Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[tribenzyltin(IV)]- μ -4formyl-2-methoxy-6-nitrophenolato- $\kappa^2 O^1: O^4$]

Thy Chun Keng, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 25 April 2011; accepted 30 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.063; data-to-parameter ratio = 19.6.

The formylmethoxynitrophenoxide ions in the polymeric title compound, $[Sn(C_7H_7)_3(C_8H_6NO_5)]_n$, link adjacent triorganotin(IV) cations into linear chains lying close to (101) [Sn-O = 2.1227 (12) Å and $Sn \leftarrow O = 2.4936 (13) \text{ Å}]$. The Sn^{IV} atom is displaced out of the C_3Sn girdle of the *trans*- C_3SnO_2 trigonalbipyramidal polyhedron in the direction of the covalentlybonded O atom $[Sn-O-C = 137.63 (11)^\circ]$ by 0.247 (1) Å; the geometry is distorted towards an octahedron by a remote O atom of the methoxy subsituent $[Sn \cdots O = 3.019 (1) \text{ Å}]$

Related literature

For a related structure, see: James *et al.* (1998). For a description of triorganotin phenoxides, see: Poller (1970).

Experimental

Crystal data

 $[Sn(C_7H_7)_3(C_8H_6NO_5)]$ $M_r = 588.21$ Monoclinic, $P2_1/n$ a = 12.1241 (1) Å b = 16.5829 (2) Å c = 13.3893 (2) Å $\beta = 106.3701$ (6)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.783, T_{max} = 0.904$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.063$ S = 1.016372 reflections $V = 2582.83 (5) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 1.03 \text{ mm}^{-1}$ T = 100 K 0.25 \times 0.25 \times 0.10 mm

25760 measured reflections 6372 independent reflections 5545 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

325 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.02 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (grant No. RG020/ 09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2283).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- James, B. D., Kivlinghon, L. M., Skelton, B. W. & White, A. H. (1998). Appl. Organomet. Chem. 12, 13–23.
- Poller, R. C. (1970). In *The Chemistry of Organotin Compounds*. London: Academic Press.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, m710 [doi:10.1107/S1600536811016436]

catena-Poly[[tribenzyltin(IV)]- μ -4-formyl-2-methoxy-6-nitrophenolato- $\kappa^2 O^1: O^4$]

Thy Chun Keng, Kong Mun Lo and Seik Weng Ng

S1. Comment

Triorganotin alkoxides are compounds, unlike triorganotin phenoxides, which are generally not stable in air, as stated in a textbook on organotin chemistry (Poller, 1970). As such, there are few reports on phenoxides. Vanillin and its derivatives possess a hydroxy group that can be deprotonated; the 5-nitrovallinate anion in polymeric $[Sn(C_7H_7)_3(C_8H_7NO_5)]_n$ (Scheme I) links adjacent triorganotin(IV) cations to form a linear chain running along the *a*–*c* diagonal of the monoclinic unit cell (Fig. 1). The dative Sn–O bond is significantly longer than the covalent Sn–O bond [Sn–O 2.123 (1), Sn–O 2.494 (1) Å], so that the Sn^{IV} atom is displaced out of the C₃Sn girdle of the *trans*-C₃SnO₂ trigonal bipyramidal polyhedron in the direction of the covalently-bonded O atom [Sn–O–C 137.6 (1) Å] by 0.247 (1) Å. The geometry is distorted towards an octahedron by the O atom of the methoxy subsituent [Sn···O 3.019 (1) Å]. There are few examples of triorganotin systems having Sn–O_{aromatic aldehdye} bond; one example is triphenyltin salicylaldehydate, which features a long Sn–O bond (James *et al.*, 1998).

S2. Experimental

Tribenzyltin hydroxide was prepared by the base hydrolysis of tribenzyl)tin chloride with 10% sodium hydroxide solution. The compound (0.41 g, 1 mmol) hydroxide and 4-hydroxy-3-methoxy-5-nitrobenzaldehyde (5-nitrovanillin) (0.2 g, 1 mmol) were dissolved in ethanol (100 ml) and the mixture was heated for an hour. The solution was filtered and the solvent allowed to evaporate for a few days.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times $U_{eq}(C)$. The final difference Fourier map had a peak in the vicinity of Sn1.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of a portion of the chain structure of $Sn(C_7H_7)_3(C_8H_6NO_5)$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

catena-Poly[[tribenzyltin(IV)]- μ -4-formyl-2-methoxy-6- nitrophenolato- $\kappa^2 O^1: O^4$]

 $[Sn(C_7H_7)_3(C_8H_6NO_5)]$ $M_r = 588.21$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 12.1241 (1) Å b = 16.5829 (2) Å c = 13.3893 (2) Å $\beta = 106.3701$ (6)° V = 2582.83 (5) Å³ Z = 4

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.783, T_{\max} = 0.904$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.063$ S = 1.01 F(000) = 1192 $D_x = 1.513 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9964 reflections $\theta = 2.4-28.2^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.25 \times 0.25 \times 0.10 \text{ mm}$

25760 measured reflections 6372 independent reflections 5545 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.3^\circ, \theta_{min} = 2.0^\circ$ $h = -16 \rightarrow 16$ $k = -22 \rightarrow 21$ $l = -17 \rightarrow 17$

6372 reflections325 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0349P)^2 + 0.888P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 1.02 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta ho_{ m min}$ = -0.25 e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sn1	0.368458 (10)	0.189545 (7)	0.722727 (9)	0.01643 (5)
01	0.27411 (11)	0.13103 (7)	0.81338 (10)	0.0204 (3)
O2	0.28459 (11)	0.27891 (8)	0.88378 (11)	0.0218 (3)
O3	-0.01389 (12)	0.27479 (8)	1.10347 (11)	0.0262 (3)
O4	0.04948 (13)	-0.03179 (8)	0.87527 (11)	0.0296 (3)
O5	0.15153 (15)	-0.00208 (10)	0.77303 (13)	0.0426 (4)
N1	0.10833 (14)	0.01628 (9)	0.84212 (12)	0.0218 (3)
C1	0.38886 (16)	0.07215 (11)	0.66076 (14)	0.0209 (4)
H1A	0.4702	0.0645	0.6619	0.025*
H1B	0.3691	0.0300	0.7052	0.025*
C2	0.31382 (16)	0.06304 (11)	0.55183 (14)	0.0215 (4)
C3	0.3568 (2)	0.07057 (14)	0.46631 (17)	0.0343 (5)
H3	0.4368	0.0790	0.4768	0.041*
C4	0.2842 (2)	0.06586 (17)	0.36588 (18)	0.0449 (6)
H4	0.3150	0.0714	0.3084	0.054*
C5	0.1676 (2)	0.05316 (15)	0.34835 (18)	0.0411 (6)
Н5	0.1183	0.0501	0.2793	0.049*
C6	0.12380 (18)	0.04503 (12)	0.43205 (18)	0.0315 (5)
H6	0.0438	0.0361	0.4208	0.038*
C7	0.19544 (17)	0.04974 (11)	0.53232 (16)	0.0245 (4)
H7	0.1639	0.0439	0.5893	0.029*
C8	0.23785 (17)	0.26471 (12)	0.62210 (16)	0.0250 (4)
H8A	0.2716	0.3188	0.6193	0.030*
H8B	0.2191	0.2419	0.5510	0.030*
C9	0.12731 (16)	0.27558 (12)	0.65014 (14)	0.0215 (4)
C10	0.05093 (18)	0.21194 (12)	0.64538 (16)	0.0263 (4)
H10	0.0688	0.1603	0.6236	0.032*
C11	-0.05074 (17)	0.22273 (14)	0.67194 (17)	0.0305 (4)
H11	-0.1013	0.1785	0.6689	0.037*
C12	-0.07859 (19)	0.29776 (14)	0.70286 (18)	0.0350 (5)
H12	-0.1483	0.3053	0.7209	0.042*
C13	-0.00443 (18)	0.36165 (13)	0.70734 (18)	0.0325 (5)
H13	-0.0233	0.4133	0.7285	0.039*
C14	0.09776 (17)	0.35095 (12)	0.68101 (15)	0.0259 (4)
H14	0.1479	0.3955	0.6841	0.031*
C15	0.51642 (16)	0.22724 (12)	0.84500 (15)	0.0242 (4)
H15A	0.5502	0.2766	0.8240	0.029*
H15B	0.4943	0.2391	0.9092	0.029*
C16	0.60161 (16)	0.15935 (12)	0.86363 (14)	0.0221 (4)

C17	0.59103 (17)	0.09386 (12)	0.92531 (15)	0.0264 (4)
H17	0.5317	0.0937	0.9589	0.032*
C18	0.66561 (18)	0.02880 (13)	0.93860 (16)	0.0305 (4)
H18	0.6574	-0.0152	0.9814	0.037*
C19	0.75189 (19)	0.02786 (15)	0.88964 (17)	0.0346 (5)
H19	0.8027	-0.0169	0.8981	0.042*
C20	0.76353 (18)	0.09220 (15)	0.82865 (17)	0.0368 (5)
H20	0.8227	0.0917	0.7949	0.044*
C21	0.69000 (17)	0.15770 (14)	0.81585 (17)	0.0303 (4)
H21	0.6999	0.2019	0.7741	0.036*
C22	0.20411 (15)	0.15092 (11)	0.86575 (13)	0.0170 (3)
C23	0.20697 (15)	0.23057 (11)	0.91021 (14)	0.0186 (3)
C24	0.13811 (15)	0.25138 (11)	0.97130 (14)	0.0198 (4)
H24	0.1428	0.3039	1.0007	0.024*
C25	0.05980 (16)	0.19419 (11)	0.99044 (14)	0.0204 (4)
C26	0.05257 (16)	0.11815 (11)	0.94786 (14)	0.0202 (4)
H26	-0.0005	0.0802	0.9607	0.024*
C27	0.12282 (15)	0.09688 (10)	0.88604 (14)	0.0180 (3)
C28	-0.01506 (17)	0.21211 (12)	1.05483 (16)	0.0246 (4)
H28	-0.0694	0.1721	1.0597	0.030*
C29	0.28924 (18)	0.36164 (11)	0.91567 (16)	0.0258 (4)
H29A	0.3482	0.3900	0.8920	0.039*
H29B	0.3083	0.3645	0.9917	0.039*
H29C	0.2143	0.3871	0.8851	0.039*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.01783 (7)	0.01555 (7)	0.01806 (7)	0.00019 (4)	0.00854 (5)	0.00098 (4)
0.0242 (7)	0.0177 (6)	0.0241 (7)	0.0014 (5)	0.0149 (5)	0.0016 (5)
0.0257 (7)	0.0157 (6)	0.0285 (7)	-0.0025 (5)	0.0148 (6)	-0.0009 (5)
0.0320 (8)	0.0237 (7)	0.0289 (7)	0.0005 (6)	0.0183 (6)	-0.0035 (6)
0.0402 (8)	0.0228 (7)	0.0312 (8)	-0.0108 (6)	0.0186 (6)	-0.0012 (6)
0.0593 (11)	0.0319 (9)	0.0528 (11)	-0.0168 (7)	0.0424 (9)	-0.0188 (7)
0.0243 (8)	0.0199 (8)	0.0224 (8)	-0.0030 (6)	0.0088 (6)	-0.0005 (6)
0.0230 (9)	0.0198 (9)	0.0219 (9)	0.0019 (7)	0.0098 (7)	-0.0002 (7)
0.0256 (9)	0.0164 (8)	0.0234 (9)	0.0004 (7)	0.0087 (7)	-0.0003 (7)
0.0347 (12)	0.0426 (13)	0.0299 (11)	-0.0121 (10)	0.0160 (9)	-0.0065 (10)
0.0574 (16)	0.0559 (16)	0.0255 (11)	-0.0199 (13)	0.0183 (11)	-0.0060 (11)
0.0479 (14)	0.0404 (13)	0.0281 (11)	-0.0067 (11)	-0.0004 (10)	-0.0039 (10)
0.0280 (11)	0.0240 (10)	0.0402 (12)	0.0007 (8)	0.0056 (9)	-0.0034 (9)
0.0276 (10)	0.0176 (9)	0.0309 (10)	0.0012 (7)	0.0125 (8)	-0.0024 (8)
0.0273 (10)	0.0257 (10)	0.0260 (10)	0.0064 (8)	0.0138 (8)	0.0070 (8)
0.0225 (9)	0.0246 (9)	0.0184 (9)	0.0054 (7)	0.0076 (7)	0.0040 (7)
0.0304 (11)	0.0248 (10)	0.0231 (10)	0.0025 (8)	0.0066 (8)	-0.0007 (8)
0.0239 (10)	0.0359 (11)	0.0307 (11)	-0.0049 (9)	0.0060 (8)	-0.0004 (9)
0.0213 (10)	0.0457 (13)	0.0403 (13)	0.0029 (9)	0.0125 (9)	-0.0038 (10)
0.0292 (11)	0.0290 (11)	0.0409 (12)	0.0078 (9)	0.0125 (9)	-0.0032 (9)
	U^{11} 0.01783 (7) 0.0242 (7) 0.0257 (7) 0.0320 (8) 0.0402 (8) 0.0593 (11) 0.0243 (8) 0.0230 (9) 0.0256 (9) 0.0347 (12) 0.0574 (16) 0.0479 (14) 0.0280 (11) 0.0276 (10) 0.0275 (9) 0.0304 (11) 0.0239 (10) 0.0213 (10) 0.0292 (11)	U^{11} U^{22} 0.01783 (7) 0.01555 (7) 0.0242 (7) 0.0177 (6) 0.0257 (7) 0.0157 (6) 0.0320 (8) 0.0237 (7) 0.0402 (8) 0.0228 (7) 0.0593 (11) 0.0319 (9) 0.0243 (8) 0.0199 (8) 0.0230 (9) 0.0188 (9) 0.0256 (9) 0.0164 (8) 0.0347 (12) 0.0426 (13) 0.0574 (16) 0.0559 (16) 0.0479 (14) 0.0404 (13) 0.0280 (11) 0.0257 (10) 0.0275 (10) 0.0257 (10) 0.0225 (9) 0.0246 (9) 0.0304 (11) 0.0248 (10) 0.0239 (10) 0.0359 (11) 0.0213 (10) 0.0457 (13) 0.0292 (11) 0.0290 (11)	U^{11} U^{22} U^{33} 0.01783 (7) 0.01555 (7) 0.01806 (7) 0.0242 (7) 0.0177 (6) 0.0241 (7) 0.0257 (7) 0.0157 (6) 0.0285 (7) 0.0320 (8) 0.0237 (7) 0.0289 (7) 0.0402 (8) 0.0228 (7) 0.0312 (8) 0.0593 (11) 0.0319 (9) 0.0528 (11) 0.0243 (8) 0.0199 (8) 0.0224 (8) 0.0230 (9) 0.0198 (9) 0.0219 (9) 0.0256 (9) 0.0164 (8) 0.0299 (11) 0.0574 (16) 0.0559 (16) 0.0255 (11) 0.0479 (14) 0.0404 (13) 0.0281 (11) 0.0276 (10) 0.0176 (9) 0.0309 (10) 0.0275 (9) 0.0246 (9) 0.0184 (9) 0.0273 (10) 0.0257 (10) 0.0260 (10) 0.0225 (9) 0.0246 (9) 0.0184 (9) 0.0304 (11) 0.0248 (10) 0.0231 (10) 0.0239 (10) 0.0359 (11) 0.0403 (13) 0.0292 (11) 0.0290 (11) 0.0409 (12)	U^{11} U^{22} U^{33} U^{12} 0.01783 (7)0.01555 (7)0.01806 (7)0.00019 (4)0.0242 (7)0.0177 (6)0.0241 (7)0.0014 (5)0.0257 (7)0.0157 (6)0.0285 (7) $-0.0025 (5)$ 0.0320 (8)0.0237 (7)0.0289 (7)0.0005 (6)0.0402 (8)0.0228 (7)0.0312 (8) $-0.0108 (6)$ 0.0593 (11)0.0319 (9)0.0528 (11) $-0.0168 (7)$ 0.0243 (8)0.0199 (8)0.0224 (8) $-0.0030 (6)$ 0.0230 (9)0.0198 (9)0.0219 (9)0.0019 (7)0.0256 (9)0.0164 (8)0.0234 (9)0.0004 (7)0.0347 (12)0.0426 (13)0.0299 (11) $-0.0121 (10)$ 0.0574 (16)0.0559 (16)0.0255 (11) $-0.0199 (13)$ 0.0479 (14)0.0404 (13)0.0281 (11) $-0.0067 (11)$ 0.0276 (10)0.0176 (9)0.0309 (10)0.0012 (7)0.0273 (10)0.0257 (10)0.0260 (10)0.0064 (8)0.0225 (9)0.0246 (9)0.0184 (9)0.0054 (7)0.0304 (11)0.0248 (10)0.0231 (10)0.0025 (8)0.0239 (10)0.0359 (11)0.0307 (11) $-0.0049 (9)$ 0.0213 (10)0.0457 (13)0.0403 (13)0.0029 (9)0.0292 (11)0.0290 (11)0.0409 (12)0.0078 (9)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.01783 (7)0.01555 (7)0.01806 (7)0.00019 (4)0.00854 (5)0.0242 (7)0.0177 (6)0.0241 (7)0.0014 (5)0.0149 (5)0.0257 (7)0.0157 (6)0.0285 (7) -0.0025 (5)0.0148 (6)0.0320 (8)0.0237 (7)0.0289 (7)0.0005 (6)0.0183 (6)0.0402 (8)0.0228 (7)0.0312 (8) -0.0108 (6)0.0186 (6)0.0593 (11)0.0319 (9)0.0528 (11) -0.0168 (7)0.0424 (9)0.0243 (8)0.0199 (8)0.0224 (8) -0.0030 (6)0.0088 (6)0.0230 (9)0.0198 (9)0.0219 (9)0.0019 (7)0.0098 (7)0.0256 (9)0.0164 (8)0.0234 (9)0.0004 (7)0.0087 (7)0.0347 (12)0.0426 (13)0.0299 (11) -0.0121 (10)0.0180 (9)0.0574 (16)0.0559 (16)0.0255 (11) -0.0199 (13)0.0183 (11)0.0479 (14)0.0404 (13)0.0281 (11) -0.0067 (11) -0.0004 (10)0.0256 (9)0.0257 (10)0.0260 (10)0.0067 (8)0.0056 (9)0.0276 (10)0.0176 (9)0.0309 (10)0.0012 (7)0.0125 (8)0.0273 (10)0.0257 (10)0.0260 (10)0.0064 (8)0.0138 (8)0.0225 (9)0.0246 (9)0.0184 (9)0.0054 (7)0.0076 (7)0.0304 (11)0.0248 (10)0.0231 (10)0.0025 (8)0.0066 (8)0.0239 (10)0.0359 (11)0.0307 (11) -0.0049 (9)0.0060 (8)0.

C14	0.0258 (10)	0.0240 (10)	0.0284 (10)	0.0040 (8)	0.0086 (8)	0.0021 (8)
C15	0.0236 (10)	0.0229 (9)	0.0271 (10)	-0.0038 (8)	0.0089 (8)	-0.0062 (8)
C16	0.0178 (9)	0.0262 (9)	0.0211 (9)	-0.0029 (7)	0.0036 (7)	-0.0053 (8)
C17	0.0224 (10)	0.0328 (11)	0.0234 (10)	-0.0047 (8)	0.0059 (7)	-0.0014 (8)
C18	0.0272 (10)	0.0323 (11)	0.0279 (10)	-0.0001 (8)	0.0009 (8)	0.0028 (9)
C19	0.0285 (11)	0.0413 (13)	0.0297 (11)	0.0103 (9)	0.0013 (9)	-0.0015 (10)
C20	0.0227 (10)	0.0572 (15)	0.0321 (11)	0.0088 (10)	0.0106 (9)	0.0027 (11)
C21	0.0227 (10)	0.0398 (12)	0.0299 (11)	-0.0001 (9)	0.0096 (8)	0.0061 (9)
C22	0.0193 (9)	0.0181 (9)	0.0143 (8)	0.0024 (7)	0.0056 (6)	0.0027 (7)
C23	0.0197 (9)	0.0172 (8)	0.0197 (9)	0.0003 (7)	0.0071 (7)	0.0035 (7)
C24	0.0244 (9)	0.0172 (8)	0.0191 (9)	0.0011 (7)	0.0084 (7)	0.0003 (7)
C25	0.0227 (9)	0.0221 (9)	0.0194 (9)	0.0015 (7)	0.0110 (7)	0.0015 (7)
C26	0.0209 (9)	0.0206 (9)	0.0220 (9)	-0.0010 (7)	0.0106 (7)	0.0025 (7)
C27	0.0213 (9)	0.0155 (8)	0.0182 (8)	0.0000 (7)	0.0072 (7)	-0.0004 (7)
C28	0.0274 (10)	0.0223 (9)	0.0291 (10)	0.0002 (8)	0.0159 (8)	0.0017 (8)
C29	0.0318 (11)	0.0165 (9)	0.0313 (10)	-0.0043 (8)	0.0125 (8)	-0.0019 (8)

Geometric parameters (Å, °)

Sn1—O1	2.1227 (12)	C11—C12	1.383 (3)
Sn1—C15	2.1526 (19)	C11—H11	0.9500
Sn1—C1	2.1576 (18)	C12—C13	1.380 (3)
Sn1—C8	2.1619 (19)	C12—H12	0.9500
Sn1—O3 ⁱ	2.4936 (13)	C13—C14	1.392 (3)
O1—C22	1.287 (2)	C13—H13	0.9500
O2—C23	1.357 (2)	C14—H14	0.9500
O2—C29	1.433 (2)	C15—C16	1.500 (3)
O3—C28	1.225 (2)	C15—H15A	0.9900
O3—Sn1 ⁱⁱ	2.4936 (13)	C15—H15B	0.9900
O4—N1	1.233 (2)	C16—C17	1.392 (3)
O5—N1	1.223 (2)	C16—C21	1.395 (3)
N1-C27	1.451 (2)	C17—C18	1.387 (3)
C1—C2	1.493 (3)	C17—H17	0.9500
C1—H1A	0.9900	C18—C19	1.382 (3)
C1—H1B	0.9900	C18—H18	0.9500
С2—С3	1.391 (3)	C19—C20	1.375 (3)
С2—С7	1.402 (3)	C19—H19	0.9500
С3—С4	1.386(3)	C20—C21	1.385 (3)
С3—Н3	0.9500	C20—H20	0.9500
C4—C5	1.382 (4)	C21—H21	0.9500
C4—H4	0.9500	C22—C27	1.414 (2)
С5—С6	1.375 (3)	C22—C23	1.445 (3)
С5—Н5	0.9500	C23—C24	1.367 (2)
С6—С7	1.380(3)	C24—C25	1.416 (2)
С6—Н6	0.9500	C24—H24	0.9500
С7—Н7	0.9500	C25—C26	1.377 (3)
С8—С9	1.501 (3)	C25—C28	1.448 (3)
C8—H8A	0.9900	C26—C27	1.390 (2)

C8—H8B	0.9900	C26—H26	0.9500
C9—C10	1.394 (3)	C28—H28	0.9500
C9—C14	1.395 (3)	С29—Н29А	0.9800
C10—C11	1.387 (3)	C29—H29B	0.9800
C10—H10	0.9500	С29—Н29С	0.9800
O1—Sn1—C15	99.54 (6)	C12—C13—C14	120.5 (2)
O1—Sn1—C1	86.91 (6)	С12—С13—Н13	119.8
C15—Sn1—C1	113.15 (7)	C14—C13—H13	119.8
O1—Sn1—C8	101.64 (6)	C13—C14—C9	120.71 (19)
C15—Sn1—C8	127.85 (8)	C13—C14—H14	119.6
C1—Sn1—C8	115.07 (8)	C9—C14—H14	119.6
O1—Sn1—O3 ⁱ	166.47 (5)	C16—C15—Sn1	107.19 (12)
C15—Sn1—O3 ⁱ	85.05 (6)	C16—C15—H15A	110.3
$C1$ — $Sn1$ — $O3^{i}$	79.60 (6)	Sn1—C15—H15A	110.3
$C8$ — $Sn1$ — $O3^{i}$	85.12 (6)	C16—C15—H15B	110.3
C22—O1—Sn1	137.63 (11)	Sn1—C15—H15B	110.3
C23—O2—C29	117.37 (14)	H15A—C15—H15B	108.5
C28—O3—Sn1 ⁱⁱ	128.23 (13)	C17—C16—C21	117.91 (19)
O5—N1—O4	121.74 (16)	C17—C16—C15	120.65 (17)
O5—N1—C27	120.47 (15)	C21—C16—C15	121.36 (18)
O4—N1—C27	117.77 (15)	C16—C17—C18	121.16 (19)
C2—C1—Sn1	111.26 (12)	С16—С17—Н17	119.4
C2—C1—H1A	109.4	C18—C17—H17	119.4
Sn1—C1—H1A	109.4	C19—C18—C17	120.1 (2)
C2—C1—H1B	109.4	C19—C18—H18	120.0
Sn1—C1—H1B	109.4	С17—С18—Н18	120.0
H1A—C1—H1B	108.0	C20-C19-C18	119.4 (2)
C3—C2—C7	117.52 (18)	С20—С19—Н19	120.3
C3—C2—C1	121.91 (17)	C18—C19—H19	120.3
C7—C2—C1	120.52 (17)	C19—C20—C21	120.8 (2)
C4—C3—C2	120.7 (2)	С19—С20—Н20	119.6
С4—С3—Н3	119.6	C21—C20—H20	119.6
С2—С3—Н3	119.6	C20—C21—C16	120.6 (2)
C5—C4—C3	120.8 (2)	C20—C21—H21	119.7
C5—C4—H4	119.6	C16—C21—H21	119.7
C3—C4—H4	119.6	O1—C22—C27	123.00 (16)
C6—C5—C4	119.2 (2)	O1—C22—C23	121.05 (16)
С6—С5—Н5	120.4	C27—C22—C23	115.93 (15)
С4—С5—Н5	120.4	O2—C23—C24	126.31 (17)
C5—C6—C7	120.4 (2)	O2—C23—C22	111.73 (15)
С5—С6—Н6	119.8	C24—C23—C22	121.95 (16)
С7—С6—Н6	119.8	C23—C24—C25	119.54 (17)
C6—C7—C2	121.38 (19)	C23—C24—H24	120.2
С6—С7—Н7	119.3	C25—C24—H24	120.2
С2—С7—Н7	119.3	C26—C25—C24	120.43 (17)
C9—C8—Sn1	117.52 (13)	C26—C25—C28	117.20 (17)
С9—С8—Н8А	107.9	C24—C25—C28	122.37 (17)

Sn1—C8—H8A	107 9	C25—C26—C27	120.06(17)
C9-C8-H8B	107.9	$C_{25} = C_{26} = H_{26}$	120.00 (17)
Sn1-C8-H8B	107.9	C27—C26—H26	120.0
H8A—C8—H8B	107.2	$C_{26} - C_{27} - C_{22}$	122.06(16)
C10-C9-C14	118 00 (18)	$C_{26} = C_{27} = N_1$	116 78 (16)
C10-C9-C8	121 76 (18)	$C_{22} = C_{27} = N_1$	121.16(15)
C_{14} C_{9} C_{8}	120.25 (18)	$03-C^{28}-C^{25}$	121.10(13) 125.14(18)
$C_{11} = C_{10} = C_{9}$	120.25 (10)	$03 - C_{28} - H_{28}$	117.4
$C_{11} = C_{10} = C_{10}$	110 /	$C_{25} = C_{26} = H_{26}$	117.4
C_{10} C_{10} H_{10}	119.4	02 C29 H29A	117.4
$C_{12} = C_{10} = 110$	119.4 120.2(2)	$O_2 = C_2 O_2 = H_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	109.5
$C_{12} = C_{11} = C_{10}$	120.2 (2)	$H_{20A} = C_{20} = H_{20B}$	109.5
$C_{12} = C_{11} = H_{11}$	119.9	Ω_{2} Ω_{2	109.5
$C_{10} - C_{11} - H_{11}$	119.9	$U_2 = U_2 $	109.5
$C_{13} = C_{12} = C_{11}$	119.5 (2)	$H_{29}A = C_{29} = H_{29}C$	109.5
C13—C12—H12	120.2	H29B—C29—H29C	109.5
C11—C12—H12	120.2		
C_{15} Sp1 O1 C22	83 51 (18)	Sp1 C15 C16 C21	95.27(10)
C_{1}^{1} S_{1}^{1} O_{1}^{1} C_{2}^{2}	-163.52(18)	$C_{21} = C_{15} = C_{10} = C_{21}$	-0.3(3)
$C_1 = S_{11} = O_1 = C_{22}$	-48.54(18)	$C_{12} = C_{10} = C_{17} = C_{18}$	17655(18)
$C_{0} = S_{11} = O_{1} = C_{22}$	-167.57(18)	$C_{15} = C_{10} = C_{17} = C_{18}$	-0.5(3)
03 - 311 - 01 - 022	107.37(18) 105.81(12)	$C_{10} - C_{17} - C_{10} - C_{19}$	0.5(3)
$C_1 = C_1 = C_1 = C_2$	105.01(15) 155.12(12)	C17 - C18 - C19 - C20	0.0(3)
$C_{13} = S_{11} = C_{1} = C_{2}$	-155.13(12)	C18 - C19 - C20 - C21	0.0(3)
$C_8 = Sn_1 = C_1 = C_2$	4.40 (15)	C19 - C20 - C21 - C16	-0.8(3)
03 - Sn1 - C1 - C2	-/5.15 (13)	C1/-C16-C21-C20	0.9 (3)
Snl-Cl-C2-C3	101.24 (19)	C15—C16—C21—C20	-175.92 (19)
Sn1 - C1 - C2 - C/	-/6.10 (19)	Sn1—O1—C22—C27	155.51 (14)
C7—C2—C3—C4	0.7 (3)	Sn1—O1—C22—C23	-26.3 (3)
C1—C2—C3—C4	-176.7 (2)	C29—O2—C23—C24	-5.3 (3)
C2—C3—C4—C5	-0.3 (4)	C29—O2—C23—C22	174.93 (15)
C3—C4—C5—C6	-0.1 (4)	01—C22—C23—O2	3.8 (2)
C4—C5—C6—C7	0.2 (4)	C27—C22—C23—O2	-177.92 (15)
C5—C6—C7—C2	0.2 (3)	O1—C22—C23—C24	-176.01 (16)
C3—C2—C7—C6	-0.6 (3)	C27—C22—C23—C24	2.3 (3)
C1—C2—C7—C6	176.85 (17)	O2—C23—C24—C25	178.99 (17)
O1—Sn1—C8—C9	13.55 (16)	C22—C23—C24—C25	-1.2 (3)
C15—Sn1—C8—C9	-98.44 (16)	C23—C24—C25—C26	-0.1 (3)
C1—Sn1—C8—C9	105.59 (16)	C23—C24—C25—C28	179.63 (18)
O3 ⁱ —Sn1—C8—C9	-178.30 (16)	C24—C25—C26—C27	0.3 (3)
Sn1—C8—C9—C10	-67.3 (2)	C28—C25—C26—C27	-179.43 (17)
Sn1—C8—C9—C14	113.34 (18)	C25—C26—C27—C22	0.8 (3)
C14—C9—C10—C11	-0.9 (3)	C25-C26-C27-N1	-178.67 (16)
C8—C9—C10—C11	179.72 (19)	O1—C22—C27—C26	176.18 (17)
C9—C10—C11—C12	0.6 (3)	C23—C22—C27—C26	-2.1 (3)
C10-C11-C12-C13	-0.2 (3)	O1-C22-C27-N1	-4.3 (3)
C11—C12—C13—C14	0.0 (3)	C23—C22—C27—N1	177.42 (15)
C12—C13—C14—C9	-0.3 (3)	O5—N1—C27—C26	167.06 (18)
C10-C9-C14-C13	0.7 (3)	O4—N1—C27—C26	-11.5 (2)
	× /		. /

C8—C9—C14—C13	-179.89 (19)	O5—N1—C27—C22	-12.4 (3)
O1—Sn1—C15—C16	88.15 (13)	O4—N1—C27—C22	169.03 (17)
C1—Sn1—C15—C16	-2.56 (15)	Sn1 ⁱⁱ —O3—C28—C25	-177.02 (14)
C8—Sn1—C15—C16	-158.91 (12)	C26—C25—C28—O3	175.07 (19)
O3 ⁱ —Sn1—C15—C16	-79.02 (13)	C24—C25—C28—O3	-4.7 (3)
Sn1—C15—C16—C17	-81.43 (19)		

Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) x-1/2, -y+1/2, z+1/2.