metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[N′-(3-eth­­oxy-2-oxido­benzyl-κO)furan-1-carbohydrazidato-κ2N′,O]dioxido­molybdenum(VI)–4,4′-bi­pyridine (2/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 May 2011; accepted 7 May 2011; online 14 May 2011)

The MoVI atom in the title co-crystal, [Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2, is O,N,O′-chelated by the deprotonated Schiff base and coordinated by the oxide and water O atoms in an octa­hedral geometry. The five-membered chelate ring is planar (r.m.s. deviation = 0.019 Å), but the six-membered chelate ring is puckered (r.m.s. deviation = 0.108 Å). Two mononuclear mol­ecules are linked across a center of inversion by an O—Hwater⋯O hydrogen bond; adjacent dinuclear units are linked by an water–4,4′-bipyridine O—H⋯N hydrogen bond, generating a linear chain structure. The 4,4′-bipyridine mol­ecule is disordered over two positions in a 1:1 ratio.

Related literature

For a related MoVIO2–4′,4-bipyridine adduct, see: Dinda et al. (2006[Dinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375-2382.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2

  • Mr = 496.30

  • Triclinic, [P \overline 1]

  • a = 7.9237 (1) Å

  • b = 10.1869 (1) Å

  • c = 13.3215 (2) Å

  • α = 78.7841 (5)°

  • β = 78.4605 (5)°

  • γ = 69.5728 (5)°

  • V = 978.15 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.649, Tmax = 0.746

  • 9175 measured reflections

  • 4445 independent reflections

  • 4266 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.076

  • S = 0.98

  • 4445 reflections

  • 275 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N3 0.83 (1) 1.86 (1) 2.689 (3) 174 (3)
O1w—H12⋯N1i 0.84 (1) 1.97 (1) 2.794 (2) 167 (3)
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The Schiff bases that are synthesized by condensing salicylaldehyde (and its substituted analogs) with aroylhydrazides (and their substituted analogs) function as terdentate O,N,O'-chelates to a wide range of metal ions. A large number of metal derivatives have been reported; in octahedral systems, the ligand generally exists as a doubly-deprotonated species that chelates in a fac manner. A dioxomolybdenum(VI) derivative is known in which 4,4'-bipyridine binds to two metal atoms (Dinda et al., 2006). In the present study, a furan-type of Schiff base leads to a water-coordinated derivative in which 4,4'-bipyridine interacts indirectly, through the water molecule, in an outer-sphere coordination mode. The MoVI atom in the co-crystal, MoO2(H2O)(C14H12N2O4).0.5C10H10N2, is O,N,O'-chelated by the deprotonated Schiff base and coordinated by the oxo and water O atoms in an octahedral geometry (Scheme I, Fig. 1). The five-membed chelate ring is planar [r.m.s. deviation 0.019 Å] but the six-membered chelate ring is puckered [r.m.s. deviation 0.108 Å]. Two mononuclear molecules are linked across a center-of-inversion by an O–Hwater···O hydrogen bond; adjacent dinuclear units are linked by an O–Hwater···N4,4'-bipyridine hydrogen bond to generate a linear chain structure (Table 1). The 4,4'-bipyridine molecule is disordered over two positions in a 1:1 ratio.

Related literature top

For a related MoVIO2–4',4-bipyridine adduct, see: Dinda et al. (2006).

Experimental top

3-Ethoxysalicylaldehyde (0.166 g, 1 mmol) and 2-furoylhydrazide (0.120 g, 1 mmol) were condensed in methanol (100 ml). The solution was heated to give a yellow coloration. The cool solution yielded the desired Schiff base as a yellow compound. The ligand (0.270 g, 1 mmol) and di(acetylacetonato)dioxomolybdenum(VI) (0.328 g, 1 mmol) were dissolved in heated in methanol for an hour. To the orange solution was added 4,4'-bipyridine (0.08 g, 0.5 mmol); heating was continued for another hour. The solution was filtered and set aside for the growth of crystals, m.p. 495–497 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 times Ueq(C).

The water H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.84±0.01 and H···H 1.37±0.01 Å; their temperature factors were refined.

The 4,4'-bipyridine molecule is disordered about a center-of-inversion. The pyridyl ring was refined as two rings that shared common N and and Cpara atoms. As the occupancy refined to nearly 1/2, the occupancy was then fixed as 0.5. Carbon–nitrogen distances were restrained to 1.35±0.01 Å and carbon–carbon distances to 1.39±0.01 Å. The six atoms of each ring were restrained to lie on a plane. Attempts to refined the disordered atoms anisotropically led to non-positive definites; the eight disordered atoms were then refined only isotropically.

Omitted from the refinement owing to bad disagreement were these reflections: (0 0 1), (-6 - 6 2), (4 - 5 4) and (3 9 7).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of MoO2(H2O)(C14H12N2O4).0.5C10H10N2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the 4,4'-bipyridine molecule is not shown.
Aqua[N'-(3-ethoxy-2-oxidobenzyl-κO)furan-1-carbohydrazidato- κ2N',O]dioxidomolybdenum(VI)–4,4'-bipyridine (2/1) top
Crystal data top
[Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2Z = 2
Mr = 496.30F(000) = 502
Triclinic, P1Dx = 1.685 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9237 (1) ÅCell parameters from 8273 reflections
b = 10.1869 (1) Åθ = 2.5–28.2°
c = 13.3215 (2) ŵ = 0.72 mm1
α = 78.7841 (5)°T = 100 K
β = 78.4605 (5)°Block, orange
γ = 69.5728 (5)°0.2 × 0.2 × 0.2 mm
V = 978.15 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
4445 independent reflections
Radiation source: fine-focus sealed tube4266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.649, Tmax = 0.746k = 1313
9175 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.0897P]
where P = (Fo2 + 2Fc2)/3
4445 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.73 e Å3
24 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2γ = 69.5728 (5)°
Mr = 496.30V = 978.15 (2) Å3
Triclinic, P1Z = 2
a = 7.9237 (1) ÅMo Kα radiation
b = 10.1869 (1) ŵ = 0.72 mm1
c = 13.3215 (2) ÅT = 100 K
α = 78.7841 (5)°0.2 × 0.2 × 0.2 mm
β = 78.4605 (5)°
Data collection top
Bruker SMART APEX
diffractometer
4445 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4266 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.746Rint = 0.019
9175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02624 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.73 e Å3
4445 reflectionsΔρmin = 0.72 e Å3
275 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.74598 (2)0.304217 (17)0.170071 (12)0.01695 (7)
O11.1355 (2)0.30269 (16)0.20486 (13)0.0246 (3)
O20.9252 (2)0.21432 (15)0.05147 (12)0.0195 (3)
O30.6036 (2)0.46573 (17)0.23935 (12)0.0218 (3)
O40.3337 (2)0.5786 (2)0.37565 (13)0.0304 (4)
O50.8232 (2)0.17630 (17)0.26946 (12)0.0224 (3)
O60.5697 (2)0.26804 (17)0.13977 (12)0.0223 (3)
O1W0.9855 (2)0.36664 (17)0.18299 (12)0.0210 (3)
H111.047 (3)0.327 (3)0.2310 (16)0.028 (8)*
H121.017 (4)0.435 (2)0.150 (2)0.043 (9)*
N10.8802 (2)0.43227 (18)0.05053 (13)0.0173 (3)
N20.7547 (2)0.47579 (18)0.03625 (13)0.0163 (3)
N31.1836 (3)0.2227 (2)0.33511 (17)0.0305 (5)
C11.2652 (3)0.2079 (3)0.26360 (19)0.0270 (5)
H11.32240.23250.33100.032*
C21.3007 (3)0.0757 (3)0.2131 (2)0.0275 (5)
H21.38470.00800.23770.033*
C31.1882 (3)0.0854 (2)0.11569 (18)0.0229 (4)
H31.18180.00990.06220.027*
C41.0916 (3)0.2245 (2)0.11444 (16)0.0193 (4)
C50.9575 (3)0.2954 (2)0.03452 (16)0.0176 (4)
C60.6621 (3)0.6087 (2)0.02969 (16)0.0179 (4)
H60.68730.66880.03140.022*
C70.5219 (3)0.6710 (2)0.11060 (16)0.0197 (4)
C80.4088 (3)0.8115 (2)0.08794 (18)0.0240 (4)
H80.43120.86400.02240.029*
C90.2662 (3)0.8737 (3)0.1600 (2)0.0297 (5)
H90.19000.96800.14360.036*
C100.2339 (3)0.7978 (3)0.25712 (19)0.0304 (5)
H100.13340.83980.30590.036*
C110.3482 (3)0.6612 (3)0.28256 (18)0.0252 (5)
C120.4943 (3)0.5964 (2)0.20924 (16)0.0207 (4)
C130.1903 (3)0.6364 (3)0.45495 (19)0.0340 (6)
H13A0.07040.66160.43180.041*
H13B0.20280.72250.47220.041*
C140.2070 (4)0.5235 (4)0.5478 (2)0.0386 (6)
H14A0.11010.55800.60410.058*
H14B0.32570.50050.57030.058*
H14C0.19600.43850.52930.058*
C151.2028 (5)0.0903 (4)0.3618 (3)0.0214 (8)*0.50
H151.12410.05430.33840.026*0.50
C161.3288 (5)0.0028 (4)0.4216 (3)0.0206 (8)*0.50
H161.34330.10090.43250.025*0.50
C15'1.1327 (6)0.1138 (4)0.4102 (3)0.0199 (8)*0.50
H15'1.01850.10150.41240.024*0.50
C16'1.2513 (5)0.0266 (4)0.4794 (3)0.0208 (8)*0.50
H16'1.21820.04130.53200.025*0.50
C171.4335 (4)0.0471 (2)0.4655 (2)0.0340 (6)
C181.4347 (8)0.1850 (6)0.4256 (5)0.0223 (19)*0.50
H181.52290.21900.44090.027*0.50
C191.3061 (8)0.2709 (7)0.3637 (4)0.0284 (19)*0.50
H191.30250.36600.34030.034*0.50
C18'1.4505 (8)0.1689 (6)0.4113 (5)0.0148 (14)*0.50
H18'1.54990.19770.41660.018*0.50
C19'1.3228 (6)0.2528 (5)0.3477 (4)0.0116 (11)*0.50
H19'1.33890.33830.31090.014*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01730 (11)0.01891 (11)0.01575 (11)0.00872 (7)0.00505 (7)0.00321 (7)
O10.0285 (8)0.0188 (7)0.0251 (8)0.0096 (6)0.0024 (6)0.0023 (6)
O20.0230 (7)0.0158 (7)0.0197 (7)0.0081 (6)0.0036 (6)0.0017 (5)
O30.0227 (7)0.0251 (8)0.0170 (7)0.0075 (6)0.0037 (6)0.0008 (6)
O40.0255 (8)0.0428 (10)0.0201 (8)0.0114 (8)0.0031 (6)0.0039 (7)
O50.0226 (7)0.0246 (8)0.0220 (7)0.0124 (6)0.0085 (6)0.0068 (6)
O60.0212 (7)0.0279 (8)0.0204 (7)0.0117 (6)0.0057 (6)0.0007 (6)
O1W0.0224 (8)0.0227 (8)0.0212 (7)0.0133 (6)0.0097 (6)0.0074 (6)
N10.0178 (8)0.0179 (8)0.0163 (8)0.0066 (7)0.0023 (6)0.0013 (6)
N20.0162 (8)0.0193 (8)0.0140 (8)0.0062 (7)0.0041 (6)0.0011 (6)
N30.0383 (12)0.0186 (9)0.0381 (12)0.0039 (8)0.0241 (9)0.0027 (8)
C10.0269 (11)0.0288 (11)0.0255 (11)0.0111 (9)0.0035 (9)0.0081 (9)
C20.0260 (11)0.0220 (11)0.0355 (13)0.0066 (9)0.0012 (9)0.0116 (9)
C30.0216 (10)0.0179 (10)0.0285 (11)0.0063 (8)0.0049 (8)0.0006 (8)
C40.0196 (9)0.0186 (10)0.0217 (10)0.0087 (8)0.0045 (8)0.0010 (8)
C50.0177 (9)0.0182 (9)0.0192 (9)0.0082 (8)0.0062 (7)0.0002 (7)
C60.0191 (9)0.0193 (9)0.0165 (9)0.0071 (8)0.0065 (7)0.0006 (7)
C70.0183 (9)0.0222 (10)0.0198 (10)0.0054 (8)0.0063 (8)0.0046 (8)
C80.0235 (11)0.0244 (11)0.0223 (10)0.0030 (9)0.0078 (8)0.0036 (8)
C90.0230 (11)0.0308 (12)0.0308 (12)0.0022 (9)0.0088 (9)0.0091 (10)
C100.0195 (10)0.0425 (14)0.0272 (12)0.0035 (10)0.0025 (9)0.0133 (10)
C110.0204 (10)0.0371 (13)0.0209 (10)0.0115 (9)0.0031 (8)0.0061 (9)
C120.0185 (10)0.0252 (10)0.0203 (10)0.0077 (8)0.0053 (8)0.0039 (8)
C130.0256 (12)0.0534 (16)0.0240 (11)0.0151 (11)0.0054 (9)0.0122 (11)
C140.0331 (14)0.0623 (19)0.0219 (12)0.0197 (13)0.0026 (10)0.0080 (12)
C170.0435 (15)0.0168 (10)0.0499 (16)0.0094 (10)0.0341 (13)0.0040 (10)
Geometric parameters (Å, º) top
Mo1—O61.7007 (15)C7—C81.410 (3)
Mo1—O51.7093 (15)C8—C91.379 (3)
Mo1—O31.9262 (16)C8—H80.9500
Mo1—O22.0270 (15)C9—C101.398 (4)
Mo1—O1W2.2479 (15)C9—H90.9500
Mo1—N22.2495 (17)C10—C111.389 (4)
O1—C41.364 (3)C10—H100.9500
O1—C11.371 (3)C11—C121.413 (3)
O2—C51.313 (2)C13—C141.509 (4)
O3—C121.345 (3)C13—H13A0.9900
O4—C111.365 (3)C13—H13B0.9900
O4—C131.431 (3)C14—H14A0.9800
O1W—H110.833 (10)C14—H14B0.9800
O1W—H120.837 (11)C14—H14C0.9800
N1—C51.305 (3)C15—C161.377 (5)
N1—N21.398 (2)C15—H150.9500
N2—C61.291 (3)C16—C171.376 (4)
N3—C151.288 (4)C16—H160.9500
N3—C19'1.291 (5)C15'—C16'1.403 (5)
N3—C191.371 (6)C15'—H15'0.9500
N3—C15'1.454 (4)C16'—C171.500 (5)
C1—C21.344 (4)C16'—H16'0.9500
C1—H10.9500C17—C18'1.345 (5)
C2—C31.419 (3)C17—C181.405 (6)
C2—H20.9500C17—C17i1.487 (4)
C3—C41.356 (3)C18—C191.386 (7)
C3—H30.9500C18—H180.9500
C4—C51.448 (3)C19—H190.9500
C6—C71.447 (3)C18'—C19'1.389 (6)
C6—H60.9500C18'—H18'0.9500
C7—C121.402 (3)C19'—H19'0.9500
O6—Mo1—O5105.24 (7)C8—C9—H9120.0
O6—Mo1—O397.40 (7)C10—C9—H9120.0
O5—Mo1—O3103.06 (7)C11—C10—C9120.2 (2)
O6—Mo1—O293.86 (7)C11—C10—H10119.9
O5—Mo1—O298.70 (7)C9—C10—H10119.9
O3—Mo1—O2151.84 (6)O4—C11—C10125.6 (2)
O6—Mo1—O1W170.71 (7)O4—C11—C12114.2 (2)
O5—Mo1—O1W82.87 (6)C10—C11—C12120.2 (2)
O3—Mo1—O1W84.91 (6)O3—C12—C7123.18 (19)
O2—Mo1—O1W80.25 (6)O3—C12—C11117.5 (2)
O6—Mo1—N295.98 (7)C7—C12—C11119.3 (2)
O5—Mo1—N2157.48 (7)O4—C13—C14106.5 (2)
O3—Mo1—N281.20 (6)O4—C13—H13A110.4
O2—Mo1—N271.99 (6)C14—C13—H13A110.4
O1W—Mo1—N275.43 (6)O4—C13—H13B110.4
C4—O1—C1105.58 (18)C14—C13—H13B110.4
C5—O2—Mo1118.96 (13)H13A—C13—H13B108.6
C12—O3—Mo1134.52 (14)C13—C14—H14A109.5
C11—O4—C13118.0 (2)C13—C14—H14B109.5
Mo1—O1W—H11120.4 (18)H14A—C14—H14B109.5
Mo1—O1W—H12128.8 (19)C13—C14—H14C109.5
H11—O1W—H12110.1 (17)H14A—C14—H14C109.5
C5—N1—N2109.13 (17)H14B—C14—H14C109.5
C6—N2—N1115.97 (17)N3—C15—C16124.9 (4)
C6—N2—Mo1128.78 (14)N3—C15—H15117.5
N1—N2—Mo1115.24 (12)C16—C15—H15117.5
C15—N3—C19116.8 (4)C17—C16—C15119.5 (4)
C19'—N3—C15'117.2 (3)C17—C16—H16120.2
C2—C1—O1110.9 (2)C15—C16—H16120.2
C2—C1—H1124.5C16'—C15'—N3120.4 (4)
O1—C1—H1124.5C16'—C15'—H15'119.8
C1—C2—C3106.6 (2)N3—C15'—H15'119.8
C1—C2—H2126.7C15'—C16'—C17116.0 (3)
C3—C2—H2126.7C15'—C16'—H16'122.0
C4—C3—C2106.1 (2)C17—C16'—H16'122.0
C4—C3—H3126.9C16—C17—C18115.8 (3)
C2—C3—H3126.9C18'—C17—C17i122.4 (3)
C3—C4—O1110.83 (19)C16—C17—C17i122.2 (3)
C3—C4—C5130.1 (2)C18—C17—C17i120.9 (3)
O1—C4—C5119.02 (18)C18'—C17—C16'117.6 (3)
N1—C5—O2124.54 (19)C17i—C17—C16'117.9 (3)
N1—C5—C4119.62 (19)C19—C18—C17119.3 (5)
O2—C5—C4115.83 (18)C19—C18—H18120.4
N2—C6—C7123.35 (19)C17—C18—H18120.4
N2—C6—H6118.3N3—C19—C18121.9 (6)
C7—C6—H6118.3N3—C19—H19119.1
C12—C7—C8119.5 (2)C18—C19—H19119.1
C12—C7—C6122.4 (2)C17—C18'—C19'120.1 (4)
C8—C7—C6118.11 (19)C17—C18'—H18'119.9
C9—C8—C7120.7 (2)C19'—C18'—H18'119.9
C9—C8—H8119.7N3—C19'—C18'124.6 (4)
C7—C8—H8119.7N3—C19'—H19'117.7
C8—C9—C10120.0 (2)C18'—C19'—H19'117.7
O6—Mo1—O2—C597.28 (15)C13—O4—C11—C12179.4 (2)
O5—Mo1—O2—C5156.65 (15)C9—C10—C11—O4177.9 (2)
O3—Mo1—O2—C516.3 (2)C9—C10—C11—C122.1 (4)
O1W—Mo1—O2—C575.49 (14)Mo1—O3—C12—C732.0 (3)
N2—Mo1—O2—C52.25 (14)Mo1—O3—C12—C11149.69 (17)
O6—Mo1—O3—C1266.0 (2)C8—C7—C12—O3175.3 (2)
O5—Mo1—O3—C12173.64 (19)C6—C7—C12—O35.3 (3)
O2—Mo1—O3—C1246.7 (3)C8—C7—C12—C113.0 (3)
O1W—Mo1—O3—C12104.91 (19)C6—C7—C12—C11176.4 (2)
N2—Mo1—O3—C1228.90 (19)O4—C11—C12—O32.0 (3)
C5—N1—N2—C6177.34 (18)C10—C11—C12—O3178.0 (2)
C5—N1—N2—Mo13.9 (2)O4—C11—C12—C7179.61 (19)
O6—Mo1—N2—C685.90 (18)C10—C11—C12—C70.3 (3)
O5—Mo1—N2—C6113.6 (2)C11—O4—C13—C14180.0 (2)
O3—Mo1—N2—C610.70 (18)C19'—N3—C15—C1616.4 (3)
O2—Mo1—N2—C6178.02 (19)C19—N3—C15—C164.2 (3)
O1W—Mo1—N2—C697.69 (18)C15'—N3—C15—C1689.7 (5)
O6—Mo1—N2—N195.50 (14)N3—C15—C16—C176.3 (3)
O5—Mo1—N2—N165.0 (2)C15—N3—C15'—C16'76.3 (5)
O3—Mo1—N2—N1167.90 (14)C19'—N3—C15'—C16'12.7 (5)
O2—Mo1—N2—N13.38 (12)C19—N3—C15'—C16'25.7 (5)
O1W—Mo1—N2—N180.91 (13)N3—C15'—C16'—C174.0 (5)
C4—O1—C1—C20.5 (3)C15—C16—C17—C18'25.2 (4)
O1—C1—C2—C30.4 (3)C15—C16—C17—C1814.9 (4)
C1—C2—C3—C40.1 (3)C15—C16—C17—C17i177.4 (3)
C2—C3—C4—O10.2 (3)C15—C16—C17—C16'82.9 (4)
C2—C3—C4—C5179.5 (2)C15'—C16'—C17—C18'18.8 (6)
C1—O1—C4—C30.4 (2)C15'—C16'—C17—C1670.2 (4)
C1—O1—C4—C5179.28 (19)C15'—C16'—C17—C1830.1 (5)
N2—N1—C5—O22.2 (3)C15'—C16'—C17—C17i177.6 (3)
N2—N1—C5—C4179.02 (17)C18'—C17—C18—C1980 (2)
Mo1—O2—C5—N10.9 (3)C16—C17—C18—C1913.7 (6)
Mo1—O2—C5—C4177.96 (13)C17i—C17—C18—C19178.5 (5)
C3—C4—C5—N1179.8 (2)C16'—C17—C18—C1927.0 (6)
O1—C4—C5—N10.6 (3)C15—N3—C19—C185.3 (6)
C3—C4—C5—O21.3 (3)C19'—N3—C19—C1876 (2)
O1—C4—C5—O2178.33 (18)C15'—N3—C19—C1830.5 (6)
N1—N2—C6—C7177.65 (18)C17—C18—C19—N33.8 (7)
Mo1—N2—C6—C73.8 (3)C16—C17—C18'—C19'22.4 (7)
N2—C6—C7—C1210.2 (3)C18—C17—C18'—C19'95 (2)
N2—C6—C7—C8169.2 (2)C17i—C17—C18'—C19'179.8 (5)
C12—C7—C8—C93.2 (3)C16'—C17—C18'—C19'17.4 (7)
C6—C7—C8—C9176.2 (2)C15—N3—C19'—C18'19.5 (7)
C7—C8—C9—C100.8 (4)C19—N3—C19'—C18'95 (2)
C8—C9—C10—C111.9 (4)C15'—N3—C19'—C18'15.7 (7)
C13—O4—C11—C100.6 (3)C17—C18'—C19'—N30.3 (9)
Symmetry code: (i) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N30.83 (1)1.86 (1)2.689 (3)174 (3)
O1w—H12···N1ii0.84 (1)1.97 (1)2.794 (2)167 (3)
Symmetry code: (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mo(C14H12N2O4)O2(H2O)]·0.5C10H8N2
Mr496.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9237 (1), 10.1869 (1), 13.3215 (2)
α, β, γ (°)78.7841 (5), 78.4605 (5), 69.5728 (5)
V3)978.15 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.649, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
9175, 4445, 4266
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.076, 0.98
No. of reflections4445
No. of parameters275
No. of restraints24
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.72

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N30.83 (1)1.86 (1)2.689 (3)174 (3)
O1w—H12···N1i0.84 (1)1.97 (1)2.794 (2)167 (3)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

We thank the University of Malaya (grant No. RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Ghosh, S., Falvello, L. R., Tomas, M. & Mak, T. C. W. (2006). Polyhedron, 25, 2375–2382.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds