metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-2,3-Di­bromo­succinato-κ2O1:O4)bis­­[methano­lato-κO)tri­phenyl­anti­mony(V)]

aTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China, bGraduate Unversity of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: quanli99@126.com

(Received 25 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title mol­ecule, [Sb2(C6H5)6(C4H4Br2O4)(CH3O)2], two [Sb(CH3O)Ph3]+ units are linked by the two carboxyl­ate O atoms of a meso-2,3-dibromo­succinate bridging ligand, forming a dinuclear compound. The SbIV atom is five-coordinated in a slightly distorted trigonal–bipyramid geometry by phenyl C atoms in the equatorial positions and two O atoms in the axial positions. C—H⋯O inter­actions link the mol­ecules into a two-dimensional network parallel to (010). The —CH— group of the centrosymmetric 2,3-dibromosuccinate anion is disordered over two sites in a 0.6:0.4 ratio.

Related literature

For the synthesis and structural characteristics of related organo­phenyl­anti­mony compounds, see: Yin et al. (2008[Yin, H. D., Wang, H. Y. & Wang, D. Q. (2008). J. Organomet. Chem. 693, 585-589.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb2(C6H5)6(C4H2Br2O4)(CH3O)2]

  • Mr = 1042.04

  • Triclinic, [P \overline 1]

  • a = 8.707 (8) Å

  • b = 9.872 (8) Å

  • c = 12.779 (10) Å

  • α = 103.74 (2)°

  • β = 97.93 (2)°

  • γ = 100.45 (2)°

  • V = 1030.3 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.29 mm−1

  • T = 298 K

  • 0.22 × 0.16 × 0.13 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.531, Tmax = 0.674

  • 5379 measured reflections

  • 3582 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.00

  • 3582 reflections

  • 240 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sb1—O3 1.996 (5)
Sb1—C15 2.118 (7)
Sb1—C3 2.119 (7)
Sb1—C9 2.122 (7)
Sb1—O1 2.177 (4)
O3—Sb1—C15 92.7 (2)
O3—Sb1—C3 87.8 (2)
O3—Sb1—C9 93.9 (3)
C15—Sb1—C9 119.3 (3)
C3—Sb1—C9 113.2 (3)
O3—Sb1—O1 176.33 (19)
C15—Sb1—O1 90.7 (2)
C3—Sb1—O1 91.2 (2)
C9—Sb1—O1 83.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.93 2.50 3.388 (11) 161
C17—H17⋯O3ii 0.93 2.59 3.435 (10) 152
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Ctyst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Ctyst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Ctyst. A64, 112-122.]).

Supporting information


Comment top

The similar compound of organotin from meso-2,3-dibromosuccinic acid was synthesized by Professor Yin (Yin et al., 2008). The Sb atom is five-coordinated (Figure 1) with an average Sb-C distance of 2.120 A° almost equal to the average Sn-C distance of 2.123 A° and average Sb-O distance of 2.087 A° much shorter than 2.182 A° of Sn-O distance (Yin et al., 2008). The feature in the solid state structure is the 2D network structure infinitely linked by C19-H19···O2 (2.496 A° of H19···O2) and C17-H17···O3 (2.585 A° of H17···O3) interactions (Figure 2), while the organotin give a 3D network triorganitin(iv) polymer (Yin et al., 2008). The title unit is sited in a symmetrical center, and the coordination environment around the antimony atom is described as a slightly distorted trigonal bipyramid with three carbon atoms from the discrete phenyls in equatorial positions and two oxygen atoms occupying the axial positions with O1-Sb1-O2 angle 176.33 (19)°. The SbC3 unit is planar (the sum of the C-Sb-C angle is 359.9 °) and the O-Sb-C angles are in the range of 83.2 (2)/93.9 (3)°.

Related literature top

For the synthesis and structural characteristics of related organophenylantimony compounds, see: Yin et al. (2008).

Experimental top

2,3-dibromosuccinic acid (0.276 g, 1.00 mmol) was added to the solution of sodium methoxide (0.108 g, 2.00 mmol) in methanol (15 ml), and the mixture was refluxed with stirring for 30 min. Triphenylantimony chloride (0.423 g, 1.00 mmol) in toluene (25 ml) was then added to the mixture, and the reaction was allowed to continue for 8h under refluxing. After cooling down to room temperature, teh resulting solution was filtered. The solvent was removed by evaporation under vacuum leaving a coloeless solid. The product was recrystallized from dichloromethane/petroleum ether.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 A° , Uiso(H) = 1.2Ueq(C) and C—H = 0.96 A° / 0.98 A°, Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound (1) showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. 2D network structure infinitely by C19-H19···O2 and C17-H17···O3 interactions [Symmetry code: (i) -x,2-y,1-z; (ii) -1+x,+y,+z].
(µ-2,3-Dibromosuccinato-κ2O1:O4)bis[methanolato- κO)triphenylantimony(V)] top
Crystal data top
[Sb2(C6H5)6(C4H2Br2O4)(CH3O)2]Z = 1
Mr = 1042.04F(000) = 510
Triclinic, P1Dx = 1.679 Mg m3
a = 8.707 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.872 (8) ÅCell parameters from 1605 reflections
c = 12.779 (10) Åθ = 2.4–25.2°
α = 103.74 (2)°µ = 3.29 mm1
β = 97.93 (2)°T = 298 K
γ = 100.45 (2)°Block, colorless
V = 1030.3 (15) Å30.22 × 0.16 × 0.13 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3582 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.531, Tmax = 0.674k = 1111
5379 measured reflectionsl = 815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
3582 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 1.10 e Å3
2 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Sb2(C6H5)6(C4H2Br2O4)(CH3O)2]γ = 100.45 (2)°
Mr = 1042.04V = 1030.3 (15) Å3
Triclinic, P1Z = 1
a = 8.707 (8) ÅMo Kα radiation
b = 9.872 (8) ŵ = 3.29 mm1
c = 12.779 (10) ÅT = 298 K
α = 103.74 (2)°0.22 × 0.16 × 0.13 mm
β = 97.93 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2582 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.674Rint = 0.032
5379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.00Δρmax = 1.10 e Å3
3582 reflectionsΔρmin = 0.68 e Å3
240 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.22561 (5)0.81465 (5)0.69951 (4)0.04269 (19)
Br10.22321 (10)1.18121 (10)1.08223 (7)0.0758 (3)
O10.1245 (5)0.8897 (5)0.8434 (4)0.0449 (11)
O20.0650 (6)1.0844 (5)0.8011 (4)0.0593 (13)
O30.3285 (6)0.7419 (5)0.5737 (4)0.0595 (14)
C10.0653 (9)1.0029 (9)0.8600 (6)0.0528 (19)
C20.028 (2)1.0561 (18)0.9733 (9)0.045 (3)0.60 (2)
H20.05341.11250.96780.054*0.60 (2)
C2'0.043 (2)1.001 (3)0.9429 (16)0.045 (3)0.40 (2)
H2'0.09001.08540.95120.054*0.40 (2)
C30.4220 (8)0.9923 (7)0.7547 (6)0.0433 (16)
C40.4634 (8)1.0663 (8)0.8653 (7)0.059 (2)
H40.40051.04130.91400.071*
C50.5985 (10)1.1778 (9)0.9040 (8)0.074 (3)
H50.62571.22560.97830.089*
C60.6886 (10)1.2161 (10)0.8353 (9)0.077 (3)
H60.77701.29180.86120.092*
C70.6504 (11)1.1430 (11)0.7251 (10)0.086 (3)
H70.71451.16880.67740.103*
C80.5161 (9)1.0307 (8)0.6851 (7)0.062 (2)
H80.49110.98220.61090.074*
C90.2537 (8)0.6454 (7)0.7711 (6)0.0472 (17)
C100.1370 (10)0.5804 (8)0.8189 (7)0.069 (2)
H100.04150.60980.82000.083*
C110.1654 (14)0.4720 (10)0.8645 (9)0.096 (3)
H110.08680.42690.89500.115*
C120.3079 (14)0.4287 (10)0.8658 (9)0.086 (3)
H120.32520.35580.89750.103*
C130.4230 (12)0.4940 (10)0.8202 (8)0.079 (3)
H130.52020.46730.82250.094*
C140.3953 (9)0.6001 (8)0.7704 (7)0.061 (2)
H140.47210.64100.73640.074*
C150.0083 (8)0.7988 (7)0.5950 (5)0.0427 (16)
C160.1375 (9)0.7702 (8)0.6290 (7)0.059 (2)
H160.13980.75840.69890.071*
C170.2776 (10)0.7594 (10)0.5594 (9)0.077 (3)
H170.37340.74000.58320.092*
C180.2792 (12)0.7763 (10)0.4578 (9)0.076 (3)
H180.37470.76960.41210.091*
C190.1357 (13)0.8041 (9)0.4223 (7)0.079 (3)
H190.13550.81480.35200.095*
C200.0100 (10)0.8161 (8)0.4921 (7)0.060 (2)
H200.10570.83560.46820.072*
C210.2653 (11)0.6019 (9)0.5003 (7)0.076 (3)
H21A0.18730.54930.53060.114*
H21B0.34980.55240.49050.114*
H21C0.21670.61030.43070.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0395 (3)0.0443 (3)0.0438 (3)0.0105 (2)0.0141 (2)0.0065 (2)
Br10.0568 (5)0.0780 (6)0.0655 (6)0.0172 (4)0.0232 (4)0.0143 (5)
O10.048 (3)0.049 (3)0.043 (3)0.021 (2)0.016 (2)0.013 (2)
O20.080 (4)0.061 (3)0.048 (3)0.023 (3)0.027 (3)0.022 (3)
O30.050 (3)0.061 (3)0.062 (3)0.012 (2)0.023 (3)0.002 (3)
C10.055 (4)0.066 (5)0.044 (4)0.020 (4)0.018 (4)0.017 (4)
C20.057 (10)0.055 (11)0.025 (6)0.025 (7)0.006 (7)0.004 (6)
C2'0.057 (10)0.055 (11)0.025 (6)0.025 (7)0.006 (7)0.004 (6)
C30.038 (4)0.044 (4)0.049 (4)0.012 (3)0.011 (3)0.011 (3)
C40.044 (4)0.067 (5)0.060 (5)0.008 (4)0.013 (4)0.006 (4)
C50.057 (5)0.070 (6)0.077 (6)0.007 (4)0.005 (5)0.000 (5)
C60.045 (5)0.061 (6)0.109 (8)0.002 (4)0.004 (5)0.008 (6)
C70.063 (6)0.082 (7)0.121 (9)0.006 (5)0.046 (6)0.034 (7)
C80.057 (5)0.060 (5)0.070 (6)0.009 (4)0.027 (4)0.018 (4)
C90.044 (4)0.038 (4)0.051 (4)0.007 (3)0.001 (4)0.004 (3)
C100.065 (5)0.054 (5)0.091 (7)0.010 (4)0.014 (5)0.030 (5)
C110.105 (8)0.070 (7)0.108 (9)0.005 (6)0.014 (7)0.038 (6)
C120.100 (8)0.052 (6)0.100 (8)0.015 (6)0.006 (7)0.023 (5)
C130.082 (6)0.062 (6)0.088 (7)0.028 (5)0.007 (6)0.017 (5)
C140.061 (5)0.052 (5)0.069 (6)0.017 (4)0.013 (4)0.010 (4)
C150.048 (4)0.038 (4)0.037 (4)0.006 (3)0.010 (3)0.002 (3)
C160.054 (5)0.071 (5)0.051 (5)0.019 (4)0.015 (4)0.008 (4)
C170.044 (5)0.078 (6)0.096 (8)0.015 (4)0.005 (5)0.001 (6)
C180.069 (6)0.069 (6)0.080 (7)0.018 (5)0.018 (5)0.020 (5)
C190.116 (8)0.067 (6)0.043 (5)0.015 (6)0.012 (6)0.014 (4)
C200.063 (5)0.054 (5)0.057 (5)0.000 (4)0.010 (4)0.014 (4)
C210.081 (6)0.072 (6)0.068 (6)0.023 (5)0.025 (5)0.003 (5)
Geometric parameters (Å, º) top
Sb1—O31.996 (5)C8—H80.9300
Sb1—C152.118 (7)C9—C141.386 (10)
Sb1—C32.119 (7)C9—C101.391 (10)
Sb1—C92.122 (7)C10—C111.378 (12)
Sb1—O12.177 (4)C10—H100.9300
Br1—C22.032 (18)C11—C121.383 (14)
Br1—C2'i2.09 (2)C11—H110.9300
O1—C11.299 (8)C12—C131.366 (14)
O2—C11.225 (8)C12—H120.9300
O3—C211.435 (9)C13—C141.387 (11)
C1—C2'1.515 (10)C13—H130.9300
C1—C21.521 (9)C14—H140.9300
C2—C2i1.48 (3)C15—C201.367 (10)
C2—H20.9800C15—C161.401 (10)
C2'—C2'i1.56 (5)C16—C171.378 (11)
C2'—Br1i2.09 (2)C16—H160.9300
C2'—H2'0.9800C17—C181.346 (13)
C3—C81.362 (10)C17—H170.9300
C3—C41.392 (10)C18—C191.390 (13)
C4—C51.397 (11)C18—H180.9300
C4—H40.9300C19—C201.414 (12)
C5—C61.330 (13)C19—H190.9300
C5—H50.9300C20—H200.9300
C6—C71.383 (14)C21—H21A0.9600
C6—H60.9300C21—H21B0.9600
C7—C81.397 (12)C21—H21C0.9600
C7—H70.9300
O3—Sb1—C1592.7 (2)C3—C8—C7120.0 (8)
O3—Sb1—C387.8 (2)C3—C8—H8120.0
C15—Sb1—C3127.3 (3)C7—C8—H8120.0
O3—Sb1—C993.9 (3)C14—C9—C10119.6 (7)
C15—Sb1—C9119.3 (3)C14—C9—Sb1117.8 (6)
C3—Sb1—C9113.2 (3)C10—C9—Sb1122.6 (5)
O3—Sb1—O1176.33 (19)C11—C10—C9118.9 (8)
C15—Sb1—O190.7 (2)C11—C10—H10120.5
C3—Sb1—O191.2 (2)C9—C10—H10120.5
C9—Sb1—O183.2 (2)C10—C11—C12121.6 (10)
C2—Br1—C2'i37.5 (5)C10—C11—H11119.2
C1—O1—Sb1123.3 (4)C12—C11—H11119.2
C21—O3—Sb1120.8 (5)C13—C12—C11119.3 (9)
O2—C1—O1125.4 (6)C13—C12—H12120.3
O2—C1—C2'121.6 (11)C11—C12—H12120.3
O1—C1—C2'111.1 (11)C12—C13—C14120.2 (9)
O2—C1—C2116.6 (8)C12—C13—H13119.9
O1—C1—C2116.5 (8)C14—C13—H13119.9
C2'—C1—C228.0 (7)C9—C14—C13120.4 (8)
C2i—C2—C1115.5 (14)C9—C14—H14119.8
C2i—C2—Br1103.3 (13)C13—C14—H14119.8
C1—C2—Br1111.7 (10)C20—C15—C16119.3 (7)
C2i—C2—H2108.7C20—C15—Sb1119.5 (5)
C1—C2—H2108.7C16—C15—Sb1121.2 (5)
Br1—C2—H2108.7C17—C16—C15120.3 (8)
C1—C2'—C2'i113.1 (18)C17—C16—H16119.9
C1—C2'—Br1i118.2 (14)C15—C16—H16119.9
C2'i—C2'—Br1i97.0 (18)C18—C17—C16121.7 (9)
C1—C2'—H2'109.3C18—C17—H17119.2
C2'i—C2'—H2'109.3C16—C17—H17119.2
Br1i—C2'—H2'109.3C17—C18—C19118.9 (8)
C8—C3—C4118.6 (7)C17—C18—H18120.5
C8—C3—Sb1121.3 (6)C19—C18—H18120.5
C4—C3—Sb1120.0 (5)C18—C19—C20120.7 (8)
C3—C4—C5120.6 (8)C18—C19—H19119.7
C3—C4—H4119.7C20—C19—H19119.7
C5—C4—H4119.7C15—C20—C19119.2 (8)
C6—C5—C4120.5 (9)C15—C20—H20120.4
C6—C5—H5119.8C19—C20—H20120.4
C4—C5—H5119.8O3—C21—H21A109.5
C5—C6—C7119.9 (9)O3—C21—H21B109.5
C5—C6—H6120.1H21A—C21—H21B109.5
C7—C6—H6120.1O3—C21—H21C109.5
C6—C7—C8120.4 (9)H21A—C21—H21C109.5
C6—C7—H7119.8H21B—C21—H21C109.5
C8—C7—H7119.8
Symmetry code: (i) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2ii0.932.503.388 (11)161
C17—H17···O3iii0.932.593.435 (10)152
Symmetry codes: (ii) x, y+2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Sb2(C6H5)6(C4H2Br2O4)(CH3O)2]
Mr1042.04
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.707 (8), 9.872 (8), 12.779 (10)
α, β, γ (°)103.74 (2), 97.93 (2), 100.45 (2)
V3)1030.3 (15)
Z1
Radiation typeMo Kα
µ (mm1)3.29
Crystal size (mm)0.22 × 0.16 × 0.13
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.531, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
5379, 3582, 2582
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.00
No. of reflections3582
No. of parameters240
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.68

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sb1—O31.996 (5)Sb1—C92.122 (7)
Sb1—C152.118 (7)Sb1—O12.177 (4)
Sb1—C32.119 (7)
O3—Sb1—C1592.7 (2)O3—Sb1—O1176.33 (19)
O3—Sb1—C387.8 (2)C15—Sb1—O190.7 (2)
O3—Sb1—C993.9 (3)C3—Sb1—O191.2 (2)
C15—Sb1—C9119.3 (3)C9—Sb1—O183.2 (2)
C3—Sb1—C9113.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.503.388 (11)161
C17—H17···O3ii0.932.593.435 (10)152
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China for support (grant Nos. 20771053 and 20773059).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Ctyst. A64, 112–122.  CrossRef CAS Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, H. D., Wang, H. Y. & Wang, D. Q. (2008). J. Organomet. Chem. 693, 585–589.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds