

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gliquidone

Thomas Gelbrich,* Mairi F. Haddow‡ and Ulrich J. Griesser

Institute of Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Received 29 April 2011; accepted 3 May 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.101; data-to-parameter ratio = 14.2.

The title compound {systematic name: *N*-cyclohexylcarbamoyl-4-[2-(7-methoxy-4,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]benzenesulfonamide}, $C_{27}H_{33}N_{3}$ - O_6S , displays an intramolecular $N-H\cdots O=S$ interaction, as well as intermolecular $N-H\cdots O=C$ hydrogen bonds. The latter interactions lead to the formation of hydrogen-bonded chains parallel to the *c* axis. The conformation of the sulfonylurea fragment is in agreement with a recent theoretical study [Kasetti *et al.* (2010). *J. Phys. Chem. B*, **114**, 11603–11610].

Related literature

For theoretical studies of the molecular structure, see Lins *et al.* (1996); Kasetti *et al.* (2010). For thermomicroscopy, see Kuhnert-Brandstätter *et al.* (1982). For related crystal structures, see: Kobelt & Paulus (1972); Iwata *et al.* (1997); Grell *et al.* (1998); Endo *et al.* (2003).

Experimental

Crystal data	
C ₂₇ H ₃₃ N ₃ O ₆ S	b = 10.7253 (3) Å
$M_r = 527.62$	c = 13.8024 (2) Å
Monoclinic, $P2_1/c$	$\beta = 106.691 \ (1)^{\circ}$
a = 19.1494 (4) Å	$V = 2715.34 (10) \text{ Å}^3$

Z = 4Mo $K\alpha$ radiation $\mu = 0.17 \text{ mm}^{-1}$

Data collection

Bruker–Nonius Roper CCD camera on κ -goniostat diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) $T_{min} = 0.937, T_{max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.101$ S = 1.03 5325 reflections 376 parameters 2 restraints 28737 measured reflections

 $0.40 \times 0.40 \times 0.10 \text{ mm}$

5325 independent reflections 4361 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.28~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.43~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1N \cdots O5^{i}$ $N2 - H2N \cdots O1$	0.86 (1) 0.87 (1)	2.03 (2) 2.15 (2)	2.8702 (17) 2.8404 (17)	167 (2) 136 (2)
6	. 1 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2285).

References

- Endo, T., Iwata, M., Nagase, H., Shiro, M. & Ueda, H. (2003). *STP Pharma Sci.* **13**, 281–286.
- Grell, W., Hurnaus, R., Griss, G., Sauter, R., Rupprecht, E., Mark, M., Luger, P., Nar, H., Wittneben, H. & Müller, P. (1998). *J. Med. Chem.* 41, 5219–5246. Hooft, R. W. W. (1998). *COLLECT*. Nonius BV, Delft, The Netherlands.
- Iwata, M., Nagase, H., Endo, T. & Ueda, H. (1997). Acta Cryst. C53, 329-331.
- Kasetti, Y., Patel, N. K., Sundriyal, S. & Bharatam, P. V. (2010). J. Phys. Chem. B, **114**, 11603–11610.
- Kobelt, D. & Paulus, E. F. (1972). Acta Cryst. B28, 3452-3457.
- Kuhnert-Brandstätter, M., Geiler, M. & Wurian, I. (1982). Sci. Pharm. 50, 324–331.
- Lins, L., Brasseur, R. & Malaisse, W. J. (1996). Pharm. Res. 34, 9-10.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: AcademicPress.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

‡ Current address: School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, England. T = 120 K

supporting information

Acta Cryst. (2011). E67, o1343 [doi:10.1107/S1600536811016680]

Gliquidone

Thomas Gelbrich, Mairi F. Haddow and Ulrich J. Griesser

S1. Comment

Gliquidone is an anti-diabetic drug in the sulfonylurea class. It is used in the treatment of diabetes mellitus type 2. The conformation of the sulfonyl urea fragment is in agreement with the SLU-1 geometry discussed in a recent theoretical study [Kasetti *et al.* (2010)]. The same conformation was previously found in polymorph I of glimepiride (Iwata *et al.*, 1997).

In the sulfonyl urea part, the molecule displays an intramolecular N–H \cdots O=S bond. The second NH group is N–H \cdots O=C bonded to the imide part of a neighbouring molecule. As a result of this interaction, H-bonded chains are formed, which possess glide symmetry and propagate parallel to the *c*-axis.

S2. Experimental

The investigated sample of gliquidone was obtained from Boehriger Ingelheim.

S3. Refinement

All H atoms were identified in a difference map. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (C—H = 0.98 Å). H atoms in CH₂ (C—H = 0.99 Å) or CH (C—H = 1.00 Å) groups and H atoms bonded to aromatic carbon atoms (C—H = 0.95 Å) were positioned geometrically. Hydrogen atoms attached to N were refined with restrained distances [N—H = 0.88 (2) Å]. U_{iso} parameters for all H atoms were refined freely.

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary size.

Figure 2

Fragment of an N–H···O=C-bonded chain. The crystal structure is viewed along [100]. H and O atoms directly engaged in H-bonds are drawn as balls.

F(000) = 1120

 $\theta = 2.9 - 27.5^{\circ}$

 $\mu = 0.17 \text{ mm}^{-1}$ T = 120 K

Plate, colourless

 $0.40 \times 0.40 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.291 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 16476 reflections

N-cyclohexylcarbamoyl-4-[2-(7-methoxy-4,4-dimethyl-1,3-dioxo-1,2,3,4- tetrahydroisoquinolin-2-yl)ethyl]benzenesulfonamide

Crystal data

C₂₇H₃₃N₃O₆S $M_r = 527.62$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.1494 (4) Å b = 10.7253 (3) Å c = 13.8024 (2) Å $\beta = 106.691$ (1)° V = 2715.34 (10) Å³ Z = 4

Data collection

Bruker–Nonius Roper CCD camera on κ -	$T_{\min} = 0.937, T_{\max} = 0.984$
goniostat	28737 measured reflections
diffractometer	5325 independent reflections
Radiation source: Bruker-Nonius FR591	4361 reflections with $I > 2\sigma(I)$
rotating anode	$R_{\rm int} = 0.044$
Graphite monochromator	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Detector resolution: 9.091 pixels mm ⁻¹	$h = -23 \rightarrow 23$
φ and ω scans	$k = -13 \rightarrow 13$
Absorption correction: multi-scan	$l = -15 \rightarrow 17$
(SADABS; Sheldrick, 2007)	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
5325 reflections	and constrained refinement
376 parameters	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 0.7288P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.372978 (18)	0.06096 (4)	0.34758 (2)	0.02071 (11)
01	0.44637 (5)	0.05111 (11)	0.41217 (7)	0.0251 (2)
O2	0.35950 (6)	0.06083 (11)	0.24022 (7)	0.0291 (3)
O3	0.26601 (6)	-0.14284 (11)	0.47583 (8)	0.0301 (3)
O4	0.04953 (6)	0.56657 (10)	0.38426 (7)	0.0264 (3)
05	0.19863 (6)	0.53754 (12)	0.70230 (8)	0.0384 (3)
06	-0.15069 (6)	0.85561 (11)	0.38996 (8)	0.0306 (3)
N1	0.32644 (7)	-0.05733 (12)	0.37222 (9)	0.0229 (3)
H1N	0.2868 (9)	-0.0629 (18)	0.3241 (13)	0.040 (5)*
N2	0.38277 (7)	-0.07655 (13)	0.54610 (9)	0.0251 (3)
H2N	0.4223 (8)	-0.0513 (17)	0.5327 (13)	0.031 (5)*
N3	0.12334 (6)	0.55263 (11)	0.54472 (8)	0.0190 (3)
C1	0.33329 (7)	0.19457 (14)	0.38350 (10)	0.0189 (3)
C2	0.36549 (8)	0.24940 (15)	0.47723 (10)	0.0216 (3)
H2	0.4099	0.2175	0.5203	0.027 (4)*
C3	0.33191 (8)	0.35119 (15)	0.50681 (10)	0.0225 (3)
H3	0.3534	0.3886	0.5709	0.034 (5)*
C4	0.26712 (8)	0.39936 (14)	0.44388 (11)	0.0217 (3)
C5	0.23624 (8)	0.34344 (15)	0.35000 (11)	0.0244 (3)
H5	0.1922	0.3760	0.3065	0.031 (5)*
C6	0.26863 (8)	0.24152 (15)	0.31929 (11)	0.0228 (3)
H6	0.2471	0.2040	0.2553	0.031 (4)*
C7	0.22896 (8)	0.50595 (15)	0.47875 (11)	0.0248 (3)
H7A	0.2106	0.5662	0.4228	0.040 (5)*

			0.50.50	0.00(1)*
H/B	0.2635	0.5500	0.5358	0.026 (4)*
C8	0.16539 (8)	0.45372 (14)	0.51243 (11)	0.0215 (3)
H8A	0.1325	0.4065	0.4558	0.026 (4)*
H8B	0.1845	0.3950	0.5692	0.031 (5)*
C9	0.06399 (7)	0.60349 (14)	0.47150 (10)	0.0184 (3)
C10	0.02037 (7)	0.69887 (13)	0.50490 (10)	0.0184 (3)
C11	0.04048 (8)	0.74227 (14)	0.60447 (10)	0.0214 (3)
C12	0.10805 (8)	0.69515 (14)	0.68274 (10)	0.0216 (3)
C13	0.14635 (8)	0.58977 (15)	0.64517 (11)	0.0232 (3)
C14	-0.04261 (7)	0.74093 (14)	0.43406 (10)	0.0204 (3)
H14	-0.0546	0.7117	0.3663	0.026 (4)*
C15	-0.08755 (8)	0.82517 (15)	0.46246 (11)	0.0235 (3)
C16	-0.06813 (9)	0.87156 (16)	0.56085 (11)	0.0301 (4)
H16	-0.0983	0.9310	0.5803	0.038 (5)*
C17	-0.00459(9)	0 83075 (16)	0 63026 (11)	0.0290 (4)
H17	0.0086	0.8638	0.6969	0.035(5)*
C18	0.16458 (9)	0.80078 (17)	0.0909 0.71456 (13)	0.035(3)
H18A	0.1814	0.8253	0.6566	0.054 (6)*
LINA UINA	0.2061	0.7716	0.7605	0.034(0)
	0.2001	0.7710	0.7093	$0.044(5)^{*}$
C10	0.1421 0.08827 (0)	0.0/2/	0.7576 0.77617 (11)	$0.042(3)^{\circ}$
	0.08857 (9)	0.04311 (17)	0.77017(11)	0.0331(4)
HI9A	0.0675	0./126	0.8069	0.04/(6)*
HI9B	0.1324	0.6133	0.8254	0.039 (5)*
HI9C	0.0526	0.5776	0.7556	0.068 (7)*
C20	-0.20530 (9)	0.91933 (18)	0.42316 (13)	0.0369 (4)
H20A	-0.2180	0.8696	0.4752	0.042 (5)*
H20B	-0.2488	0.9314	0.3657	0.047 (6)*
H20C	-0.1865	1.0006	0.4513	0.039 (5)*
C21	0.32254 (8)	-0.09519 (14)	0.46937 (11)	0.0217 (3)
C22	0.38491 (8)	-0.09235 (15)	0.65249 (11)	0.0228 (3)
H22	0.3337	-0.1030	0.6557	0.031 (4)*
C23	0.42853 (9)	-0.20722 (15)	0.69978 (12)	0.0292 (4)
H23A	0.4786	-0.2015	0.6932	0.029 (4)*
H23B	0.4053	-0.2830	0.6636	0.049 (6)*
C24	0.43184 (9)	-0.21684 (16)	0.81155 (12)	0.0333 (4)
H24A	0.3821	-0.2302	0.8174	0.041 (5)*
H24B	0.4619	-0.2897	0.8419	0.051 (6)*
C25	0.46396 (9)	-0.10010 (17)	0.86938 (12)	0.0328 (4)
H25A	0.5152	-0.0906	0.8687	0.032 (5)*
H25B	0.4636	-0.1082	0.9407	0.039 (5)*
C26	0.42077 (9)	0.01468 (17)	0.82278 (12)	0.0314 (4)
H26A	0.4446	0.0901	0.8588	0.035 (5)*
H26B	0.3710	0.0096	0.8304	0.039 (5)*
C27	0.41609 (8)	0.02515 (15)	0.71081 (11)	0.0251 (3)
H27A	0 3849	0.0972	0.6812	0.0201(0)*
H27B	0.4654	0.0407	0.7039	0.027(4)*
114/13	0.107	0.0707	0.1007	(T)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.01746 (19)	0.0296 (2)	0.01411 (19)	0.00384 (15)	0.00301 (14)	-0.00118 (14)
01	0.0158 (5)	0.0382 (7)	0.0206 (5)	0.0056 (4)	0.0038 (4)	0.0007 (4)
O2	0.0295 (6)	0.0427 (7)	0.0148 (5)	0.0065 (5)	0.0059 (4)	-0.0014 (5)
O3	0.0242 (6)	0.0330 (7)	0.0310 (6)	-0.0057 (5)	0.0048 (4)	-0.0019 (5)
O4	0.0293 (6)	0.0314 (6)	0.0161 (5)	0.0073 (5)	0.0026 (4)	-0.0029 (4)
05	0.0346 (7)	0.0451 (8)	0.0252 (6)	0.0187 (6)	-0.0080 (5)	-0.0040 (5)
O6	0.0235 (6)	0.0404 (7)	0.0238 (5)	0.0148 (5)	0.0003 (4)	0.0004 (5)
N1	0.0215 (7)	0.0252 (7)	0.0183 (6)	0.0010 (5)	0.0000 (5)	-0.0041 (5)
N2	0.0173 (6)	0.0384 (8)	0.0185 (6)	0.0005 (6)	0.0033 (5)	0.0028 (5)
N3	0.0191 (6)	0.0196 (6)	0.0169 (6)	0.0035 (5)	0.0029 (5)	0.0004 (5)
C1	0.0166 (7)	0.0237 (8)	0.0166 (7)	-0.0004 (6)	0.0054 (5)	0.0004 (6)
C2	0.0157 (7)	0.0307 (8)	0.0164 (7)	-0.0004 (6)	0.0014 (5)	0.0014 (6)
C3	0.0219 (7)	0.0284 (8)	0.0166 (7)	-0.0022 (6)	0.0045 (6)	-0.0036 (6)
C4	0.0207 (7)	0.0228 (8)	0.0229 (7)	-0.0010 (6)	0.0085 (6)	0.0005 (6)
C5	0.0190 (7)	0.0285 (9)	0.0219 (7)	0.0036 (6)	-0.0002 (6)	0.0010 (6)
C6	0.0201 (7)	0.0268 (8)	0.0182 (7)	0.0006 (6)	0.0002 (6)	-0.0019 (6)
C7	0.0242 (8)	0.0250 (8)	0.0257 (8)	0.0009 (6)	0.0078 (6)	-0.0015 (6)
C8	0.0211 (7)	0.0204 (8)	0.0216 (7)	0.0043 (6)	0.0042 (6)	0.0003 (6)
C9	0.0183 (7)	0.0198 (7)	0.0161 (7)	-0.0006 (6)	0.0032 (5)	0.0016 (6)
C10	0.0193 (7)	0.0182 (7)	0.0166 (7)	-0.0001 (6)	0.0034 (5)	0.0012 (5)
C11	0.0238 (8)	0.0219 (8)	0.0166 (7)	0.0007 (6)	0.0024 (6)	0.0002 (6)
C12	0.0242 (7)	0.0216 (8)	0.0161 (7)	0.0021 (6)	0.0009 (6)	-0.0008 (6)
C13	0.0206 (7)	0.0270 (8)	0.0185 (7)	0.0018 (6)	-0.0001 (6)	0.0003 (6)
C14	0.0208 (7)	0.0237 (8)	0.0153 (7)	0.0013 (6)	0.0031 (5)	0.0008 (6)
C15	0.0211 (7)	0.0254 (8)	0.0212 (7)	0.0060 (6)	0.0015 (6)	0.0032 (6)
C16	0.0332 (9)	0.0292 (9)	0.0261 (8)	0.0125 (7)	0.0056 (7)	-0.0037 (7)
C17	0.0347 (9)	0.0293 (9)	0.0193 (7)	0.0091 (7)	0.0018 (6)	-0.0046 (6)
C18	0.0340 (9)	0.0289 (9)	0.0375 (9)	-0.0039 (8)	-0.0057 (7)	-0.0019 (7)
C19	0.0365 (9)	0.0412 (10)	0.0205 (8)	0.0113 (8)	0.0064 (7)	0.0078 (7)
C20	0.0274 (9)	0.0439 (11)	0.0387 (10)	0.0177 (8)	0.0084 (7)	0.0050 (8)
C21	0.0221 (8)	0.0189 (7)	0.0229 (7)	0.0044 (6)	0.0045 (6)	-0.0022 (6)
C22	0.0169 (7)	0.0304 (9)	0.0207 (7)	0.0018 (6)	0.0048 (6)	0.0058 (6)
C23	0.0310 (9)	0.0233 (8)	0.0313 (8)	0.0007 (7)	0.0059 (7)	0.0023 (7)
C24	0.0335 (9)	0.0319 (9)	0.0333 (9)	0.0044 (7)	0.0074 (7)	0.0139 (7)
C25	0.0330 (9)	0.0425 (10)	0.0210 (8)	0.0055 (8)	0.0044 (6)	0.0052 (7)
C26	0.0348 (9)	0.0357 (10)	0.0246 (8)	0.0082 (8)	0.0101 (7)	0.0001 (7)
C27	0.0264 (8)	0.0242 (8)	0.0251 (8)	0.0061 (6)	0.0078 (6)	0.0040 (6)

Geometric parameters (Å, °)

<u>\$1—02</u>	1.4293 (10)	C11—C12	1.5146 (19)	
S1—O1	1.4357 (10)	C12—C13	1.517 (2)	
S1—N1	1.6413 (14)	C12—C19	1.540 (2)	
S1—C1	1.7588 (15)	C12—C18	1.541 (2)	
O3—C21	1.2234 (18)	C14—C15	1.380 (2)	

O4—C9	1.2213 (17)	C14—H14	0.9500
O5—C13	1.2184 (18)	C15—C16	1.393 (2)
O6—C15	1.3692 (17)	C16—C17	1.386 (2)
O6—C20	1.4305 (19)	С16—Н16	0.9500
N1—C21	1.4233 (19)	С17—Н17	0.9500
N1—H1N	0.856 (14)	C18—H18A	0.9800
N2—C21	1.3380 (19)	C18—H18B	0.9800
N2—C22	1.4670 (18)	C18—H18C	0.9800
N2—H2N	0.872 (14)	С19—Н19А	0.9800
N3—C13	1.3871 (18)	C19—H19B	0.9800
N3—C9	1.3968 (18)	C19—H19C	0.9800
N3—C8	1.4759 (18)	C20—H20A	0.9800
C1—C2	1.393 (2)	C20—H20B	0.9800
C1—C6	1.3935 (19)	C20—H20C	0.9800
С2—С3	1.387 (2)	C22—C27	1.522 (2)
С2—Н2	0.9500	C22—C23	1.526 (2)
C3—C4	1.393 (2)	С22—Н22	1.0000
С3—Н3	0.9500	C23—C24	1.529 (2)
C4—C5	1.396 (2)	С23—Н23А	0.9900
C4—C7	1.508 (2)	С23—Н23В	0.9900
C5—C6	1.382 (2)	C24—C25	1.517 (2)
С5—Н5	0.9500	C24—H24A	0.9900
С6—Н6	0.9500	C24—H24B	0.9900
С7—С8	1.529 (2)	C25—C26	1.519 (2)
С7—Н7А	0.9900	С25—Н25А	0.9900
С7—Н7В	0.9900	С25—Н25В	0.9900
C8—H8A	0.9900	C26—C27	1.526 (2)
C8—H8B	0.9900	C26—H26A	0.9900
C9—C10	1.476 (2)	C26—H26B	0.9900
C10—C14	1.3916 (19)	С27—Н27А	0.9900
C10—C11	1.3963 (19)	С27—Н27В	0.9900
C11—C17	1.396 (2)		
O2—S1—O1	119.79 (6)	O6—C15—C14	116.12 (13)
O2—S1—N1	105.48 (7)	O6—C15—C16	124.05 (14)
01—S1—N1	107.90 (7)	C14—C15—C16	119.82 (13)
O2—S1—C1	109.21 (7)	C17—C16—C15	119.79 (14)
O1—S1—C1	108.07 (7)	C17—C16—H16	120.1
N1-S1-C1	105.49 (7)	C15—C16—H16	120.1
C15—O6—C20	116.95 (12)	C16—C17—C11	121.52 (14)
C21—N1—S1	126.46 (10)	С16—С17—Н17	119.2
C21—N1—H1N	115.9 (13)	C11—C17—H17	119.2
S1—N1—H1N	107.8 (13)	C12-C18-H18A	109.5
C21—N2—C22	123.02 (13)	C12-C18-H18B	109.5
C21—N2—H2N	118.8 (11)	H18A—C18—H18B	109.5
C22—N2—H2N		C10 C10 H10C	100 5
	118.1 (11)	C12C18H18C	109.5
C13—N3—C9	118.1 (11) 124.75 (12)	H18A—C18—H18C	109.5 109.5

C9—N3—C8	117.60 (11)	С12—С19—Н19А	109.5
C2—C1—C6	120.89 (14)	C12—C19—H19B	109.5
C2—C1—S1	119.59 (11)	H19A—C19—H19B	109.5
C6—C1—S1	119.48 (11)	C12—C19—H19C	109.5
C3—C2—C1	119.12 (13)	H19A—C19—H19C	109.5
С3—С2—Н2	120.4	H19B—C19—H19C	109.5
C1—C2—H2	120.4	O6—C20—H20A	109.5
C2—C3—C4	120.90 (13)	O6—C20—H20B	109.5
С2—С3—Н3	119.6	H20A—C20—H20B	109.5
С4—С3—Н3	119.6	O6—C20—H20C	109.5
C3—C4—C5	118.90 (14)	H20A—C20—H20C	109.5
C3—C4—C7	120.55 (13)	H20B—C20—H20C	109.5
C5—C4—C7	120.47 (13)	O3—C21—N2	125.76 (14)
C6—C5—C4	121.11 (13)	O3—C21—N1	118.35 (13)
С6—С5—Н5	119.4	N2—C21—N1	115.88 (13)
C4—C5—H5	119.4	N2—C22—C27	109.13 (12)
C5—C6—C1	119.07 (13)	N2—C22—C23	112.08 (12)
С5—С6—Н6	120.5	C27—C22—C23	111.03 (12)
С1—С6—Н6	120.5	N2—C22—H22	108.2
C4—C7—C8	108.68 (12)	С27—С22—Н22	108.2
C4—C7—H7A	110.0	C23—C22—H22	108.2
С8—С7—Н7А	110.0	C22—C23—C24	110.18 (13)
С4—С7—Н7В	110.0	С22—С23—Н23А	109.6
С8—С7—Н7В	110.0	C24—C23—H23A	109.6
H7A—C7—H7B	108.3	С22—С23—Н23В	109.6
N3—C8—C7	112.30 (12)	C24—C23—H23B	109.6
N3—C8—H8A	109.1	H23A—C23—H23B	108.1
С7—С8—Н8А	109.1	C25—C24—C23	111.60 (13)
N3—C8—H8B	109.1	C25—C24—H24A	109.3
С7—С8—Н8В	109.1	C23—C24—H24A	109.3
H8A—C8—H8B	107.9	C25—C24—H24B	109.3
O4—C9—N3	119.59 (13)	C23—C24—H24B	109.3
O4—C9—C10	122.97 (12)	H24A—C24—H24B	108.0
N3—C9—C10	117.42 (12)	C24—C25—C26	110.91 (13)
C14—C10—C11	121.46 (13)	C24—C25—H25A	109.5
C14—C10—C9	117.34 (12)	C26—C25—H25A	109.5
C11—C10—C9	121.18 (12)	С24—С25—Н25В	109.5
C17—C11—C10	117.50 (13)	C26—C25—H25B	109.5
C17—C11—C12	120.60 (12)	H25A—C25—H25B	108.0
C10-C11-C12	121.90 (13)	C25—C26—C27	110.78 (13)
C11—C12—C13	113.74 (11)	C25—C26—H26A	109.5
C11—C12—C19	110.43 (12)	C27—C26—H26A	109.5
C13—C12—C19	106.57 (12)	C25—C26—H26B	109.5
C11—C12—C18	110.13 (13)	С27—С26—Н26В	109.5
C13—C12—C18	106.03 (13)	H26A—C26—H26B	108.1
C19—C12—C18	109.78 (13)	C22—C27—C26	112.00 (13)
O5—C13—N3	118.75 (14)	С22—С27—Н27А	109.2
O5—C13—C12	120.60 (13)	С26—С27—Н27А	109.2

N3—C13—C12	120.63 (12)	С22—С27—Н27В	109.2
C15-C14-C10	119.86 (13)	С26—С27—Н27В	109.2
C15—C14—H14	120.1	H27A—C27—H27B	107.9
C10—C14—H14	120.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···O5 ⁱ	0.86 (1)	2.03 (2)	2.8702 (17)	167 (2)
N2—H2 <i>N</i> ···O1	0.87 (1)	2.15 (2)	2.8404 (17)	136 (2)

Symmetry code: (i) x, -y+1/2, z-1/2.