organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Gliquidone

aInstitute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

(Received 29 April 2011; accepted 3 May 2011; online 7 May 2011)

The title compound {systematic name: N-cyclo­hexyl­carba­moyl-4-[2-(7-meth­oxy-4,4-dimethyl-1,3-dioxo-1,2,3,4-tetra­hydro­isoquinolin-2-yl)eth­yl]benzene­sulfonamide}, C27H33N3O6S, displays an intra­molecular N—H⋯O=S inter­action, as well as inter­molecular N—H⋯O=C hydrogen bonds. The latter inter­actions lead to the formation of hydrogen-bonded chains parallel to the c axis. The conformation of the sulfonyl­urea fragment is in agreement with a recent theoretical study [Kasetti et al. (2010[Kasetti, Y., Patel, N. K., Sundriyal, S. & Bharatam, P. V. (2010). J. Phys. Chem. B, 114, 11603-11610.]). J. Phys. Chem. B, 114, 11603–11610].

Related literature

For theoretical studies of the molecular structure, see Lins et al. (1996[Lins, L., Brasseur, R. & Malaisse, W. J. (1996). Pharm. Res. 34, 9-10.]); Kasetti et al. (2010[Kasetti, Y., Patel, N. K., Sundriyal, S. & Bharatam, P. V. (2010). J. Phys. Chem. B, 114, 11603-11610.]). For thermomicroscopy, see Kuhnert-Brandstätter et al. (1982[Kuhnert-Brandstätter, M., Geiler, M. & Wurian, I. (1982). Sci. Pharm. 50, 324-331.]). For related crystal structures, see: Kobelt & Paulus (1972[Kobelt, D. & Paulus, E. F. (1972). Acta Cryst. B28, 3452-3457.]); Iwata et al. (1997[Iwata, M., Nagase, H., Endo, T. & Ueda, H. (1997). Acta Cryst. C53, 329-331.]); Grell et al. (1998[Grell, W., Hurnaus, R., Griss, G., Sauter, R., Rupprecht, E., Mark, M., Luger, P., Nar, H., Wittneben, H. & Müller, P. (1998). J. Med. Chem. 41, 5219-5246.]); Endo et al. (2003[Endo, T., Iwata, M., Nagase, H., Shiro, M. & Ueda, H. (2003). STP Pharma Sci. 13, 281-286.]).

[Scheme 1]

Experimental

Crystal data
  • C27H33N3O6S

  • Mr = 527.62

  • Monoclinic, P 21 /c

  • a = 19.1494 (4) Å

  • b = 10.7253 (3) Å

  • c = 13.8024 (2) Å

  • β = 106.691 (1)°

  • V = 2715.34 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.10 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.984

  • 28737 measured reflections

  • 5325 independent reflections

  • 4361 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.03

  • 5325 reflections

  • 376 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.86 (1) 2.03 (2) 2.8702 (17) 167 (2)
N2—H2N⋯O1 0.87 (1) 2.15 (2) 2.8404 (17) 136 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: AcademicPress.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Gliquidone is an anti-diabetic drug in the sulfonylurea class. It is used in the treatment of diabetes mellitus type 2. The conformation of the sulfonyl urea fragment is in agreement with the SLU-1 geometry discussed in a recent theoretical study [Kasetti et al. (2010)]. The same conformation was previously found in polymorph I of glimepiride (Iwata et al., 1997).

In the sulfonyl urea part, the molecule displays an intramolecular N–H···O=S bond. The second NH group is N–H···O=C bonded to the imide part of a neighbouring molecule. As a result of this interaction, H-bonded chains are formed, which possess glide symmetry and propagate parallel to the c-axis.

Related literature top

For theoretical studies, see Lins et al. (1996); Kasetti et al. (2010). For thermomicroscopy, see Kuhnert-Brandstätter et al. (1982). For related crystal structures, see: Kobelt & Paulus (1972); Iwata et al. (1997); Grell et al. (1998); Endo et al. (2003).

Experimental top

The investigated sample of gliquidone was obtained from Boehriger Ingelheim.

Refinement top

All H atoms were identified in a difference map. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å). H atoms in CH2 (C—H = 0.99 Å) or CH (C—H = 1.00 Å) groups and H atoms bonded to aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically. Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (2) Å]. Uĩso parameters for all H atoms were refined freely.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Fragment of an N–H···O=C-bonded chain. The crystal structure is viewed along [100]. H and O atoms directly engaged in H-bonds are drawn as balls.
N-cyclohexylcarbamoyl-4-[2-(7-methoxy-4,4-dimethyl-1,3-dioxo-1,2,3,4- tetrahydroisoquinolin-2-yl)ethyl]benzenesulfonamide top
Crystal data top
C27H33N3O6SF(000) = 1120
Mr = 527.62Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16476 reflections
a = 19.1494 (4) Åθ = 2.9–27.5°
b = 10.7253 (3) ŵ = 0.17 mm1
c = 13.8024 (2) ÅT = 120 K
β = 106.691 (1)°Plate, colourless
V = 2715.34 (10) Å30.40 × 0.40 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
5325 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 2.9°
ϕ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1313
Tmin = 0.937, Tmax = 0.984l = 1517
28737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.054P)2 + 0.7288P]
where P = (Fo2 + 2Fc2)/3
5325 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
C27H33N3O6SV = 2715.34 (10) Å3
Mr = 527.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.1494 (4) ŵ = 0.17 mm1
b = 10.7253 (3) ÅT = 120 K
c = 13.8024 (2) Å0.40 × 0.40 × 0.10 mm
β = 106.691 (1)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
5325 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4361 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.984Rint = 0.044
28737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
5325 reflectionsΔρmin = 0.43 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.372978 (18)0.06096 (4)0.34758 (2)0.02071 (11)
O10.44637 (5)0.05111 (11)0.41217 (7)0.0251 (2)
O20.35950 (6)0.06083 (11)0.24022 (7)0.0291 (3)
O30.26601 (6)0.14284 (11)0.47583 (8)0.0301 (3)
O40.04953 (6)0.56657 (10)0.38426 (7)0.0264 (3)
O50.19863 (6)0.53754 (12)0.70230 (8)0.0384 (3)
O60.15069 (6)0.85561 (11)0.38996 (8)0.0306 (3)
N10.32644 (7)0.05733 (12)0.37222 (9)0.0229 (3)
H1N0.2868 (9)0.0629 (18)0.3241 (13)0.040 (5)*
N20.38277 (7)0.07655 (13)0.54610 (9)0.0251 (3)
H2N0.4223 (8)0.0513 (17)0.5327 (13)0.031 (5)*
N30.12334 (6)0.55263 (11)0.54472 (8)0.0190 (3)
C10.33329 (7)0.19457 (14)0.38350 (10)0.0189 (3)
C20.36549 (8)0.24940 (15)0.47723 (10)0.0216 (3)
H20.40990.21750.52030.027 (4)*
C30.33191 (8)0.35119 (15)0.50681 (10)0.0225 (3)
H30.35340.38860.57090.034 (5)*
C40.26712 (8)0.39936 (14)0.44388 (11)0.0217 (3)
C50.23624 (8)0.34344 (15)0.35000 (11)0.0244 (3)
H50.19220.37600.30650.031 (5)*
C60.26863 (8)0.24152 (15)0.31929 (11)0.0228 (3)
H60.24710.20400.25530.031 (4)*
C70.22896 (8)0.50595 (15)0.47875 (11)0.0248 (3)
H7A0.21060.56620.42280.040 (5)*
H7B0.26350.55000.53580.026 (4)*
C80.16539 (8)0.45372 (14)0.51243 (11)0.0215 (3)
H8A0.13250.40650.45580.026 (4)*
H8B0.18450.39500.56920.031 (5)*
C90.06399 (7)0.60349 (14)0.47150 (10)0.0184 (3)
C100.02037 (7)0.69887 (13)0.50490 (10)0.0184 (3)
C110.04048 (8)0.74227 (14)0.60447 (10)0.0214 (3)
C120.10805 (8)0.69515 (14)0.68274 (10)0.0216 (3)
C130.14635 (8)0.58977 (15)0.64517 (11)0.0232 (3)
C140.04261 (7)0.74093 (14)0.43406 (10)0.0204 (3)
H140.05460.71170.36630.026 (4)*
C150.08755 (8)0.82517 (15)0.46246 (11)0.0235 (3)
C160.06813 (9)0.87156 (16)0.56085 (11)0.0301 (4)
H160.09830.93100.58030.038 (5)*
C170.00459 (9)0.83075 (16)0.63026 (11)0.0290 (4)
H170.00860.86380.69690.035 (5)*
C180.16458 (9)0.80078 (17)0.71456 (13)0.0368 (4)
H18A0.18140.82530.65660.054 (6)*
H18B0.20610.77160.76950.044 (5)*
H18C0.14210.87270.73780.042 (5)*
C190.08837 (9)0.64511 (17)0.77617 (11)0.0331 (4)
H19A0.06750.71260.80690.047 (6)*
H19B0.13240.61330.82540.039 (5)*
H19C0.05260.57760.75560.068 (7)*
C200.20530 (9)0.91933 (18)0.42316 (13)0.0369 (4)
H20A0.21800.86960.47520.042 (5)*
H20B0.24880.93140.36570.047 (6)*
H20C0.18651.00060.45130.039 (5)*
C210.32254 (8)0.09519 (14)0.46937 (11)0.0217 (3)
C220.38491 (8)0.09235 (15)0.65249 (11)0.0228 (3)
H220.33370.10300.65570.031 (4)*
C230.42853 (9)0.20722 (15)0.69978 (12)0.0292 (4)
H23A0.47860.20150.69320.029 (4)*
H23B0.40530.28300.66360.049 (6)*
C240.43184 (9)0.21684 (16)0.81155 (12)0.0333 (4)
H24A0.38210.23020.81740.041 (5)*
H24B0.46190.28970.84190.051 (6)*
C250.46396 (9)0.10010 (17)0.86938 (12)0.0328 (4)
H25A0.51520.09060.86870.032 (5)*
H25B0.46360.10820.94070.039 (5)*
C260.42077 (9)0.01468 (17)0.82278 (12)0.0314 (4)
H26A0.44460.09010.85880.035 (5)*
H26B0.37100.00960.83040.039 (5)*
C270.41609 (8)0.02515 (15)0.71081 (11)0.0251 (3)
H27A0.38490.09720.68120.031 (5)*
H27B0.46540.04070.70390.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01746 (19)0.0296 (2)0.01411 (19)0.00384 (15)0.00301 (14)0.00118 (14)
O10.0158 (5)0.0382 (7)0.0206 (5)0.0056 (4)0.0038 (4)0.0007 (4)
O20.0295 (6)0.0427 (7)0.0148 (5)0.0065 (5)0.0059 (4)0.0014 (5)
O30.0242 (6)0.0330 (7)0.0310 (6)0.0057 (5)0.0048 (4)0.0019 (5)
O40.0293 (6)0.0314 (6)0.0161 (5)0.0073 (5)0.0026 (4)0.0029 (4)
O50.0346 (7)0.0451 (8)0.0252 (6)0.0187 (6)0.0080 (5)0.0040 (5)
O60.0235 (6)0.0404 (7)0.0238 (5)0.0148 (5)0.0003 (4)0.0004 (5)
N10.0215 (7)0.0252 (7)0.0183 (6)0.0010 (5)0.0000 (5)0.0041 (5)
N20.0173 (6)0.0384 (8)0.0185 (6)0.0005 (6)0.0033 (5)0.0028 (5)
N30.0191 (6)0.0196 (6)0.0169 (6)0.0035 (5)0.0029 (5)0.0004 (5)
C10.0166 (7)0.0237 (8)0.0166 (7)0.0004 (6)0.0054 (5)0.0004 (6)
C20.0157 (7)0.0307 (8)0.0164 (7)0.0004 (6)0.0014 (5)0.0014 (6)
C30.0219 (7)0.0284 (8)0.0166 (7)0.0022 (6)0.0045 (6)0.0036 (6)
C40.0207 (7)0.0228 (8)0.0229 (7)0.0010 (6)0.0085 (6)0.0005 (6)
C50.0190 (7)0.0285 (9)0.0219 (7)0.0036 (6)0.0002 (6)0.0010 (6)
C60.0201 (7)0.0268 (8)0.0182 (7)0.0006 (6)0.0002 (6)0.0019 (6)
C70.0242 (8)0.0250 (8)0.0257 (8)0.0009 (6)0.0078 (6)0.0015 (6)
C80.0211 (7)0.0204 (8)0.0216 (7)0.0043 (6)0.0042 (6)0.0003 (6)
C90.0183 (7)0.0198 (7)0.0161 (7)0.0006 (6)0.0032 (5)0.0016 (6)
C100.0193 (7)0.0182 (7)0.0166 (7)0.0001 (6)0.0034 (5)0.0012 (5)
C110.0238 (8)0.0219 (8)0.0166 (7)0.0007 (6)0.0024 (6)0.0002 (6)
C120.0242 (7)0.0216 (8)0.0161 (7)0.0021 (6)0.0009 (6)0.0008 (6)
C130.0206 (7)0.0270 (8)0.0185 (7)0.0018 (6)0.0001 (6)0.0003 (6)
C140.0208 (7)0.0237 (8)0.0153 (7)0.0013 (6)0.0031 (5)0.0008 (6)
C150.0211 (7)0.0254 (8)0.0212 (7)0.0060 (6)0.0015 (6)0.0032 (6)
C160.0332 (9)0.0292 (9)0.0261 (8)0.0125 (7)0.0056 (7)0.0037 (7)
C170.0347 (9)0.0293 (9)0.0193 (7)0.0091 (7)0.0018 (6)0.0046 (6)
C180.0340 (9)0.0289 (9)0.0375 (9)0.0039 (8)0.0057 (7)0.0019 (7)
C190.0365 (9)0.0412 (10)0.0205 (8)0.0113 (8)0.0064 (7)0.0078 (7)
C200.0274 (9)0.0439 (11)0.0387 (10)0.0177 (8)0.0084 (7)0.0050 (8)
C210.0221 (8)0.0189 (7)0.0229 (7)0.0044 (6)0.0045 (6)0.0022 (6)
C220.0169 (7)0.0304 (9)0.0207 (7)0.0018 (6)0.0048 (6)0.0058 (6)
C230.0310 (9)0.0233 (8)0.0313 (8)0.0007 (7)0.0059 (7)0.0023 (7)
C240.0335 (9)0.0319 (9)0.0333 (9)0.0044 (7)0.0074 (7)0.0139 (7)
C250.0330 (9)0.0425 (10)0.0210 (8)0.0055 (8)0.0044 (6)0.0052 (7)
C260.0348 (9)0.0357 (10)0.0246 (8)0.0082 (8)0.0101 (7)0.0001 (7)
C270.0264 (8)0.0242 (8)0.0251 (8)0.0061 (6)0.0078 (6)0.0040 (6)
Geometric parameters (Å, º) top
S1—O21.4293 (10)C11—C121.5146 (19)
S1—O11.4357 (10)C12—C131.517 (2)
S1—N11.6413 (14)C12—C191.540 (2)
S1—C11.7588 (15)C12—C181.541 (2)
O3—C211.2234 (18)C14—C151.380 (2)
O4—C91.2213 (17)C14—H140.9500
O5—C131.2184 (18)C15—C161.393 (2)
O6—C151.3692 (17)C16—C171.386 (2)
O6—C201.4305 (19)C16—H160.9500
N1—C211.4233 (19)C17—H170.9500
N1—H1N0.856 (14)C18—H18A0.9800
N2—C211.3380 (19)C18—H18B0.9800
N2—C221.4670 (18)C18—H18C0.9800
N2—H2N0.872 (14)C19—H19A0.9800
N3—C131.3871 (18)C19—H19B0.9800
N3—C91.3968 (18)C19—H19C0.9800
N3—C81.4759 (18)C20—H20A0.9800
C1—C21.393 (2)C20—H20B0.9800
C1—C61.3935 (19)C20—H20C0.9800
C2—C31.387 (2)C22—C271.522 (2)
C2—H20.9500C22—C231.526 (2)
C3—C41.393 (2)C22—H221.0000
C3—H30.9500C23—C241.529 (2)
C4—C51.396 (2)C23—H23A0.9900
C4—C71.508 (2)C23—H23B0.9900
C5—C61.382 (2)C24—C251.517 (2)
C5—H50.9500C24—H24A0.9900
C6—H60.9500C24—H24B0.9900
C7—C81.529 (2)C25—C261.519 (2)
C7—H7A0.9900C25—H25A0.9900
C7—H7B0.9900C25—H25B0.9900
C8—H8A0.9900C26—C271.526 (2)
C8—H8B0.9900C26—H26A0.9900
C9—C101.476 (2)C26—H26B0.9900
C10—C141.3916 (19)C27—H27A0.9900
C10—C111.3963 (19)C27—H27B0.9900
C11—C171.396 (2)
O2—S1—O1119.79 (6)O6—C15—C14116.12 (13)
O2—S1—N1105.48 (7)O6—C15—C16124.05 (14)
O1—S1—N1107.90 (7)C14—C15—C16119.82 (13)
O2—S1—C1109.21 (7)C17—C16—C15119.79 (14)
O1—S1—C1108.07 (7)C17—C16—H16120.1
N1—S1—C1105.49 (7)C15—C16—H16120.1
C15—O6—C20116.95 (12)C16—C17—C11121.52 (14)
C21—N1—S1126.46 (10)C16—C17—H17119.2
C21—N1—H1N115.9 (13)C11—C17—H17119.2
S1—N1—H1N107.8 (13)C12—C18—H18A109.5
C21—N2—C22123.02 (13)C12—C18—H18B109.5
C21—N2—H2N118.8 (11)H18A—C18—H18B109.5
C22—N2—H2N118.1 (11)C12—C18—H18C109.5
C13—N3—C9124.75 (12)H18A—C18—H18C109.5
C13—N3—C8117.64 (11)H18B—C18—H18C109.5
C9—N3—C8117.60 (11)C12—C19—H19A109.5
C2—C1—C6120.89 (14)C12—C19—H19B109.5
C2—C1—S1119.59 (11)H19A—C19—H19B109.5
C6—C1—S1119.48 (11)C12—C19—H19C109.5
C3—C2—C1119.12 (13)H19A—C19—H19C109.5
C3—C2—H2120.4H19B—C19—H19C109.5
C1—C2—H2120.4O6—C20—H20A109.5
C2—C3—C4120.90 (13)O6—C20—H20B109.5
C2—C3—H3119.6H20A—C20—H20B109.5
C4—C3—H3119.6O6—C20—H20C109.5
C3—C4—C5118.90 (14)H20A—C20—H20C109.5
C3—C4—C7120.55 (13)H20B—C20—H20C109.5
C5—C4—C7120.47 (13)O3—C21—N2125.76 (14)
C6—C5—C4121.11 (13)O3—C21—N1118.35 (13)
C6—C5—H5119.4N2—C21—N1115.88 (13)
C4—C5—H5119.4N2—C22—C27109.13 (12)
C5—C6—C1119.07 (13)N2—C22—C23112.08 (12)
C5—C6—H6120.5C27—C22—C23111.03 (12)
C1—C6—H6120.5N2—C22—H22108.2
C4—C7—C8108.68 (12)C27—C22—H22108.2
C4—C7—H7A110.0C23—C22—H22108.2
C8—C7—H7A110.0C22—C23—C24110.18 (13)
C4—C7—H7B110.0C22—C23—H23A109.6
C8—C7—H7B110.0C24—C23—H23A109.6
H7A—C7—H7B108.3C22—C23—H23B109.6
N3—C8—C7112.30 (12)C24—C23—H23B109.6
N3—C8—H8A109.1H23A—C23—H23B108.1
C7—C8—H8A109.1C25—C24—C23111.60 (13)
N3—C8—H8B109.1C25—C24—H24A109.3
C7—C8—H8B109.1C23—C24—H24A109.3
H8A—C8—H8B107.9C25—C24—H24B109.3
O4—C9—N3119.59 (13)C23—C24—H24B109.3
O4—C9—C10122.97 (12)H24A—C24—H24B108.0
N3—C9—C10117.42 (12)C24—C25—C26110.91 (13)
C14—C10—C11121.46 (13)C24—C25—H25A109.5
C14—C10—C9117.34 (12)C26—C25—H25A109.5
C11—C10—C9121.18 (12)C24—C25—H25B109.5
C17—C11—C10117.50 (13)C26—C25—H25B109.5
C17—C11—C12120.60 (12)H25A—C25—H25B108.0
C10—C11—C12121.90 (13)C25—C26—C27110.78 (13)
C11—C12—C13113.74 (11)C25—C26—H26A109.5
C11—C12—C19110.43 (12)C27—C26—H26A109.5
C13—C12—C19106.57 (12)C25—C26—H26B109.5
C11—C12—C18110.13 (13)C27—C26—H26B109.5
C13—C12—C18106.03 (13)H26A—C26—H26B108.1
C19—C12—C18109.78 (13)C22—C27—C26112.00 (13)
O5—C13—N3118.75 (14)C22—C27—H27A109.2
O5—C13—C12120.60 (13)C26—C27—H27A109.2
N3—C13—C12120.63 (12)C22—C27—H27B109.2
C15—C14—C10119.86 (13)C26—C27—H27B109.2
C15—C14—H14120.1H27A—C27—H27B107.9
C10—C14—H14120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.86 (1)2.03 (2)2.8702 (17)167 (2)
N2—H2N···O10.87 (1)2.15 (2)2.8404 (17)136 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC27H33N3O6S
Mr527.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)19.1494 (4), 10.7253 (3), 13.8024 (2)
β (°) 106.691 (1)
V3)2715.34 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.40 × 0.40 × 0.10
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.937, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
28737, 5325, 4361
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.03
No. of reflections5325
No. of parameters376
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.43

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.856 (14)2.029 (15)2.8702 (17)167.3 (19)
N2—H2N···O10.872 (14)2.151 (16)2.8404 (17)135.6 (15)
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Current address: School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England.

References

First citationEndo, T., Iwata, M., Nagase, H., Shiro, M. & Ueda, H. (2003). STP Pharma Sci. 13, 281–286.  CAS
First citationGrell, W., Hurnaus, R., Griss, G., Sauter, R., Rupprecht, E., Mark, M., Luger, P., Nar, H., Wittneben, H. & Müller, P. (1998). J. Med. Chem. 41, 5219–5246.  Web of Science CrossRef PubMed
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationIwata, M., Nagase, H., Endo, T. & Ueda, H. (1997). Acta Cryst. C53, 329–331.  CSD CrossRef CAS Web of Science IUCr Journals
First citationKasetti, Y., Patel, N. K., Sundriyal, S. & Bharatam, P. V. (2010). J. Phys. Chem. B, 114, 11603–11610.  Web of Science CrossRef CAS PubMed
First citationKobelt, D. & Paulus, E. F. (1972). Acta Cryst. B28, 3452–3457.  CSD CrossRef CAS IUCr Journals Web of Science
First citationKuhnert-Brandstätter, M., Geiler, M. & Wurian, I. (1982). Sci. Pharm. 50, 324–331.
First citationLins, L., Brasseur, R. & Malaisse, W. J. (1996). Pharm. Res. 34, 9–10.  CrossRef CAS
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: AcademicPress.
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds