.30 (9)H13A—C13—H13B109.5
C8—C2—C3116.54 (8)C12—C13—H13C109.5
C15—C3—C2114.71 (8)H13A—C13—H13C109.5
C15—C3—C4109.82 (8)H13B—C13—H13C109.5
C2—C3—C4106.30 (8)N3—C14—C15113.01 (9)
C15—C3—H3A108.6N3—C14—H14A123.5
C2—C3—H3A108.6C15—C14—H14A123.5
C4—C3—H3A108.6C16—C15—C14103.80 (9)
C5—C4—C11121.66 (9)C16—C15—C3129.74 (9)
C5—C4—C3118.34 (9)C14—C15—C3126.03 (9)
C11—C4—C3119.91 (8)N2—C16—C15106.53 (9)
C4—C5—N1118.28 (9)N2—C16—C17120.75 (9)
C4—C5—C6127.35 (10)C15—C16—C17132.71 (9)
N1—C5—C6114.32 (9)C22—C17—C18118.77 (9)
C5—C6—H6A109.5C22—C17—C16120.81 (9)
C5—C6—H6B109.5C18—C17—C16120.41 (9)
H6A—C6—H6B109.5C19—C18—C17120.51 (10)
C5—C6—H6C109.5C19—C18—H18A119.7
H6A—C6—H6C109.5C17—C18—H18A119.7
H6B—C6—H6C109.5C18—C19—C20120.28 (10)
C1—C7—H7A109.5C18—C19—H19A119.9
C1—C7—H7B109.5C20—C19—H19A119.9
H7A—C7—H7B109.5O5—C20—C21124.32 (11)
C1—C7—H7C109.5O5—C20—C19115.95 (10)
H7A—C7—H7C109.5C21—C20—C19119.73 (10)
H7B—C7—H7C109.5C20—C21—C22119.77 (10)
O3—C8—O4122.38 (10)C20—C21—H21A120.1
O3—C8—C2124.30 (10)C22—C21—H21A120.1
O4—C8—C2113.15 (9)C17—C22—C21120.91 (10)
O4—C9—C10106.00 (9)C17—C22—H22A119.5
O4—C9—H9A110.5C21—C22—H22A119.5
C10—C9—H9A110.5O5—C23—H23A109.5
O4—C9—H9B110.5O5—C23—H23B109.5
C10—C9—H9B110.5H23A—C23—H23B109.5
H9A—C9—H9B108.7O5—C23—H23C109.5
C9—C10—H10A109.5H23A—C23—H23C109.5
C9—C10—H10B109.5H23B—C23—H23C109.5
H10A—C10—H10B109.5
C16—N2—N3—C140.59 (12)C5—C4—C11—O2163.27 (9)
C5—N1—C1—C223.57 (14)C3—C4—C11—O213.14 (13)
C5—N1—C1—C7156.10 (10)C11—O2—C12—C13175.86 (10)
N1—C1—C2—C8165.32 (10)N2—N3—C14—C150.41 (13)
C7—C1—C2—C814.30 (17)N3—C14—C15—C160.10 (13)
N1—C1—C2—C310.26 (14)N3—C14—C15—C3173.13 (10)
C7—C1—C2—C3170.12 (10)C2—C3—C15—C16124.23 (11)
C1—C2—C3—C1581.50 (12)C4—C3—C15—C16116.16 (11)
C8—C2—C3—C15102.59 (10)C2—C3—C15—C1464.59 (14)
C1—C2—C3—C440.06 (12)C4—C3—C15—C1455.03 (13)
C8—C2—C3—C4135.85 (9)N3—N2—C16—C150.54 (12)
C15—C3—C4—C582.46 (11)N3—N2—C16—C17179.99 (9)
C2—C3—C4—C542.18 (12)C14—C15—C16—N20.26 (11)
C15—C3—C4—C1194.07 (11)C3—C15—C16—N2172.41 (10)
C2—C3—C4—C11141.30 (9)C14—C15—C16—C17179.61 (11)
C11—C4—C5—N1168.89 (9)C3—C15—C16—C176.94 (19)
C3—C4—C5—N114.65 (14)N2—C16—C17—C22141.80 (11)
C11—C4—C5—C613.84 (16)C15—C16—C17—C2238.92 (17)
C3—C4—C5—C6162.62 (10)N2—C16—C17—C1837.31 (15)
C1—N1—C5—C421.24 (14)C15—C16—C17—C18141.96 (12)
C1—N1—C5—C6161.14 (9)C22—C17—C18—C191.53 (16)
C9—O4—C8—O31.75 (17)C16—C17—C18—C19179.34 (10)
C9—O4—C8—C2173.77 (9)C17—C18—C19—C200.08 (17)
C1—C2—C8—O3159.34 (12)C23—O5—C20—C210.38 (18)
C3—C2—C8—O324.97 (16)C23—O5—C20—C19179.30 (11)
C1—C2—C8—O425.24 (15)C18—C19—C20—O5178.22 (10)
C3—C2—C8—O4150.45 (9)C18—C19—C20—C211.47 (18)
C8—O4—C9—C10178.33 (10)O5—C20—C21—C22178.13 (11)
C12—O2—C11—O10.11 (15)C19—C20—C21—C221.54 (18)
C12—O2—C11—C4178.22 (9)C18—C17—C22—C211.46 (17)
C5—C4—C11—O118.49 (17)C16—C17—C22—C21179.41 (10)
C3—C4—C11—O1165.10 (10)C20—C21—C22—C170.06 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.906 (17)1.981 (17)2.8858 (12)176.3 (14)
N1—H1N1···N3ii0.880 (17)2.173 (17)2.9969 (13)155.7 (16)
C6—H6B···N3iii0.982.503.4076 (15)154
C7—H7A···O3iv0.982.593.5561 (15)167
C14—H14A···N10.952.603.2484 (14)126
C18—H18A···O1v0.952.483.1594 (14)128
C22—H22A···O30.952.283.2210 (15)170
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H27N3O5
Mr425.48
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5800 (1), 11.1286 (1), 11.4996 (1)
α, β, γ (°)94.425 (1), 99.191 (1), 92.992 (1)
V3)1078.37 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
28279, 7437, 5974
Rint0.022
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.05
No. of reflections7437
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.906 (17)1.981 (17)2.8858 (12)176.3 (14)
N1—H1N1···N3ii0.880 (17)2.173 (17)2.9969 (13)155.7 (16)
C6—H6B···N3iii0.982.503.4076 (15)154
C7—H7A···O3iv0.982.593.5561 (15)167
C14—H14A···N10.952.603.2484 (14)126
C18—H18A···O1v0.952.483.1594 (14)128
C22—H22A···O30.952.283.2210 (15)170
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§On secondment to: SeQuent Scientific Ltd, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Board for Research in Nuclear Sciences, Government of India, for a Young Scientists award. AMV is thankful to Dr Arulmoli, Vice President (R&D) and the management, SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurendra Kumar, R., Idhayadhulla, A., Jamal Abdul Nasser, A. & Selvin, J. (2011). J. Serb. Chem. Soc. 76, 1–11.  Google Scholar
First citationSwarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75–89.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1417-o1418
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds