organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Oxo-2-phenyl­ethyl benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 16 May 2011; accepted 19 May 2011; online 25 May 2011)

In the title compound, C15H12O3, the terminal phenyl rings make a dihedral angle of 86.09 (9)° with each other. In the crystal, a pair of inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a dimer with an R22(10) ring motif.

Related literature

For background to and applications of phenacyl benzoates, see: Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O3

  • Mr = 240.25

  • Monoclinic, P 21 /c

  • a = 9.0299 (13) Å

  • b = 14.116 (2) Å

  • c = 9.6379 (14) Å

  • β = 90.564 (3)°

  • V = 1228.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.77 × 0.52 × 0.43 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.963

  • 23225 measured reflections

  • 3573 independent reflections

  • 2408 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.192

  • S = 1.05

  • 3573 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯O3i 0.97 2.57 3.454 (2) 152
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, phenacyl benzoate is a derivative of an acid, formed by reaction between acid and phenacyl bromide. They find applications in the field of synthetic chemistry (Huang et al., 1996; Gandhi et al., 1995) such as synthesis of oxazoles, imidazoles, benzoxazepines. They are also useful for photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

The molecular structure is shown in Fig. 1. The terminal phenyl rings (C1–C6 and C10–C15) make a dihedral angle of 86.09 (9)° with each other. Bond lengths (Allen et al., 1987) and angles are within normal range. In the crystal packing (Fig. 2), pairs of intermolecular C8—H8B···O3 hydrogen bonds (Table 1) link the molecules to form dimers, generating R22(10) ring motifs (Bernstein et al., 1995).

Related literature top

For background to and applications of phenacyl benzoates, see: Huang et al. (1996); Gandhi et al. (1995); Ruzicka et al. (2002); Litera et al. (2006); Sheehan & Umezaw (1973). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The mixture of benzoic acid (1.0 g, 0.008 mol), sodium carbonate (0.95 g, 0.009 mol) and 2-bromo-1-phenylethanon (1.7 g, 0.009 mol) in dimethyl formamide (10 ml) was stirred at room temperature for 2 h. On cooling, the separated colourless needle-shaped crystals of 2-oxo-2-phenylethyl benzoate were collected by filtration. Compound was recrystallized from ethanol (yield: 1.91 g, 97.4%; m.p: 390–391 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 or 0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent the hydrogen bonds.
2-Oxo-2-phenylethyl benzoate top
Crystal data top
C15H12O3F(000) = 504
Mr = 240.25Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6650 reflections
a = 9.0299 (13) Åθ = 2.6–29.6°
b = 14.116 (2) ŵ = 0.09 mm1
c = 9.6379 (14) ÅT = 296 K
β = 90.564 (3)°Block, colourless
V = 1228.4 (3) Å30.77 × 0.52 × 0.43 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3573 independent reflections
Radiation source: fine-focus sealed tube2408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.934, Tmax = 0.963k = 1919
23225 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0845P)2 + 0.258P]
where P = (Fo2 + 2Fc2)/3
3573 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H12O3V = 1228.4 (3) Å3
Mr = 240.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0299 (13) ŵ = 0.09 mm1
b = 14.116 (2) ÅT = 296 K
c = 9.6379 (14) Å0.77 × 0.52 × 0.43 mm
β = 90.564 (3)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3573 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2408 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.963Rint = 0.035
23225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3573 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89801 (19)0.00806 (10)0.7007 (2)0.0993 (6)
O20.75397 (14)0.10379 (9)0.50588 (15)0.0704 (4)
O30.56279 (16)0.08421 (9)0.64940 (17)0.0813 (4)
C10.7648 (2)0.20439 (12)0.5344 (2)0.0647 (4)
H1A0.69940.17790.47020.078*
C20.7776 (3)0.30148 (14)0.5449 (2)0.0790 (6)
H2A0.71970.34030.48840.095*
C30.8752 (2)0.34132 (13)0.6386 (2)0.0751 (5)
H3A0.88430.40680.64430.090*
C40.9593 (2)0.28413 (15)0.7237 (2)0.0762 (5)
H4A1.02480.31100.78760.091*
C50.9467 (2)0.18735 (13)0.7146 (2)0.0693 (5)
H5A1.00370.14900.77260.083*
C60.84954 (16)0.14632 (11)0.61946 (17)0.0544 (4)
C70.84060 (17)0.04164 (12)0.6139 (2)0.0602 (4)
C80.7618 (2)0.00214 (13)0.4948 (2)0.0642 (4)
H8A0.81230.01450.40980.077*
H8B0.66210.02330.48910.077*
C90.64689 (17)0.13613 (11)0.59154 (17)0.0548 (4)
C100.64216 (16)0.24087 (11)0.60075 (17)0.0524 (4)
C110.7258 (2)0.29780 (13)0.5158 (2)0.0693 (5)
H11A0.78990.27080.45200.083*
C120.7138 (3)0.39614 (14)0.5260 (3)0.0826 (6)
H12A0.76920.43500.46830.099*
C130.6201 (2)0.43540 (13)0.6216 (2)0.0772 (6)
H13A0.61220.50090.62840.093*
C140.5385 (2)0.37905 (14)0.7064 (2)0.0760 (5)
H14A0.47600.40630.77130.091*
C150.5483 (2)0.28147 (13)0.6964 (2)0.0659 (5)
H15A0.49190.24320.75400.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1077 (11)0.0599 (8)0.1294 (13)0.0017 (8)0.0530 (10)0.0200 (8)
O20.0689 (8)0.0530 (7)0.0896 (9)0.0013 (5)0.0084 (7)0.0022 (6)
O30.0744 (8)0.0530 (7)0.1171 (12)0.0103 (6)0.0231 (8)0.0051 (7)
C10.0653 (10)0.0523 (9)0.0764 (11)0.0002 (7)0.0094 (8)0.0014 (8)
C20.0890 (14)0.0553 (10)0.0924 (14)0.0088 (9)0.0098 (11)0.0055 (9)
C30.0767 (12)0.0514 (9)0.0975 (14)0.0015 (8)0.0076 (10)0.0079 (9)
C40.0682 (11)0.0654 (11)0.0948 (14)0.0087 (9)0.0041 (10)0.0141 (10)
C50.0603 (10)0.0634 (11)0.0841 (12)0.0002 (8)0.0104 (9)0.0002 (9)
C60.0460 (7)0.0506 (8)0.0668 (9)0.0018 (6)0.0047 (6)0.0028 (7)
C70.0478 (8)0.0516 (8)0.0811 (11)0.0003 (6)0.0023 (7)0.0079 (8)
C80.0620 (9)0.0524 (9)0.0780 (11)0.0042 (7)0.0026 (8)0.0127 (8)
C90.0485 (8)0.0484 (8)0.0675 (9)0.0030 (6)0.0033 (7)0.0011 (7)
C100.0481 (7)0.0459 (8)0.0629 (9)0.0010 (6)0.0074 (6)0.0018 (6)
C110.0770 (12)0.0556 (10)0.0753 (11)0.0033 (8)0.0097 (9)0.0039 (8)
C120.1004 (15)0.0544 (10)0.0930 (14)0.0110 (10)0.0040 (12)0.0145 (10)
C130.0865 (13)0.0464 (9)0.0985 (15)0.0037 (9)0.0135 (11)0.0027 (9)
C140.0737 (12)0.0592 (10)0.0953 (14)0.0071 (9)0.0016 (10)0.0154 (10)
C150.0623 (10)0.0577 (9)0.0776 (11)0.0023 (8)0.0048 (8)0.0036 (8)
Geometric parameters (Å, º) top
O1—C71.205 (2)C7—C81.481 (3)
O2—C91.357 (2)C8—H8A0.9700
O2—C81.441 (2)C8—H8B0.9700
O3—C91.197 (2)C9—C101.482 (2)
C1—C21.379 (3)C10—C111.378 (2)
C1—C61.385 (2)C10—C151.383 (2)
C1—H1A0.9300C11—C121.396 (3)
C2—C31.376 (3)C11—H11A0.9300
C2—H2A0.9300C12—C131.374 (3)
C3—C41.375 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.362 (3)
C4—C51.374 (3)C13—H13A0.9300
C4—H4A0.9300C14—C151.384 (3)
C5—C61.389 (2)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.481 (2)
C9—O2—C8114.58 (13)O2—C8—H8B109.1
C2—C1—C6119.97 (17)C7—C8—H8B109.1
C2—C1—H1A120.0H8A—C8—H8B107.9
C6—C1—H1A120.0O3—C9—O2122.46 (15)
C3—C2—C1120.47 (19)O3—C9—C10124.34 (15)
C3—C2—H2A119.8O2—C9—C10113.16 (13)
C1—C2—H2A119.8C11—C10—C15119.85 (16)
C4—C3—C2119.89 (18)C11—C10—C9121.99 (15)
C4—C3—H3A120.1C15—C10—C9118.15 (15)
C2—C3—H3A120.1C10—C11—C12119.62 (19)
C5—C4—C3120.06 (19)C10—C11—H11A120.2
C5—C4—H4A120.0C12—C11—H11A120.2
C3—C4—H4A120.0C13—C12—C11119.83 (19)
C4—C5—C6120.55 (18)C13—C12—H12A120.1
C4—C5—H5A119.7C11—C12—H12A120.1
C6—C5—H5A119.7C14—C13—C12120.46 (18)
C1—C6—C5119.05 (16)C14—C13—H13A119.8
C1—C6—C7122.68 (15)C12—C13—H13A119.8
C5—C6—C7118.27 (15)C13—C14—C15120.29 (19)
O1—C7—C8119.72 (16)C13—C14—H14A119.9
O1—C7—C6122.22 (17)C15—C14—H14A119.9
C8—C7—C6118.04 (14)C10—C15—C14119.94 (18)
O2—C8—C7112.43 (14)C10—C15—H15A120.0
O2—C8—H8A109.1C14—C15—H15A120.0
C7—C8—H8A109.1
C6—C1—C2—C30.7 (3)C8—O2—C9—O32.3 (2)
C1—C2—C3—C40.9 (3)C8—O2—C9—C10179.89 (14)
C2—C3—C4—C50.5 (3)O3—C9—C10—C11169.63 (18)
C3—C4—C5—C60.2 (3)O2—C9—C10—C118.1 (2)
C2—C1—C6—C50.0 (3)O3—C9—C10—C159.2 (3)
C2—C1—C6—C7179.66 (17)O2—C9—C10—C15173.09 (14)
C4—C5—C6—C10.4 (3)C15—C10—C11—C120.7 (3)
C4—C5—C6—C7179.90 (18)C9—C10—C11—C12178.10 (18)
C1—C6—C7—O1169.12 (19)C10—C11—C12—C130.7 (3)
C5—C6—C7—O110.6 (3)C11—C12—C13—C140.1 (3)
C1—C6—C7—C812.7 (2)C12—C13—C14—C150.6 (3)
C5—C6—C7—C8167.58 (16)C11—C10—C15—C140.1 (3)
C9—O2—C8—C779.71 (18)C9—C10—C15—C14178.74 (16)
O1—C7—C8—O25.0 (2)C13—C14—C15—C100.5 (3)
C6—C7—C8—O2176.76 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.972.573.454 (2)152
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O3
Mr240.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.0299 (13), 14.116 (2), 9.6379 (14)
β (°) 90.564 (3)
V3)1228.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.77 × 0.52 × 0.43
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.934, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
23225, 3573, 2408
Rint0.035
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.192, 1.05
No. of reflections3573
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O3i0.972.573.454 (2)152
Symmetry code: (i) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for a `Young scientist' award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds