organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1526-o1527

(E,E)-1,2-Bis(2,4,5-trimeth­­oxy­benzyl­­idene)hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 11 May 2011; accepted 19 May 2011; online 25 May 2011)

The asymmetric unit of the title compound, C20H24N2O6, contains one half-mol­ecule, the complete mol­ecule being generated by a crystallographic inversion centre. The mol­ecule is nearly planar with a dihedral angle between the two benzene rings of 0.03 (4)° and the central C/N/N/C plane making a dihedral angle of 8.59 (7)° with each of its two adjacent benzene rings. The two meth­oxy groups at the ortho and meta positions are slightly twisted [C—O—C—C torsion angles = 7.23 (12) and 5.73 (13)°], whereas the meth­oxy group at the para position is almost coplanar with the attached benzene ring [C—O—C—C torsion angle = −2.02 (13)°]. The crystal structure is stabilized by a weak C—H⋯π inter­action.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.]); Jansrisewangwong et al. (2010[Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.]); Zhao et al. (2006[Zhao, Z., Feng, F., Guo, G. & Wang, W. (2006). Acta Cryst. E62, o2413-o2414.]). For background to and the bio­logical activity of hydrazones, see: Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); El-Tabl et al. (2008)[El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90-99.]; Kitaev et al. (1970[Kitaev, Y. P., Buzykin, B. I. & Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441-456.]); Qin et al. (2009[Qin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415-420.]); Ramamohan et al. (1995[Ramamohan, L., Shikkaragol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.]); Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910-1939.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O6

  • Mr = 388.41

  • Monoclinic, P 21 /c

  • a = 7.5056 (1) Å

  • b = 7.2523 (1) Å

  • c = 17.4489 (2) Å

  • β = 90.600 (1)°

  • V = 949.74 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.47 × 0.29 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.990

  • 18099 measured reflections

  • 2778 independent reflections

  • 2384 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.04

  • 2778 reflections

  • 175 parameters

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8CCg1i 0.974 (13) 2.675 (14) 3.4837 (10) 140.7 (10)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones, which is a class of compounds containing the >C=N—N=C< (Avaji et al., 2009), have been studied for their fluorescence properties (Qin et al., 2009) and biological activities such as insecticides, antitumor agents, antioxidants (Kitaev et al., 1970), antimicrobial (Ramamohan et al., 1995) and antiviral properties (El-Tabl et al., 2008; Rollas & Küçükgüzel, 2007). We have previously reported the crystal structure of (E,E)-1,2-bis(2,4,6-trimethoxybenzylidene)hydrazine (Fun et al., 2010). In this work, 2,4,5-trimethoxy substituents on the benzene ring was used in order to get information about the effect of trimethoxy substituent positions on the fluorescence property of the compound. Herein we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of (I) (Fig. 1), C20H24N2O6, contains one half-molecule and the complete molecule is generated by a crystallographic inversion centre -x, -y, 1 - z. The molecule of (I) exists in an E,E configuration with respect to the two CN double bonds [1.2870 (12) Å] and the torsion angle N1A–N1–C7–C1 = -178.99 (9)°. The molecule is nearly planar with the dihedral angle between the two benzene rings being 0.03 (4)°. Atoms C7/N1/N1A/C7A lie on a same plane [r.m.s 0.000 (1) Å]. This C/N/N/C plane makes a dihedral angle of 8.59 (7)° with each of its two adjacent benzene rings. The three methoxy groups of the 2,4,5-trimethoxyphenyl unit have two different orientations: two methoxy groups at the ortho and meta positions (at atom C2 and C5 positions) are slightly twisted with the attached benzene ring with torsion angles C8–O1–C2–C3 = 7.23 (12)° and C10–O3–C5–C6 = 5.73 (13)° whereas the third one at para position (at atom C4) is co-planarly attached with the torsion angle C9–O2–C4–C3 = -2.02 (13)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with related structures (Fun et al., 2010; Jansrisewangwong et al., 2010; Zhao et al., 2006).

In the crystal structure (Fig. 2), the molecules are arranged into screw chains along the c axis and these chains stacked along the a direction. the molecules are consolidated by C—H···π (Table 1) and ππ interactions with the Cg1···Cg1 distances of 4.6314 (5) Å (symmetry code: -x, 1 - y, 1 - z) and 4.9695 (5) Å (symmetry code: 1 - x, 1 - y, 1 - z). C···C [3.3411 (12)–3.3987 (12) Å] short contacts were observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010); Jansrisewangwong et al. (2010); Zhao et al. (2006). For background to and the biological activity of hydrazones, see: Avaji et al. (2009); El-Tabl et al. (2008); Kitaev et al. (1970); Qin et al. (2009); Ramamohan et al. (1995); Rollas & Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by mixing a solution (1:2 molar ratio) of hydrazine hydrate (0.097 ml, 2 mmol) and 2,4,5-trimethoxybenzaldehyde (0.785 mg, 4 mmol) in ethanol (20 ml). The resulting solution was refluxed for 5 h, yielding the yellow solid. The resultant solid was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone by slow evaporation of the solvent at room temperature over several days, m.p. 523 K (decompose).

Refinement top

All H atoms are located from a difference map and refined isotropically [refined distances: C—H = 0.924 (13)–0.995 (12) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A were generated by symmetry code -x, -y, 1 - z.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing screw chains running along the c axis and stacked along the a axis.
(E,E)-1,2-Bis(2,4,5-trimethoxybenzylidene)hydrazine top
Crystal data top
C20H24N2O6F(000) = 412
Mr = 388.41Dx = 1.358 Mg m3
Monoclinic, P21/cMelting point = 523 decompose–523 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5056 (1) ÅCell parameters from 2778 reflections
b = 7.2523 (1) Åθ = 2.3–30.0°
c = 17.4489 (2) ŵ = 0.10 mm1
β = 90.600 (1)°T = 100 K
V = 949.74 (2) Å3Needle, colorless
Z = 20.47 × 0.29 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2778 independent reflections
Radiation source: sealed tube2384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.954, Tmax = 0.990k = 1010
18099 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.2144P]
where P = (Fo2 + 2Fc2)/3
2778 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H24N2O6V = 949.74 (2) Å3
Mr = 388.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5056 (1) ŵ = 0.10 mm1
b = 7.2523 (1) ÅT = 100 K
c = 17.4489 (2) Å0.47 × 0.29 × 0.10 mm
β = 90.600 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2778 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2384 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.990Rint = 0.028
18099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113All H-atom parameters refined
S = 1.04Δρmax = 0.45 e Å3
2778 reflectionsΔρmin = 0.22 e Å3
175 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26607 (9)0.49751 (9)0.57223 (4)0.01763 (16)
O20.36459 (9)0.78767 (10)0.32476 (4)0.02050 (17)
O30.19145 (9)0.52720 (10)0.25671 (4)0.01952 (17)
N10.03148 (10)0.06200 (11)0.47211 (4)0.01607 (17)
C10.16786 (11)0.35906 (12)0.45749 (5)0.01377 (18)
C20.25348 (11)0.50724 (13)0.49415 (5)0.01428 (18)
C30.32155 (11)0.65346 (13)0.45116 (5)0.01573 (18)
H30.3849 (17)0.7563 (18)0.4767 (7)0.017 (3)*
C40.30093 (11)0.65370 (13)0.37186 (5)0.01537 (18)
C50.21005 (12)0.50854 (13)0.33441 (5)0.01493 (18)
C60.14716 (11)0.36283 (12)0.37708 (5)0.01463 (18)
H60.0847 (18)0.261 (2)0.3529 (8)0.027 (3)*
C70.09679 (11)0.20862 (13)0.50302 (5)0.01512 (18)
H70.0952 (17)0.2209 (18)0.5580 (8)0.024 (3)*
C80.33469 (13)0.65505 (14)0.61202 (6)0.0198 (2)
H8A0.3252 (17)0.6258 (19)0.6634 (8)0.024 (3)*
H8B0.2642 (17)0.767 (2)0.5997 (8)0.026 (3)*
H8C0.4583 (18)0.6749 (19)0.5978 (7)0.024 (3)*
C90.45348 (15)0.94046 (15)0.35983 (6)0.0249 (2)
H9A0.3707 (19)1.004 (2)0.3925 (8)0.034 (4)*
H9B0.5579 (18)0.897 (2)0.3891 (8)0.031 (3)*
H9C0.4852 (18)1.010 (2)0.3165 (8)0.028 (3)*
C100.08467 (16)0.39153 (16)0.21898 (6)0.0263 (2)
H10A0.0319 (16)0.3831 (18)0.2454 (7)0.019 (3)*
H10B0.1449 (19)0.274 (2)0.2202 (8)0.032 (4)*
H10C0.0681 (19)0.439 (2)0.1671 (9)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0217 (3)0.0191 (3)0.0121 (3)0.0045 (3)0.0015 (2)0.0018 (2)
O20.0267 (3)0.0158 (3)0.0191 (3)0.0071 (3)0.0024 (3)0.0024 (3)
O30.0275 (3)0.0192 (4)0.0119 (3)0.0045 (3)0.0002 (2)0.0015 (2)
N10.0200 (3)0.0150 (4)0.0132 (3)0.0027 (3)0.0013 (3)0.0023 (3)
C10.0144 (4)0.0136 (4)0.0133 (4)0.0009 (3)0.0004 (3)0.0001 (3)
C20.0145 (3)0.0155 (4)0.0128 (4)0.0004 (3)0.0001 (3)0.0010 (3)
C30.0159 (4)0.0136 (4)0.0178 (4)0.0020 (3)0.0005 (3)0.0014 (3)
C40.0162 (4)0.0129 (4)0.0171 (4)0.0003 (3)0.0024 (3)0.0013 (3)
C50.0172 (4)0.0156 (4)0.0121 (4)0.0005 (3)0.0010 (3)0.0004 (3)
C60.0166 (4)0.0135 (4)0.0138 (4)0.0018 (3)0.0005 (3)0.0004 (3)
C70.0168 (4)0.0164 (4)0.0121 (4)0.0013 (3)0.0001 (3)0.0011 (3)
C80.0215 (4)0.0204 (5)0.0173 (4)0.0020 (4)0.0017 (3)0.0057 (3)
C90.0301 (5)0.0182 (5)0.0266 (5)0.0096 (4)0.0038 (4)0.0007 (4)
C100.0402 (6)0.0241 (5)0.0145 (4)0.0086 (5)0.0043 (4)0.0010 (4)
Geometric parameters (Å, º) top
O1—C21.3664 (10)C4—C51.4112 (12)
O1—C81.4301 (11)C5—C61.3789 (12)
O2—C41.3624 (11)C6—H60.970 (14)
O2—C91.4279 (12)C7—H70.964 (13)
O3—C51.3681 (10)C8—H8A0.924 (13)
O3—C101.4257 (12)C8—H8B0.991 (14)
N1—C71.2870 (12)C8—H8C0.974 (13)
N1—N1i1.4103 (15)C9—H9A0.966 (15)
C1—C21.4031 (12)C9—H9B0.981 (14)
C1—C61.4102 (12)C9—H9C0.944 (14)
C1—C71.4544 (12)C10—H10A0.995 (12)
C2—C31.3987 (12)C10—H10B0.967 (16)
C3—C41.3906 (12)C10—H10C0.976 (15)
C3—H30.988 (13)
C2—O1—C8117.62 (7)N1—C7—C1122.08 (8)
C4—O2—C9117.39 (7)N1—C7—H7119.0 (8)
C5—O3—C10116.12 (7)C1—C7—H7118.9 (8)
C7—N1—N1i111.49 (9)O1—C8—H8A104.9 (8)
C2—C1—C6118.95 (8)O1—C8—H8B111.1 (8)
C2—C1—C7119.62 (8)H8A—C8—H8B110.6 (11)
C6—C1—C7121.39 (8)O1—C8—H8C109.5 (8)
O1—C2—C3123.51 (8)H8A—C8—H8C111.4 (11)
O1—C2—C1116.21 (8)H8B—C8—H8C109.4 (11)
C3—C2—C1120.28 (8)O2—C9—H9A108.9 (9)
C4—C3—C2119.81 (8)O2—C9—H9B110.1 (9)
C4—C3—H3119.7 (7)H9A—C9—H9B111.1 (12)
C2—C3—H3120.5 (7)O2—C9—H9C101.2 (9)
O2—C4—C3124.41 (8)H9A—C9—H9C112.6 (12)
O2—C4—C5115.05 (8)H9B—C9—H9C112.4 (12)
C3—C4—C5120.54 (8)O3—C10—H10A108.7 (7)
O3—C5—C6125.38 (8)O3—C10—H10B109.8 (9)
O3—C5—C4115.40 (8)H10A—C10—H10B110.4 (12)
C6—C5—C4119.22 (8)O3—C10—H10C104.5 (9)
C5—C6—C1121.15 (8)H10A—C10—H10C110.3 (11)
C5—C6—H6121.1 (8)H10B—C10—H10C112.8 (12)
C1—C6—H6117.8 (8)
C8—O1—C2—C37.23 (12)C10—O3—C5—C4173.90 (8)
C8—O1—C2—C1173.26 (8)O2—C4—C5—O32.95 (12)
C6—C1—C2—O1178.64 (7)C3—C4—C5—O3177.39 (8)
C7—C1—C2—O10.86 (12)O2—C4—C5—C6177.39 (8)
C6—C1—C2—C31.84 (13)C3—C4—C5—C62.26 (13)
C7—C1—C2—C3179.61 (8)O3—C5—C6—C1177.86 (8)
O1—C2—C3—C4179.16 (8)C4—C5—C6—C11.76 (13)
C1—C2—C3—C41.34 (13)C2—C1—C6—C50.27 (13)
C9—O2—C4—C32.02 (13)C7—C1—C6—C5178.00 (8)
C9—O2—C4—C5178.34 (8)N1i—N1—C7—C1178.99 (9)
C2—C3—C4—O2178.90 (8)C2—C1—C7—N1173.65 (8)
C2—C3—C4—C50.72 (13)C6—C1—C7—N18.63 (13)
C10—O3—C5—C65.73 (13)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8C···Cg1ii0.974 (13)2.675 (14)3.4837 (10)140.7 (10)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H24N2O6
Mr388.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.5056 (1), 7.2523 (1), 17.4489 (2)
β (°) 90.600 (1)
V3)949.74 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.47 × 0.29 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.954, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18099, 2778, 2384
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.04
No. of reflections2778
No. of parameters175
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8C···Cg1i0.974 (13)2.675 (14)3.4837 (10)140.7 (10)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

PJ thanks the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit (CMRU) and also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90–99.  Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitaev, Y. P., Buzykin, B. I. & Troepolskaya, T. V. (1970). Russ. Chem. Rev. 39, 441–456.  CrossRef Google Scholar
First citationQin, D.-D., Yang, Z.-Y. & Qi, G.-F. (2009). Spectrochim. Acta Part A, 74, 415–420.  CrossRef Google Scholar
First citationRamamohan, L., Shikkaragol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.  Google Scholar
First citationRollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Z., Feng, F., Guo, G. & Wang, W. (2006). Acta Cryst. E62, o2413–o2414.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1526-o1527
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds