organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6,7,8-Tetra­hydro­quinolin-8-one

aDepartment of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland, and bDepartment of General and Ecological Chemistry, Technical University, ul. Żeromskiego 115, 90-924 Łódź, Poland
*Correspondence e-mail: kar@uph.edu.pl

(Received 20 April 2011; accepted 28 April 2011; online 7 May 2011)

In the quinoline fused-ring system of the title compound, C9H9NO, the pyridine ring is planar to within 0.011 (3) Å, while the partially saturated cyclo­hexene ring adopts a sofa conformation with an asymmetry parameter ΔCs(C6) = 1.5 (4)°. There are no classical hydrogen bonds in the crystal structure. Mol­ecules form mol­ecular layers parallel to (100) with a distance between the layers of a/2 = 3.468 Å.

Related literature

The title compound is an inter­mediate for the synthesis of polyheterocycles giving photoluminescence (Kelly & Lebedev, 2002[Kelly, T. R. & Lebedev, R. L. (2002). J. Org. Chem. 67, 2197-2205.]) and a key substrate to synthesis of its 8-amino substituted derivatives with pharmacological activity (e.g. Gudmundsson et al., 2009)[Gudmundsson, K. S., Sebahar, P. R., D'Aurora Richardson, L., Miller, J. F., Turner, E. M., Catalono, J. G., Spaltenstein, A., Lawrence, W., Thomson, M. & Jenkinson, S. (2009). Bioorg. Med. Chem. Lett. 19, 5048-5052.]. For our ongoing study on the synthesis and structure of condensed pyridine and quinoline derivatives, see: Lipińska (2005[Lipińska, T. M. (2005). Tetrahedron 61, 8148-8158.]); Karczmarzyk et al. (2010[Karczmarzyk, Z., Lipińska, T. M., Wysocki, W., Urbańczyk-Lipkowska, Z. & Kalicki, P. (2010). Acta Cryst. E66, o806-o807.]). For the synthesis, see: Kelly & Lebedev (2002[Kelly, T. R. & Lebedev, R. L. (2002). J. Org. Chem. 67, 2197-2205.]). For a related structure, see: OXHYQU (Cygler et al., 1981[Cygler, M., Dobrynin, K. & Stepien, A. (1981). Cryst. Struct. Commun. 10, 395-398.]). For structure inter­pretation tools, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, pp. 16-19. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO

  • Mr = 147.17

  • Orthorhombic, P 21 21 21

  • a = 6.9393 (2) Å

  • b = 8.0885 (3) Å

  • c = 13.4710 (4) Å

  • V = 756.11 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.60 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 1.000

  • 5358 measured reflections

  • 761 independent reflections

  • 734 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.153

  • S = 1.14

  • 761 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

6,7-Didro-5H-quinolin-8-one, (I), is an important intermediate for the synthesis of polyheterocycles giving photoluminescence (Kelly & Lebedev, 2002) and a key substrate to synthesis of its 8-amino substituted derivatives with pharmacological activity (e.g. Gudmundsson et al., 2009). As a part of our ongoing study on the synthesis and structure of condensed pyridine and quinoline derivatives (Lipińska, 2005; Karczmarzyk et al., 2010) we report herein the X-ray structure of the title compound. This compound is well-known on organic chemistry but its crystal structure is not current in the Cambridge Structural Database (November 2010 Release; Allen, 2002; Bruno et al., 2002).

The bond lengths and angles for (I) are within expected ranges (Allen et al., 1987) and are comparable to the corresponding values observed in related structure of 8-oxo-2-phenyl-5,6,7,8-tetrahydroquinoline (OXHYQU; CSD, November 2010 Release). In the two-ring fused system the aromatic pyridine ring is planar within 0.011 (3) Å, while the partially saturated cyclohexene ring adopts a sofa conformation with asymmetry parameter ΔCS(C6) = 1.5 (4)° (Duax & Norton, 1975).

There are no classical hydrogen bonds in the crystal structure of (I). The nearly planar molecules form molecular layers parallel to (100) crystallographic plane (Fig. 2) imposing in the unit cell the pseudo-mirror plane passing through N, O, C(sp2) and C5(sp3) atoms (higher pseudosymmetry Pnma space group). The distance between neighbouring planes of a/2 = 3.468 Å is comparable to a van der Waals distance of about 3.5 Å for the π-π interacting aromatic skeletons of pyridine rings.

Related literature top

The title compound is an intermediate for the synthesis of polyheterocycles giving photoluminescence (Kelly & Lebedev, 2002) and a key substrate to synthesis of its 8-amino substituted derivatives with pharmacological activity (e.g. Gudmundsson et al., 2009). For our ongoing study on the synthesis and structure of condensed pyridine and quinoline derivatives, see: Lipińska (2005); Karczmarzyk et al. (2010). For the synthesis, see: Kelly & Lebedev (2002). For a related structure, see: OXHYQU (Please give author names). For structure interpretation tools, see: Bruno et al. (2002); Spek (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see:Allen et al. (1987). For asymmetry parameters, see: Duax & Norton (1975).

Experimental top

The titled compound was obtained by ozonolysis of 8-benzylidene-5,6,7,8-tetrahydroquinoline according to the method described by Kelly & Lebedev (2002). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a ethyl acetate/hexane (1:1) solution.

Refinement top

The H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 (aromatic) and 0.97 Å (CH2), and were refined with Uĩso(H) values of 1.5Ueq(C). The Flack parameter originally was refined to 0.4 (6), which is essentially indeterminate. For this reason, the Friedel equivalents were merged using MERG4 in SHELXL97 (Sheldrick, 2008) and the absolute structure was arbitrarily assigned. The PLATON symmetry check (Spek, 2009) reveals the presence of pseudosymmetry in the structure suggesting the higher symmetry space group Pnma in the unit cell with the cell constants of a' = b, b' = a and c' = c and origin shifted to:-0.2500, 0.2577, 0.0000. This pseudosymmetry forces the molecule to locate on the crystallographic mirror plane passing through N, O, all C(sp2) and C5(sp3) atoms and C6 atom to be disordered over two positions above and below the mirror plane. The attempt to refine the structure in the Pnma space group resulted in a more disordered model with high R and wR values of 0.199 and 0.527, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A view of the molecular packing in (I).
5,6,7,8-Tetrahydroquinolin-8-one top
Crystal data top
C9H9NODx = 1.293 Mg m3
Mr = 147.17Melting point = 369–371 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 40 reflections
a = 6.9393 (2) Åθ = 7.2–34.8°
b = 8.0885 (3) ŵ = 0.68 mm1
c = 13.4710 (4) ÅT = 293 K
V = 756.11 (4) Å3Needle, colourless
Z = 40.60 × 0.16 × 0.15 mm
F(000) = 312
Data collection top
Bruker SMART APEXII CCD
diffractometer
761 independent reflections
Radiation source: fine-focus sealed tube734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 65.0°, θmin = 6.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.878, Tmax = 1.000k = 97
5358 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.1138P)2 + 0.0433P]
where P = (Fo2 + 2Fc2)/3
761 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H9NOV = 756.11 (4) Å3
Mr = 147.17Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.9393 (2) ŵ = 0.68 mm1
b = 8.0885 (3) ÅT = 293 K
c = 13.4710 (4) Å0.60 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
761 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
734 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 1.000Rint = 0.022
5358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.14Δρmax = 0.28 e Å3
761 reflectionsΔρmin = 0.18 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0077 (5)0.3562 (2)0.54598 (13)0.0827 (8)
N10.0144 (4)0.0574 (3)0.64019 (14)0.0617 (6)
C20.0232 (4)0.0911 (4)0.68161 (18)0.0673 (7)
H20.01160.09860.75020.101*
C30.0486 (5)0.2350 (4)0.6282 (2)0.0763 (9)
H30.05750.33640.66040.114*
C40.0606 (6)0.2257 (3)0.5270 (2)0.0784 (10)
H40.07760.32120.48960.118*
C50.0569 (7)0.0575 (4)0.36824 (19)0.0850 (12)
H510.19080.05330.34780.128*
H520.00100.15440.33810.128*
C60.0431 (6)0.0917 (4)0.3321 (2)0.0899 (11)
H610.18070.07820.34190.135*
H620.02030.10310.26130.135*
C70.0218 (5)0.2459 (3)0.38350 (19)0.0685 (8)
H710.05960.33700.36260.103*
H720.15260.27080.36300.103*
C80.0157 (4)0.2338 (3)0.49507 (19)0.0547 (6)
C90.0250 (3)0.0646 (3)0.54022 (17)0.0498 (6)
C100.0472 (4)0.0740 (3)0.48064 (18)0.0593 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1330 (18)0.0423 (10)0.0727 (12)0.0004 (12)0.0010 (14)0.0078 (7)
N10.0823 (14)0.0571 (12)0.0455 (10)0.0067 (12)0.0018 (10)0.0021 (8)
C20.0834 (17)0.0693 (15)0.0491 (12)0.0051 (16)0.0046 (12)0.0103 (11)
C30.099 (2)0.0553 (16)0.0748 (16)0.0030 (15)0.0054 (16)0.0198 (12)
C40.121 (3)0.0434 (15)0.0710 (17)0.0049 (16)0.0102 (17)0.0019 (11)
C50.146 (3)0.0603 (17)0.0493 (14)0.0020 (19)0.0052 (16)0.0100 (11)
C60.141 (3)0.080 (2)0.0489 (13)0.011 (2)0.0132 (16)0.0019 (13)
C70.0942 (18)0.0564 (14)0.0549 (13)0.0025 (14)0.0030 (14)0.0134 (11)
C80.0668 (13)0.0410 (12)0.0563 (12)0.0016 (11)0.0007 (12)0.0020 (9)
C90.0616 (12)0.0445 (12)0.0434 (10)0.0013 (11)0.0012 (10)0.0015 (8)
C100.0805 (16)0.0462 (13)0.0512 (13)0.0051 (13)0.0066 (11)0.0042 (10)
Geometric parameters (Å, º) top
O1—C81.205 (3)C5—H510.9700
N1—C21.326 (3)C5—H520.9700
N1—C91.350 (3)C6—C71.497 (4)
C2—C31.380 (4)C6—H610.9700
C2—H20.9300C6—H620.9700
C3—C41.368 (4)C7—C81.507 (3)
C3—H30.9300C7—H710.9700
C4—C101.380 (4)C7—H720.9700
C4—H40.9300C8—C91.499 (3)
C5—C61.475 (5)C9—C101.387 (3)
C5—C101.521 (3)
C2—N1—C9117.2 (2)C5—C6—H62109.0
N1—C2—C3123.4 (2)C7—C6—H62109.0
N1—C2—H2118.3H61—C6—H62107.8
C3—C2—H2118.3C6—C7—C8113.5 (2)
C4—C3—C2118.7 (2)C6—C7—H71108.9
C4—C3—H3120.6C8—C7—H71108.9
C2—C3—H3120.6C6—C7—H72108.9
C3—C4—C10119.7 (2)C8—C7—H72108.9
C3—C4—H4120.1H71—C7—H72107.7
C10—C4—H4120.1O1—C8—C9121.4 (2)
C6—C5—C10112.3 (3)O1—C8—C7121.0 (2)
C6—C5—H51109.1C9—C8—C7117.57 (19)
C10—C5—H51109.1N1—C9—C10123.3 (2)
C6—C5—H52109.1N1—C9—C8116.21 (19)
C10—C5—H52109.1C10—C9—C8120.5 (2)
H51—C5—H52107.9C4—C10—C9117.7 (2)
C5—C6—C7112.8 (3)C4—C10—C5121.7 (2)
C5—C6—H61109.0C9—C10—C5120.7 (2)
C7—C6—H61109.0
C9—N1—C2—C32.2 (4)O1—C8—C9—C10175.6 (3)
N1—C2—C3—C41.8 (5)C7—C8—C9—C102.9 (4)
C2—C3—C4—C100.1 (6)C3—C4—C10—C91.0 (5)
C10—C5—C6—C752.3 (4)C3—C4—C10—C5179.1 (4)
C5—C6—C7—C851.6 (4)N1—C9—C10—C40.5 (4)
C6—C7—C8—O1158.0 (3)C8—C9—C10—C4178.1 (3)
C6—C7—C8—C923.5 (4)N1—C9—C10—C5179.6 (3)
C2—N1—C9—C101.0 (4)C8—C9—C10—C51.8 (4)
C2—N1—C9—C8179.7 (2)C6—C5—C10—C4154.3 (3)
O1—C8—C9—N13.1 (4)C6—C5—C10—C925.9 (5)
C7—C8—C9—N1178.4 (3)

Experimental details

Crystal data
Chemical formulaC9H9NO
Mr147.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.9393 (2), 8.0885 (3), 13.4710 (4)
V3)756.11 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.60 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.878, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5358, 761, 734
Rint0.022
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.153, 1.14
No. of reflections761
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCygler, M., Dobrynin, K. & Stepien, A. (1981). Cryst. Struct. Commun. 10, 395–398.  CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, pp. 16–19. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGudmundsson, K. S., Sebahar, P. R., D'Aurora Richardson, L., Miller, J. F., Turner, E. M., Catalono, J. G., Spaltenstein, A., Lawrence, W., Thomson, M. & Jenkinson, S. (2009). Bioorg. Med. Chem. Lett. 19, 5048–5052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarczmarzyk, Z., Lipińska, T. M., Wysocki, W., Urbańczyk-Lipkowska, Z. & Kalicki, P. (2010). Acta Cryst. E66, o806–o807.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKelly, T. R. & Lebedev, R. L. (2002). J. Org. Chem. 67, 2197–2205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLipińska, T. M. (2005). Tetrahedron 61, 8148–8158.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds