Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(E,E)-1,2-Bis(2,4,5-trimethoxybenzylidene)hydrazine

Hoong-Kun Fun, ${ }^{\mathbf{a} *} \ddagger$ Patcharaporn Jansrisewangwong, ${ }^{\text {b }}$ Chatchanok Karalai ${ }^{\mathrm{c}}$ and Suchada Chantrapromma ${ }^{\text {c }} \S$

${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ${ }^{\text {c }}$ Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: hkfun@usm.my
Received 11 May 2011; accepted 19 May 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.038 ; w R$ factor $=0.113$; data-to-parameter ratio $=15.9$.

The asymmetric unit of the title compound, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$, contains one half-molecule, the complete molecule being generated by a crystallographic inversion centre. The molecule is nearly planar with a dihedral angle between the two benzene rings of $0.03(4)^{\circ}$ and the central $\mathrm{C} / \mathrm{N} / \mathrm{N} / \mathrm{C}$ plane making a dihedral angle of $8.59(7)^{\circ}$ with each of its two adjacent benzene rings. The two methoxy groups at the ortho and meta positions are slightly twisted $[\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ torsion angles $=7.23(12)$ and $\left.5.73(13)^{\circ}\right]$, whereas the methoxy group at the para position is almost coplanar with the attached benzene ring $\left[\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}\right.$ torsion angle $\left.=-2.02(13)^{\circ}\right]$. The crystal structure is stabilized by a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010); Jansrisewangwong et al. (2010); Zhao et al. (2006). For background to and the biological activity of hydrazones, see: Avaji et al. (2009); El-Tabl et al. (2008); Kitaev et al. (1970); Qin et al. (2009); Ramamohan et al. (1995); Rollas \& Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

[^0]

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$
$V=949.74(2) \AA^{3}$
$M_{r}=388.41$
Monoclinic, $P 2_{b} / c$
$Z=2$
$a=7.5056$ (1) A
Mo $K \alpha$ radiation
$b=7.2523$ (1) \AA 。
$\mu=0.10 \mathrm{~mm}^{-1}$
$c=17.4489(2) \AA$
$T=100 \mathrm{~K}$
$\beta=90.600(1)^{\circ}$
$0.47 \times 0.29 \times 0.10 \mathrm{~mm}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)

18099 measured reflections 2778 independent reflections 2384 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$
$T_{\text {min }}=0.954, T_{\text {max }}=0.990$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 175$ parameters
$w R\left(F^{2}\right)=0.113 \quad$ All H-atom parameters refined
$S=1.04$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\left(\AA,{ }^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 C \cdots C g 1^{\mathrm{i}}$	$0.974(13)$	$2.675(14)$	$3.4837(10)$	$140.7(10)$
Symmetry code: (i) $-x+1,-y+1,-z+1$.				

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

PJ thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit (CMRU) and also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

[^1]
organic compounds

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. \& Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
El-Tabl, A. S., El-Saied, F. A., Plass, W. \& Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90-99.
Fun, H.-K., Jansrisewangwong, P. \& Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.

Jansrisewangwong, P., Chantrapromma, S. \& Fun, H.-K. (2010). Acta Cryst. E66, 02170.
Kitaev, Y. P., Buzykin, B. I. \& Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441-456.
Qin, D.-D., Yang, Z.-Y. \& Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415420.

Ramamohan, L., Shikkaragol, R. K., Angadi, S. D. \& Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.
Rollas, S. \& Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Zhao, B., Feng, F., Guo, G. \& Wang, W. (2006). Acta Cryst. E62, o2413-o2414.

supporting information

Acta Cryst. (2011). E67, o1526-o1527 [doi:10.1107/S1600536811019040]

(E,E)-1,2-Bis(2,4,5-trimethoxybenzylidene)hydrazine

Hoong-Kun Fun, Patcharaporn Jansrisewangwong, Chatchanok Karalai and Suchada Chantrapromma

S1. Comment

Hydrazones, which is a class of compounds containing the $>\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{C}<$ (Avaji et al., 2009), have been studied for their fluorescence properties (Qin et al., 2009) and biological activities such as insecticides, antitumor agents, antioxidants (Kitaev et al., 1970), antimicrobial (Ramamohan et al., 1995) and antiviral properties (El-Tabl et al., 2008; Rollas \& Küçükgüzel, 2007). We have previously reported the crystal structure of (E, E)-1,2-bis(2,4,6-trimethoxybenzylidene)hydrazine (Fun et al., 2010). In this work, 2,4,5-trimethoxy substituents on the benzene ring was used in order to get information about the effect of trimethoxy substituent positions on the fluorescence property of the compound. Herein we report the synthesis and crystal structure of the title compound (I).
The asymmetric unit of (I) (Fig. 1), $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$, contains one half-molecule and the complete molecule is generated by a crystallographic inversion centre $-x,-y, 1-z$. The molecule of (I) exists in an E, E configuration with respect to the two $\mathrm{C}=\mathrm{N}$ double bonds $\left[1.2870(12) \AA\right.$] and the torsion angle $\mathrm{N} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1=-178.99(9)^{\circ}$. The molecule is nearly planar with the dihedral angle between the two benzene rings being $0.03(4)^{\circ}$. Atoms $\mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 1 \mathrm{~A} / \mathrm{C} 7 \mathrm{~A}$ lie on a same plane $[$ r.m.s 0.000 (1) \AA]. This C/N/N/C plane makes a dihedral angle of $8.59(7)^{\circ}$ with each of its two adjacent benzene rings. The three methoxy groups of the 2,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups at the ortho and meta positions (at atom C2 and C5 positions) are slightly twisted with the attached benzene ring with torsion angles $\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3=7.23(12)^{\circ}$ and $\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6=5.73(13)^{\circ}$ whereas the third one at para position (at atom C 4$)$ is co-planarly attached with the torsion angle $\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3=-2.02(13)^{\circ}$. The bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Fun et al., 2010; Jansrisewangwong et al., 2010; Zhao et al., 2006).
In the crystal structure (Fig. 2), the molecules are arranged into screw chains along the c axis and these chains stacked along the a direction. the molecules are consolidated by $\mathrm{C}-\mathrm{H} \cdots \pi$ (Table 1) and $\pi-\pi$ interactions with the $C g 1 \cdots C g 1$ distances of 4.6314 (5) \AA (symmetry code: $-x, 1-y, 1-z$) and 4.9695 (5) \AA (symmetry code: $1-x, 1-y, 1-z$). C $\cdots \mathrm{C}$ [3.3411 (12)-3.3987 (12) \AA] short contacts were observed.

S2. Experimental

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate ($0.097 \mathrm{ml}, 2 \mathrm{mmol}$) and 2,4,5-trimethoxybenzaldehyde $(0.785 \mathrm{mg}, 4 \mathrm{mmol})$ in ethanol (20 ml). The resulting solution was refluxed for 5 h , yielding the yellow solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone by slow evaporation of the solvent at room temperature over several days, m.p. 523 K (decompose).

S3. Refinement

All H atoms are located from a difference map and refined isotropically [refined distances: $\mathrm{C}-\mathrm{H}=0.924$ (13)-0.995 (12) \AA §.

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A were generated by symmetry code $-x,-y, 1-z$.

Figure 2
The crystal packing of the title compound viewed along the a axis, showing screw chains running along the c axis and stacked along the a axis.

(E,E)-1,2-Bis(2,4,5-trimethoxybenzylidene)hydrazine

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \quad$ Hall symbol: -P 2ybc
$M_{r}=388.41$
Monoclinic, $P 2_{1} / c$

$$
\begin{aligned}
& a=7.5056 \text { (1) } \AA \\
& b=7.2523 \text { (1) } \AA
\end{aligned}
$$

$c=17.4489(2) \AA$
$\beta=90.600(1)^{\circ}$
$V=949.74(2) \AA^{3}$
$Z=2$
$F(000)=412$
$D_{\mathrm{x}}=1.358 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=523$ decompose -523 K

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.954, T_{\text {max }}=0.990$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.113$
$S=1.04$
2778 reflections
175 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2778 reflections
$\theta=2.3-30.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colorless
$0.47 \times 0.29 \times 0.10 \mathrm{~mm}$

18099 measured reflections
2778 independent reflections
2384 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-24 \rightarrow 24$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0652 P)^{2}+0.2144 P\right]
$$

$$
\text { where } P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.26607(9)$	$0.49751(9)$	$0.57223(4)$	$0.01763(16)$
O2	$0.36459(9)$	$0.78767(10)$	$0.32476(4)$	$0.02050(17)$
O3	$0.19145(9)$	$0.52720(10)$	$0.25671(4)$	$0.01952(17)$
N1	$0.03148(10)$	$0.06200(11)$	$0.47211(4)$	$0.01607(17)$
C1	$0.16786(11)$	$0.35906(12)$	$0.45749(5)$	$0.01377(18)$
C2	$0.25348(11)$	$0.50724(13)$	$0.49415(5)$	$0.01428(18)$
C3	$0.32155(11)$	$0.65346(13)$	$0.45116(5)$	$0.01573(18)$
H3	$0.3849(17)$	$0.7563(18)$	$0.4767(7)$	$0.017(3)^{*}$

C4	$0.30093(11)$	$0.65370(13)$	$0.37186(5)$	$0.01537(18)$
C5	$0.21005(12)$	$0.50854(13)$	$0.33441(5)$	$0.01493(18)$
C6	$0.14716(11)$	$0.36283(12)$	$0.37708(5)$	$0.01463(18)$
H6	$0.0847(18)$	$0.261(2)$	$0.3529(8)$	$0.027(3)^{*}$
C7	$0.09679(11)$	$0.20862(13)$	$0.50302(5)$	$0.01512(18)$
H7	$0.0952(17)$	$0.2209(18)$	$0.5580(8)$	$0.024(3)^{*}$
C8	$0.33469(13)$	$0.65505(14)$	$0.61202(6)$	$0.0198(2)$
H8A	$0.3252(17)$	$0.6258(19)$	$0.6634(8)$	$0.024(3)^{*}$
H8B	$0.2642(17)$	$0.767(2)$	$0.5997(8)$	$0.026(3)^{*}$
H8C	$0.4583(18)$	$0.6749(19)$	$0.5978(7)$	$0.024(3)^{*}$
C9	$0.45348(15)$	$0.94046(15)$	$0.35983(6)$	$0.0249(2)$
H9A	$0.3707(19)$	$1.004(2)$	$0.3925(8)$	$0.034(4)^{*}$
H9B	$0.5579(18)$	$0.897(2)$	$0.3891(8)$	$0.031(3)^{*}$
H9C	$0.4852(18)$	$1.010(2)$	$0.3165(8)$	$0.028(3)^{*}$
C10	$0.08467(16)$	$0.39153(16)$	$0.21898(6)$	$0.0263(2)$
H10A	$-0.0319(16)$	$0.3831(18)$	$0.2454(7)$	$0.019(3)^{*}$
H10B	$0.1449(19)$	$0.274(2)$	$0.2202(8)$	$0.032(4)^{*}$
H10C	$0.0681(19)$	$0.439(2)$	$0.1671(9)$	$0.036(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O1	$0.0217(3)$	$0.0191(3)$	$0.0121(3)$	$-0.0045(3)$	$-0.0015(2)$	$-0.0018(2)$
O2	$0.0267(3)$	$0.0158(3)$	$0.0191(3)$	$-0.0071(3)$	$0.0024(3)$	$0.0024(3)$
O3	$0.0275(3)$	$0.0192(4)$	$0.0119(3)$	$-0.0045(3)$	$-0.0002(2)$	$0.0015(2)$
N1	$0.0200(3)$	$0.0150(4)$	$0.0132(3)$	$-0.0027(3)$	$0.0013(3)$	$0.0023(3)$
C1	$0.0144(4)$	$0.0136(4)$	$0.0133(4)$	$-0.0009(3)$	$0.0004(3)$	$0.0001(3)$
C2	$0.0145(3)$	$0.0155(4)$	$0.0128(4)$	$-0.0004(3)$	$0.0001(3)$	$-0.0010(3)$
C3	$0.0159(4)$	$0.0136(4)$	$0.0178(4)$	$-0.0020(3)$	$0.0005(3)$	$-0.0014(3)$
C4	$0.0162(4)$	$0.0129(4)$	$0.0171(4)$	$-0.0003(3)$	$0.0024(3)$	$0.0013(3)$
C5	$0.0172(4)$	$0.0156(4)$	$0.0121(4)$	$-0.0005(3)$	$0.0010(3)$	$0.0004(3)$
C6	$0.0166(4)$	$0.0135(4)$	$0.0138(4)$	$-0.0018(3)$	$0.0005(3)$	$-0.0004(3)$
C7	$0.0168(4)$	$0.0164(4)$	$0.0121(4)$	$-0.0013(3)$	$0.0001(3)$	$0.0011(3)$
C8	$0.0215(4)$	$0.0204(5)$	$0.0173(4)$	$-0.0020(4)$	$-0.0017(3)$	$-0.0057(3)$
C9	$0.0301(5)$	$0.0182(5)$	$0.0266(5)$	$-0.0096(4)$	$0.0038(4)$	$-0.0007(4)$
C10	$0.0402(6)$	$0.0241(5)$	$0.0145(4)$	$-0.0086(5)$	$-0.0043(4)$	$-0.0010(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	$1.3664(10)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.4112(12)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.4301(11)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3789(12)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.3624(11)$	$\mathrm{C} 6-\mathrm{H} 6$	$0.970(14)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.4279(12)$	$\mathrm{C} 7-\mathrm{H} 7$	$0.964(13)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.3681(10)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	$0.924(13)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.4257(12)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	$0.991(14)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.2870(12)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	$0.974(13)$
$\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.4103(15)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	$0.966(15)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4031(12)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	$0.981(14)$

C1-C6	1.4102 (12)
C1-C7	1.4544 (12)
C2-C3	1.3987 (12)
C3-C4	1.3906 (12)
C3-H3	0.988 (13)
C2-O1-C8	117.62 (7)
C4-O2-C9	117.39 (7)
C5-O3-C10	116.12 (7)
C7-N1-N1 ${ }^{\text {i }}$	111.49 (9)
C2-C1-C6	118.95 (8)
C2- $\mathrm{C} 1-\mathrm{C} 7$	119.62 (8)
C6-C1-C7	121.39 (8)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	123.51 (8)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	116.21 (8)
C3-C2-C1	120.28 (8)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.81 (8)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.7 (7)
C2-C3-H3	120.5 (7)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	124.41 (8)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	115.05 (8)
C3-C4-C5	120.54 (8)
O3-C5-C6	125.38 (8)
O3-C5-C4	115.40 (8)
C6-C5-C4	119.22 (8)
C5-C6-C1	121.15 (8)
C5-C6-H6	121.1 (8)
C1-C6-H6	117.8 (8)
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	7.23 (12)
$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	-173.26 (8)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	178.64 (7)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	0.86 (12)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-1.84 (13)
C7-C1-C2-C3	-179.61 (8)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.16 (8)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.34 (13)
C9-O2-C4-C3	-2.02 (13)
C9-O2-C4-C5	178.34 (8)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	-178.90 (8)
C2-C3-C4-C5	0.72 (13)
C10-O3-C5-C6	5.73 (13)

C9—H9C	$0.944(14)$
C10-H10A	$0.995(12)$
C10-H10B	$0.967(16)$
C10-H10C	$0.976(15)$

$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1 \quad 122.08$ (8)
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{H} 7 \quad 119.0$ (8)
$\mathrm{C} 1 — \mathrm{C} 7 — \mathrm{H} 7 \quad 118.9$ (8)
O1—C8—H8A 104.9 (8)
111.1 (8)
110.6 (11)
109.5 (8)
111.4 (11)
109.4 (11)
108.9 (9)
110.1 (9)
111.1 (12)
101.2 (9)
112.6 (12)
112.4 (12)
108.7 (7)
109.8 (9)
110.4 (12)
104.5 (9)
110.3 (11)
112.8 (12)
-173.90 (8)
-2.95 (12)
177.39 (8)
177.39 (8)
$-2.26(13)$
-177.86 (8)
1.76 (13)
0.27 (13)
178.00 (8)
-178.99 (9)
-173.65 (8)
8.63 (13)

Symmetry code: (i) $-x,-y,-z+1$.

supporting information

Hydrogen-bond geometry ($A,{ }^{o}$)
$C g 1$ is the centroid of the C1-C6 ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 8 — \mathrm{H} 8 C \cdots C g 1^{\mathrm{ii}}$	$0.974(13)$	$2.675(14)$	$3.4837(10)$	$140.7(10)$

Symmetry code: (ii) $-x+1,-y+1,-z+1$.

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.
 § Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson
 Reuters ResearcherID: A-5085-2009.

[^1]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2713).

