

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dibenzyl-N,N'-dimethyl-N"-(methylsulfonyl)phosphoric triamide

Mehrdad Pourayoubi,^a* Sepideh Sadeghi Seraji,^a Giuseppe Bruno^b and Hadi Amiri Rudbari^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDipartimento di Chimica Inorganica, Vill, S. Agata, Salita Sperone 31. Università di Messina, 98166 Messina, Italy Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 23 March 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.032; wR factor = 0.094; data-to-parameter ratio = 18.4.

In the title compound, $C_{17}H_{24}N_3O_3PS$, the P and the S atoms are each in a distorted tetrahedral environment and the N atoms display sp^2 character. The phosphoryl group and the NH unit are anti with respect to one another. The dihedral angle between the mean planes of the benzene rings is 31.08 (8)°. The crystal packing is stabilized by $N-H\cdots O$ hydrogen bonds, forming an extended chain parallel to the b axis.

Related literature

For phosphoramidates having a $P(O)[N(CH_3)(CH_2C_6H_5)]_2$ moiety, see: Pourayoubi et al. (2010); Gholivand et al. (2005). For bond lengths in a sulfonamide compound, see: Ibrahim et al. (2011) and references cited therein.

H₃C CH2 H₂C CH₃

Experimental

Crystal data C17H24N3O3PS

 $M_r = 381.42$

Orthorhombic, $P2_12_12_1$ a = 8.5343 (4) Å b = 10.1800 (5) Å c = 22.0455 (10) Å V = 1915.29 (16) Å³

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.700, T_{\max} = 0.746$

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.032 \\ wR(F^2) = 0.094 \end{array}$ S = 1.084155 reflections 226 parameters H-atom parameters constrained

organic compounds

Z = 4Mo $K\alpha$ radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 296 K $0.47 \times 0.38 \times 0.30 \text{ mm}$

65627 measured reflections 4155 independent reflections 3937 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.060$

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1769 Friedel pairs Flack parameter: 0.02 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N3-H···O1 ⁱ	0.86	1.91	2.7152 (19)	155
Symmetry code: (i	$-r v \pm \frac{1}{2} - 7$	L 1		

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2084).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gholivand, K., Pourayoubi, M., Shariatinia, Z. & Mostaanzadeh, H. (2005). Polyhedron, 24, 655-662.
- Ibrahim, S., Tahir, M. N., Iqbal, N., Shahwar, D. & Raza, M. A. (2011). Acta Crvst. E67. 0298
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o2524.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o1285 [doi:10.1107/S1600536811015832]

N,*N*'-Dibenzyl-*N*,*N*'-dimethyl-*N*''-(methylsulfonyl)phosphoric triamide

Mehrdad Pourayoubi, Sepideh Sadeghi Seraji, Giuseppe Bruno and Hadi Amiri Rudbari

S1. Comment

Structure determination of the title compound, $CH_3S(O)_2NHP(O)[N(CH_3)(CH_2C_6H_5)]_2$ (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of new phosphoramidate compounds having a $P(O)[N(CH_3)(CH_2C_6H_5)]_2$ moiety (Pourayoubi *et al.*, 2010).

The P=O and P—N bond lengths are comparable to those in similar phosphoramidates of the formula $XP(O)[N(CH_3) (CH_2C_6H_5)]_2$ [where $X = Cl, C_6H_5C(O)NH, CCl_3C(O)NH$] (Gholivand *et al.*, 2005). The P—N1 and P—N2 bonds (with bond lengths of 1.6326 (17) Å and 1.6285 (18) Å) are shorter than the P—N3 bond (1.6714 (15) Å). The S=O bond lengths of 1.4317 (16) Å & 1.4287 (18) Å are standard for sulfonamide compounds (Ibrahim *et al.*, 2011).

Each of the phosphorus and sulfur atoms has a distorted tetrahedral configuration. The surrounding bond angles are in the range of 104.84 (9)° to 117.02 (9)° around the P atom and 104.79 (12)° to 118.53 (12)° for the S atom. The average of surrounding angles around the tertiary nitrogen atom N2 (which is about 120°) shows that it is bonded in an essentially planar geometry; whereas, the environment of N1 is slightly deviated from planarity (average of bond angles is 118.3°). Furthermore, the S—N3—P angle is 125.05 (9)°. The dihedral angle between the mean planes of the benzene rings is $31.08 (8)^\circ$.

The phosphoryl group and the NH unit adopt the *anti* orientations with respect to each other. Crystal packing is stabilized by N—H···O hydrogen bonds, forming an extended chain parallel to the *b* axis (Fig. 2).

S2. Experimental

 $CH_3S(O)_2NHP(O)Cl_2$ was synthesized from the reaction between phosphorus pentachloride (16.7 mmol) and methanesulfonamide (16.7 mmol) in dry CCl_4 at 353 K (3 h) and then treated with formic acid 85% (16.7 mmol) at ice bath temperature.

To a solution of $CH_3S(O)_2NHP(O)Cl_2$ (2.35 mmol) in dry chloroform (30 ml), a solution of *N*-methylbenzylamine (9.40 mmol) in the same solvent (10 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from $CH_3CN/CHCl_3$ at room temperature.

S3. Refinement

H atoms were placed in calculated positions and included in the refinement in a riding-model approximation with CH = 0.93, CH₂ = 0.97, CH₃ = 0.96 Å or N—H = 0.86 Å with U_{iso} (H) parameters equal to $1.5U_{eq}$ (C) for methyl H atoms and $1.2U_{eq}$ (C,N) for other H atoms.

Figure 1

An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.

Figure 2

Partial packing view showing the formation of the chain through N-H-O hydrogen bonds which are shown as dotted lines. H atoms not involved in hydrogen bondings have been omitted for the sake of clarity. [Symmetry code: (i) -x, y + 1/2, -z + 1/2]

N,N'-Dibenzyl-N,N'-dimethyl- N''-(methylsulfonyl)phosphoric triamide

Crystal data	
$C_{17}H_{24}N_3O_3PS$	F(000) = 808
$M_r = 381.42$	$D_{\rm x} = 1.323 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9705 reflections
a = 8.5343 (4) Å	$\theta = 2.6 - 29.5^{\circ}$
b = 10.1800 (5) Å	$\mu=0.27~\mathrm{mm}^{-1}$
c = 22.0455 (10) Å	T = 296 K
V = 1915.29 (16) Å ³	Irregular, colourless
<i>Z</i> = 4	$0.47 \times 0.38 \times 0.30 \text{ mm}$
Data collection	
Bruker APEXII CCD	65627 measured reflections
diffractometer	4155 independent reflections
Radiation source: fine-focus sealed tube	3937 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.060$
φ and ω scans	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2004)	$k = -13 \rightarrow 13$
$T_{\min} = 0.700, \ T_{\max} = 0.746$	$l = -28 \rightarrow 28$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2 + 0.4498P]$
S = 1.08	where $P = (F_0^2 + 2F_c^2)/3$
4155 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
226 parameters	$\Delta ho_{ m max} = 0.30 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1769 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.02 (7)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{\rm iso}^*/U_{\rm eq}$
S	-0.14987 (6)	0.66473 (5)	0.33606 (2)	0.03622 (13)
Р	0.01450 (6)	0.58351 (4)	0.22593 (2)	0.02755 (11)
O2	-0.1835 (2)	0.78944 (16)	0.36311 (8)	0.0531 (5)
O3	-0.2779 (2)	0.58363 (18)	0.31763 (9)	0.0548 (4)
01	0.0074 (2)	0.45080 (12)	0.25313 (7)	0.0376 (3)
N2	-0.1005 (2)	0.61222 (17)	0.16850 (8)	0.0374 (4)
N1	0.19197 (19)	0.61606 (16)	0.20271 (8)	0.0357 (4)
C16	-0.2309 (3)	0.7047 (3)	0.16690 (14)	0.0598 (7)
H16A	-0.2367	0.7506	0.2049	0.090*
H16B	-0.3268	0.6577	0.1601	0.090*
H16C	-0.2149	0.7666	0.1346	0.090*
C11	-0.4106 (4)	0.2282 (3)	0.07992 (17)	0.0756 (10)
H11	-0.4817	0.1609	0.0724	0.091*
C10	-0.3104 (4)	0.2678 (3)	0.03513 (15)	0.0733 (9)
H10	-0.3123	0.2269	-0.0026	0.088*
C9	-0.2056 (3)	0.3697 (3)	0.04626 (12)	0.0551 (6)
Н9	-0.1402	0.3989	0.0154	0.066*
C14	-0.1979 (2)	0.4282 (2)	0.10302 (9)	0.0377 (4)
C15	-0.0776 (3)	0.5341 (2)	0.11360 (10)	0.0420 (5)
H15A	0.0251	0.4935	0.1155	0.050*
H15B	-0.0780	0.5928	0.0789	0.050*
C7	0.2255 (3)	0.7384 (2)	0.17023 (13)	0.0479 (6)
H7A	0.2714	0.8007	0.1984	0.058*

H7B	0.1277	0.7753	0.1558	0.058*
C6	0.3355 (2)	0.7211 (2)	0.11683 (10)	0.0370 (4)
C1	0.4198 (3)	0.8292 (2)	0.09625 (11)	0.0451 (5)
H1	0.4106	0.9094	0.1161	0.054*
C2	0.5174 (3)	0.8180 (3)	0.04622 (12)	0.0553 (6)
H2	0.5729	0.8907	0.0324	0.066*
C3	0.5322 (3)	0.6990 (3)	0.01694 (11)	0.0621 (7)
H3	0.5980	0.6912	-0.0165	0.074*
N3	-0.0373 (2)	0.69410 (14)	0.27825 (7)	0.0313 (3)
Н	-0.0016	0.7726	0.2742	0.038*
C17	-0.0341 (4)	0.5731 (3)	0.38565 (11)	0.0583 (7)
H17A	0.0536	0.6251	0.3986	0.087*
H17B	0.0031	0.4958	0.3653	0.087*
H17C	-0.0952	0.5480	0.4203	0.087*
C8	0.3248 (3)	0.5572 (3)	0.23501 (12)	0.0588 (7)
H8A	0.2915	0.4778	0.2546	0.088*
H8B	0.3631	0.6179	0.2649	0.088*
H8C	0.4069	0.5375	0.2067	0.088*
C5	0.3510 (3)	0.6022 (2)	0.08697 (10)	0.0448 (5)
Н5	0.2952	0.5292	0.1002	0.054*
C4	0.4499 (3)	0.5922 (3)	0.03725 (11)	0.0578 (6)
H4	0.4604	0.5120	0.0175	0.069*
C13	-0.2991 (3)	0.3855 (2)	0.14752 (11)	0.0478 (5)
H13	-0.2951	0.4233	0.1859	0.057*
C12	-0.4069 (3)	0.2868 (3)	0.13576 (15)	0.0633 (8)
H12	-0.4766	0.2604	0.1658	0.076*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S	0.0438 (3)	0.0249 (2)	0.0400 (2)	-0.0002 (2)	0.0118 (2)	0.00027 (19)
Р	0.0334 (2)	0.01673 (19)	0.0325 (2)	-0.00014 (17)	0.00382 (18)	-0.00090 (16)
O2	0.0683 (12)	0.0342 (8)	0.0568 (9)	0.0053 (8)	0.0255 (9)	-0.0081 (7)
O3	0.0429 (8)	0.0435 (9)	0.0780 (12)	-0.0137 (8)	0.0150 (8)	-0.0002 (8)
O1	0.0544 (8)	0.0169 (6)	0.0414 (7)	-0.0007 (6)	0.0042 (7)	-0.0001 (5)
N2	0.0398 (9)	0.0332 (9)	0.0393 (8)	0.0046 (7)	-0.0017 (7)	-0.0013 (7)
N1	0.0336 (8)	0.0301 (8)	0.0433 (9)	0.0012 (7)	0.0082 (7)	-0.0015 (7)
C16	0.0598 (15)	0.0479 (13)	0.0715 (17)	0.0193 (12)	-0.0217 (14)	-0.0054 (13)
C11	0.083 (2)	0.0558 (17)	0.088 (2)	-0.0198 (16)	-0.0378 (19)	0.0022 (16)
C10	0.092 (2)	0.0602 (17)	0.0673 (18)	0.0035 (17)	-0.0323 (18)	-0.0242 (15)
C9	0.0606 (15)	0.0588 (15)	0.0460 (12)	0.0044 (12)	-0.0048 (11)	-0.0095 (11)
C14	0.0360 (10)	0.0378 (10)	0.0394 (10)	0.0035 (9)	-0.0055 (8)	-0.0014 (8)
C15	0.0426 (11)	0.0498 (12)	0.0335 (10)	-0.0064 (10)	0.0038 (9)	-0.0025 (9)
C7	0.0481 (12)	0.0276 (10)	0.0681 (15)	-0.0014 (9)	0.0255 (12)	-0.0040 (10)
C6	0.0321 (10)	0.0344 (10)	0.0445 (11)	0.0045 (8)	0.0053 (9)	0.0037 (8)
C1	0.0411 (11)	0.0380 (11)	0.0562 (13)	0.0045 (10)	0.0081 (10)	0.0102 (10)
C2	0.0521 (13)	0.0568 (14)	0.0572 (14)	0.0027 (12)	0.0138 (12)	0.0231 (12)
C3	0.0648 (17)	0.0809 (19)	0.0404 (12)	0.0116 (15)	0.0189 (12)	0.0099 (13)

supporting information

N12	0.0405 (9)	0.0157(0)	0.027(0)	0.0010 (()	0.0002 (7)	0.0012 (()
N3	0.0405 (8)	0.0157(6)	0.0376(8)	-0.0018 (6)	0.0083(7)	-0.0012 (6)
C17	0.090 (2)	0.0473 (13)	0.0379 (11)	0.0056 (14)	-0.0010 (12)	0.0081 (10)
C8	0.0402 (12)	0.0805 (19)	0.0558 (14)	0.0078 (13)	-0.0026 (11)	-0.0025 (13)
C5	0.0418 (11)	0.0420 (12)	0.0505 (12)	0.0027 (10)	0.0077 (10)	-0.0021 (9)
C4	0.0680 (16)	0.0596 (16)	0.0456 (12)	0.0113 (13)	0.0119 (11)	-0.0092 (12)
C13	0.0491 (12)	0.0486 (13)	0.0456 (12)	-0.0100 (10)	-0.0059 (9)	0.0022 (10)
C12	0.0523 (15)	0.0623 (17)	0.0751 (18)	-0.0195 (13)	-0.0145 (13)	0.0149 (14)

Geometric parameters (Å, °)

<u> </u>	1.4287 (18)	C15—H15B	0.9700
S	1.4317 (16)	C7—C6	1.516 (3)
S—N3	1.6236 (16)	С7—Н7А	0.9700
SC17	1.744 (3)	С7—Н7В	0.9700
P01	1.4794 (13)	C6—C5	1.384 (3)
P—N2	1.6285 (18)	C6—C1	1.390 (3)
P—N1	1.6326 (17)	C1—C2	1.387 (3)
P—N3	1.6714 (15)	C1—H1	0.9300
N2	1.458 (3)	C2—C3	1.378 (4)
N2—C15	1.461 (3)	С2—Н2	0.9300
N1—C7	1.465 (3)	C3—C4	1.369 (4)
N1—C8	1.467 (3)	С3—Н3	0.9300
C16—H16A	0.9600	N3—H	0.8600
C16—H16B	0.9600	C17—H17A	0.9600
C16—H16C	0.9600	C17—H17B	0.9600
C11—C12	1.368 (5)	C17—H17C	0.9600
C11—C10	1.367 (5)	C8—H8A	0.9600
C11—H11	0.9300	C8—H8B	0.9600
C10—C9	1.392 (4)	C8—H8C	0.9600
C10—H10	0.9300	C5—C4	1.387 (3)
C9—C14	1.387 (3)	С5—Н5	0.9300
С9—Н9	0.9300	C4—H4	0.9300
C14—C13	1.378 (3)	C13—C12	1.387 (4)
C14—C15	1.507 (3)	С13—Н13	0.9300
C15—H15A	0.9700	C12—H12	0.9300
O3—S—O2	118.53 (12)	С6—С7—Н7А	108.8
O3—S—N3	109.61 (10)	N1—C7—H7B	108.8
O2—S—N3	106.39 (9)	С6—С7—Н7В	108.8
O3—S—C17	107.61 (13)	H7A—C7—H7B	107.7
O2—S—C17	109.08 (12)	C5—C6—C1	119.2 (2)
N3—S—C17	104.79 (12)	C5—C6—C7	121.98 (19)
O1—P—N2	117.02 (9)	C1—C6—C7	118.82 (19)
O1—P—N1	110.51 (9)	C2—C1—C6	120.3 (2)
N2—P—N1	106.20 (9)	C2—C1—H1	119.8
O1—P—N3	108.94 (8)	C6—C1—H1	119.8
N2—P—N3	104.84 (9)	C3—C2—C1	120.0 (2)
N1—P—N3	108.98 (8)	С3—С2—Н2	120.0

C16—N2—C15	115.69 (19)	С1—С2—Н2	120.0
C16—N2—P	126.49 (17)	C4—C3—C2	119.8 (2)
C15—N2—P	117.76 (15)	С4—С3—Н3	120.1
C7—N1—C8	115.7 (2)	С2—С3—Н3	120.1
C7—N1—P	120.48 (14)	S—N3—P	125.05 (9)
C8—N1—P	118.83 (16)	S—N3—H	117.5
N2—C16—H16A	109.5	Р—N3—Н	117.5
N2—C16—H16B	109.5	S—C17—H17A	109.5
H16A—C16—H16B	109.5	S—C17—H17B	109.5
N2—C16—H16C	109.5	H17A—C17—H17B	109.5
H16A—C16—H16C	109.5	S—C17—H17C	109.5
H16B—C16—H16C	109.5	H17A—C17—H17C	109.5
C12—C11—C10	120.5 (3)	H17B—C17—H17C	109.5
C12—C11—H11	119.8	N1—C8—H8A	109.5
C10—C11—H11	119.8	N1—C8—H8B	109.5
C11—C10—C9	119.6 (3)	H8A—C8—H8B	109.5
C11—C10—H10	120.2	N1—C8—H8C	109.5
C9—C10—H10	120.2	H8A—C8—H8C	109.5
C14—C9—C10	120.6 (3)	H8B—C8—H8C	109.5
С14—С9—Н9	119.7	C6C5C4	119.9 (2)
С10—С9—Н9	119.7	C6—C5—H5	120.1
C13—C14—C9	118.5 (2)	С4—С5—Н5	120.1
C13—C14—C15	122.87 (19)	C3—C4—C5	120.8 (2)
C9-C14-C15	118.6 (2)	C3—C4—H4	119.6
N2-C15-C14	115.23 (18)	С5—С4—Н4	119.6
N2—C15—H15A	108.5	C14—C13—C12	120.8 (2)
C14—C15—H15A	108.5	C14—C13—H13	119.6
N2—C15—H15B	108.5	C12—C13—H13	119.6
C14—C15—H15B	108.5	C11—C12—C13	119.9 (3)
H15A—C15—H15B	107.5	C11—C12—H12	120.0
N1—C7—C6	113.73 (16)	C13—C12—H12	120.0
N1—C7—H7A	108.8		
O1—P—N2—C16	114.6 (2)	P—N1—C7—C6	-138.44 (18)
N1—P—N2—C16	-121.5 (2)	N1—C7—C6—C5	24.7 (3)
N3—P—N2—C16	-6.2 (2)	N1—C7—C6—C1	-157.2 (2)
O1—P—N2—C15	-62.24 (18)	C5—C6—C1—C2	0.3 (3)
N1—P—N2—C15	61.66 (17)	C7—C6—C1—C2	-177.8(2)
N3—P—N2—C15	176.96 (15)	C6—C1—C2—C3	-0.5 (4)
O1—P—N1—C7	175.63 (16)	C1—C2—C3—C4	0.3 (4)
N2—P—N1—C7	47.76 (19)	O3—S—N3—P	-41.70 (16)
N3—P—N1—C7	-64.70 (18)	O2—S—N3—P	-170.99(13)
O1—P—N1—C8	-30.5 (2)	C17—S—N3—P	73.54 (16)
N2—P—N1—C8	-158.39 (18)	O1—P—N3—S	-25.84 (16)
N3—P—N1—C8	89.15 (19)	N2—P—N3—S	100.16 (13)
C12—C11—C10—C9	-0.9 (5)	N1—P—N3—S	-146.48 (13)
C11—C10—C9—C14	2.4 (5)	C1—C6—C5—C4	0.1 (4)
C10-C9-C14-C13	-1.7 (4)	C7—C6—C5—C4	178.2 (2)

supporting information

C10 C0 C14 C15	177.4(2)	C^2 C^2 C^4 C^5	0.2(4)
	177.4 (2)	C2C3C4C5	0.2 (4)
C16—N2—C15—C14	-72.4 (3)	C6—C5—C4—C3	-0.4 (4)
P—N2—C15—C14	104.8 (2)	C9—C14—C13—C12	-0.3 (4)
C13—C14—C15—N2	-15.1 (3)	C15—C14—C13—C12	-179.4 (2)
C9—C14—C15—N2	165.9 (2)	C10-C11-C12-C13	-1.2 (5)
C8—N1—C7—C6	66.9 (3)	C14—C13—C12—C11	1.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H···O1 ⁱ	0.86	1.91	2.7152 (19)	155

Symmetry code: (i) -x, y+1/2, -z+1/2.